在物流配送领域,如何快速、准确的获得用户信息并及时开展业务,高效、合理的完成配送服务,成为决定物流企业市场竞争力的重要因素。下面是我为大家整理的物流配送管理系统论文,供大家参考。
物流配送系统干扰管理模型研究
物流配送管理系统论文摘要
摘要:物流配送在我国信息化时代是非常需要的,因此有着非常重要的地位。物流配送系统就是一个经济行为的系统,它为人们在物流上面提供了方便。关于物流配送系统干扰管理模型,国内外都有一定的研究。本文从物流配送系统的概念、一般方式、具体模型来作了探讨工作。
物流配送管理系统论文内容
[abstract] the logistics distribution in our country's information age is very need, so has a very important position. The logistics distribution system is an economic behavior of the system, it for the people in the logistics provided above to a convenient. About logistics distribution system interference management model, and have certain research at home and abroad. This paper, from the concept of logistics distribution system, general way, the specific model to work were discussed
关键词:物流配送;系统;干扰管理;研究;
中图分类号:F253
一、物流配送系统
(一)概念
物流配送系统是一个经济行为的系统,它是通过其收集广泛的信息来实现以信息为基础的物流系统化,其作用是不可忽视。物流配送系统的主要机能分为两种,一种是作业子系统,另一种是信息子系统。作业子系统的范围比较广,包括的内容也比较多,例如输送、保管、加工等机能,其主要目的是保证物流配送达到快速的运作,使工作效率提高。信息子系统相比作业子系统来说范围是比较小的,其内容包括订货、发货、出库管理等,它的主要目的除了提高其工作效率以外,还能使工作更加效果化。信息子系统还有一点对于顾客来说是非常有用的,那就是可以以比较低的成本以及优良的顾客服务来完成商品实体,然后从供应地再到消费地,是一种非常有利于顾客的活动。
(二)一般方式
物流配送在我国占有非常重要的地位,它一般有两种配送模式,一种是及时配送,另一种是准时配送,这两种配送模式的应用是非常广泛的,因为两种模式都要有一个共同点,那就是都满足了用户的特殊要求,以此来进行供货以及送货的工作。即时配送和准时配送的供货时间非常的灵活和稳定,基于这种情况,对于用户的生产者和经营者来说,库存的压力就发生了变化,也就是出现库存缩减的情况,有时还会取消自己的库存。
二、物流配送系统干扰管理模型
(一)国内外的研究
关于干扰的研究在20世纪70年代就已经开始了,但是其干扰管理模型是在同个世纪90年代才提出来的,在提出来的概念中,把干扰管理给局限化了,把系统扰动控制在最小数值,还指出了干扰管理的另一种含义,它是属于运筹学的某个应用领域,其发展的潜能在一定程度上来说是非常大的。
我国的学者也对干扰管理作了一些研究,研究表明干扰管理的实质就是使事件回到最初的状态,其突然出现的事件就是一种偏离,而这种偏离是微小的,并没有对其产生一些重要的影响,所以通过及时的管理 方法 是可以修正的。学者还将干扰管理与应急管理的不同点分列出来,使人一目了然。
在现阶段,国内外关于干扰管理的模型的研究具有片面性,侧重于模型以及算法,虽然涉及的领域非常的多,但是也具有一定的局限性,片面性在一定程度上也是有的,比如说在车辆调度领域,特别是物流配送这一方面,相对来说起步是比较晚的,但是后续的研究并没有停止。
(二)原因
1.总所周知,客户如果对一个企业充分信任的话,就能使企业的长期的拥有这些客户,也就是固定客户会增多,随着旧客户的口碑相传,新客户也会随之而来,企业就会得到更多的赢利。下文所讲到的数学模型建立的目标是最小化的,因此就可以就可以用这一条件来反映对客户满意度的扰动。
2.物流配送的运营商最关心的必然是运作成本,因为其运作成本是整个物流配送的核心,所以根据这种情况来看,要想节约其运作成本的话,就可以调整其干扰方案。
3.干扰管理在生成新的配送方案后,其车的路线也将发生变化,因为频繁的更改其路线,其交通费必然会增加,超过了原本的预算,其效率也会受到影响。另一方面,因为路线频繁的更改,司机原本已经熟悉的路线又变得陌生起来,必将会影响司机的工作心情。依据干扰管理的思想来看,新方案和原方案相比的话,两者间的偏差值应该是最小的,所以路径的变动量也会最小。在本文中,提出的模型(下文将提到)是以三个维度来度量其扰动的,其模型是属于多目标的。
(三)数学模型的建立
数学模型的建立,是例子是非常多的。本文只是以需求量变动为干扰事件这一个例子来进行数学建模,其原因有以下几点内容。
1.需求量变动在一些企业中是必然会发生的干扰事件,特别是在成品油销售的企业。因为油品的存放存在一定的危险,容易造成火灾事故,如果除去加油站,其他成油品销售一般为服务行业,比如说餐饮、酒店等,因为这些行业所存储的油不能太多,所以只能小批量的、多数次的来购买,根据这样一种情况,需求量必然会发生变化。据有关资料调查,需求量变动量最大的干扰事件就是该类企业。
2.需求量变动的问题在国内外学术界的关注度是非常高的,国内外许多著名学者都对需求量变动问题作了探讨。根据一些新闻、期刊以及文献我们就可以看出,物流配送需求量变动的研究已经在很久以前就有相关资料了。此类干扰事件在1987年时就作了有关研究,比如说不确定性需求的动态车辆指派问题模型。
3.关于物流配送的车辆其路径问题的种类也是非常多的,本文主要通过对有时间窗的车辆路径问题作了相关研究。此类问题有一个特别明显的特点,就是客户对货物所送达的时间非常的严格,因此其要求也更加高了。下面我们举一个例子来详细的讲解一下这个问题,让其更加的清晰明了。假如其问题范围和条件分别为:只有一个配送中心,并且其配送中心有足够的同质物质材料,车辆也足够,但是有一个问题就是其车辆必须以配送中心为始源地和终点,而且每一辆车必须从只能访问一个客户,如图1(a)所示.如果出现需求量的突发事件,车辆就必须在出发之前就要把物品载满。假如说在开始设定的计划中,并没有对需求量不足做出一些应急 措施 ,如果客户的需求量突然增加,如图1中的客户点7,而且增加的需求量还超过了剩余车辆的载货量,也就是说其车辆也出现供应不足的情况,此时它就需要其他车辆来进行援助工作,如图l(b)所示。
三、结束语
随着我国经济的迅速发展,人们开始追求方便化,所以物流配送工作对于人们来说变得越来越重要。但是在物流配送的过程中,必定会出现突发状况,也就是出现干扰的情况。比如说客户需求量变动、车辆出现故障等,这些干扰事件经常会使原本计划出现失败的情况,然后顾客就对其不满,矛盾也会随着时间而加深。在现阶段,物流配送系统干扰管理模型的研究有些片面化,在前面我们也提到过,主要因为全都集中在单一要素变动引发的干扰事件上,在真正的物流配送过程中,存在变动的情况更多,因此,物流配送系统干扰管理模型的问题还有待进一步的研究,以此来完善此系统,让其更加贴近生活,实用性也变得更强。
物流配送管理系统论文文献
[1]王旭坪,杨德礼,许传磊.有顾客需求变动的车辆调度干扰管理研究[J].运筹与管理.2009(04)
[2] 孙丽君,胡祥培,于楠,方艳.需求变动下的物流配送干扰管理模型的知识表示与求解[J].管理科学.2008(06)
[3] 杨文超,王征,胡祥培,王雅楠.行驶时间延迟的物流配送干扰管理模型及算法[J].计算机集成制造系统.2010(02)
[4] 朱晓锋,蔡延光.物流配送的优化模型及算法在连锁企业中应用[J].顺德职业技术学院学报.2011(01)
[5] 胡祥培,于楠,丁秋雷.物流配送车辆的干扰管理序贯决策方法研究[J].管理工程学报.2011(02)
矩阵算法在物流配送管理系统中的应用
物流配送管理系统论文摘要
摘要: 本文针对物流配送中心运营过程中如何合理制定配送线路的问题,以邻接矩阵为基础,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。
物流配送管理系统论文内容
Abstract: In this paper, for the problem how to develop reasonable distribution lines in the process of logistics and distribution center operations, based on adjacency matrix, by the computation of adjacency matrix to get graph reachability matrix and judge whether can find forward path from the source node to goal node, and finally complete the search of the shortest path.
关键词: 车辆路径问题;配送;物流;最短路径
Key words: vehicle routing problem;distribution;logistics;shortest path
中图分类号:TP39 文献标识码:A 文章 编号:1006-4311(2013)10-0163-02
0 引言
目前我国的快递行业蓬勃发展,使得物流配送中心的业务量不断增加,业务的复杂程度也已不断提高,这都对物流配送中心的科学管理水平提出了新的要求,高效、合理、安全、快速的配送是物流系统顺利运行的保证,而配送线路安排是否合理也是配送速度、成本、效益的保证。正确、合理地安排配送线路,可以达到省时、省力,增加资源利用率,降低成本,提高经济效益的目的,从而使企业达到科学化的物流管理。
本文以邻接矩阵模型为基础,提出了一种新的最短路径算法,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。
1 有向图的可达矩阵
假设有一个n个节点(d1,d2……dn)建立的有向图,每条有向边上都有各自的权值,若节点di和dj之间有条有向边,则其权值表示为Wij。如果我们要求节点d1到节点dn的最短路径。那么首先应该建立基于该有向图的邻接矩阵M:Mij=0表示节点di和dj之间没有直接有向通路,若Mij=1表示节点di和dj之间存在直接有向通路。
那么矩阵M2中所有为1的元素的坐标所代表的就是通过一次“中转”可以达到贯通的节点对。以此类推M3中所有为1的元素的坐标就是通过两次 “中转”可以达到贯通的节点对;Mn所有为1的元素的坐标就是通过n-1次“中转”可以达到贯通的节点对。
所以我们可以得出:M1+M2+M3+……+Mn得到的矩阵T即为原有向图可达矩阵,Tij=0表示节点di和dj之间没有有向通路,若Tij=1表示节点di和dj之间存在至少存在一条有向通路。
对于大规模稀疏矩阵,由于存在大量的值为0的元素,若按常规意义来存储,既会占用大量的存储空间,又会给查找带来不便。所以只要存储值为非0的元素即可。这在计算机中很好实现,只要建立含有两个整数域的结构体变量即可。
2 路径搜索算法
2.1 初步设想 由矩阵乘法的性质可知,Mx=Mx-1*M。若M■■≠0,则说明节点d1通过x-1次“中转”可以到达节点dj。那其中这x-1个节点都是哪些?它们又是什么顺序呢?把这两个问题搞清楚我们就找到了一条从节点d1经x-1次“中转”到达节点dj的通路。
接下来我们观察矩阵Mx-1的第一行,若M■■≠0,且Mij≠0,则说明:节点d1存在经x-2次“中转”到达节点di的通路,且节点di和dj之间存在直接有向通路。这样我们就找到了节点d1到节点dj通路的最后一次“中转”di,即d1,……,di,dj是一条有向通路。我们可以根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。
这在计算机中实现也很容易,只要把找节点di和dj之间的最后一次“中转”的方法编写好,采用计算机中的递归调用就能很好地解决这个问题,计算机会自己自动完成整个操作。
2.2 节点的选取 有一个问题我们需要注意:在我们观察矩阵Mx-1的第一行时可能有多个节点di,使得M■■≠0,且Mij≠0。基于我们是想找到有向图中的最短路径,所以每一次选取节点应该选择一个到节点dj最短的节点作为最后一次“中转”。这一过程是通过查看另一权值矩阵W,找到值最小的Wij来确定di的。
2.3 待查节点集 上面说到,我们找到了节点d1到节点dj的x-1次“中转”的最后一次“中转”di,即d1,……,di,dj是一条有向通路。根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。
每一次查找之前,与待查节点有直接通路的节点都应加到考察的范围,同时上一次确定的最终通路上的节点也应从待查范围中删除,而加入最终通路的节点集中。
2.4 需要考虑的两种情况 按照上面方法是会找到一条从d1到节点dj的一条有向通路,但是一定是最短路径吗?我们先考虑两个情况:①如果在已经找到一条从d1到节点dj的有向通路的前提下,再重复以上过程再找一条从d1到节点dj的有向通路,那么有可能新找到的通路上的所有权值之和要比之前找到的通路上的权值之和小,在这种情况下,应放弃原来通路。记下新找到的通路把它作为“当前”的最短路径。②如果在查找的过程中,已经确定节点dy是在已找通路上的节点,即存在节点d1到节点dy的通路,也存在节点dy到节点dj的通路,并且dy是上一节点的最近邻接点。但在查找下一步节点d1到节点dy的通路的最后一次“中转”dz的过程中发现:所定通路上节点dy的上一节点通过其他方式到节点dz的长度要比经过节点dy中转到节点dz的长度要短,即通过dy相当于“绕路”。因为根据2.1中所阐述的方法找到的节点dz一定是待查节点中到节点dy路径长度最短的节点。若存在“绕路”现象,那么通过节点dy到其他的未差节点都会“绕路”。因而在这种情况下应该从已经确定的有向通路中把节点dy删除,恢复上一节点为当前节点,重新查找其除dy之外的最后一次“中转”。 2.5 搜索算法 首先根据实际情况建立有向图,并根据有向图建立有向图的邻接矩阵M,以及根据各有向边的权值建立矩阵W。然后根据矩阵乘法求出M2,M3,……Mn。这可以通过循环完成。之后的步骤就是设定待查节点,由于算法是从终点向起点查找的,所以应该先把与终点dj构成直接通路的节点作为待查节点。建立完待查节点集后,首先按照深度优先进行搜索,按照上面所说的递归算法查找第一条有向通路。然后以此条通路为基准,进行广度优先搜索,寻找新的通路,查找过程仍然是采用上述的递归算法,但是要考虑到2.4中的两种情况。需要指出的是:广度优先搜索过程可能是一个反复执行的过程,直至最终找到节点d1到节点dj的最短路径。
3 实例
某物流公司业务员要从v0到地点v2投递货物,路线如图1所示,业务员想在此过程走的路线最短,时间最快。他应该走哪条路线?
由上面有向图建立的邻接矩阵M以及有向边权值矩阵W如图2所示,由于M是一个稀疏矩阵,按照上面方法所述形成的节点数对(0,1),(0,3),(1,2),(3,2),(3,4),(4,1),(4,2)。按照矩阵乘法计算出M2、M3、M4、M5。由它们产生的节点对如下所示:M2(0,2),(0,4),(3,1),(3,2),(4,2);M3(0,1),(0,2),(3,2);M4(0,2)。我们据此可得到该有向图的可达矩阵T的节点对:(0,1),(0,2),(0,3),(0,4),(1,2),(3,1),(3,2),(3,4)(4,1),(4,2)。
现在我们求节点v0到v2的最短路径。查看矩阵T可知存在(0,2)的节点对,所以从V0可以到达V2。再按照上述规则以及结合矩阵W,找到M2存在(2,0)节点对,M中存在(1,2)和(0,1)节点对,即M■■= M12* M01, M■■、M12、 M01都不为0。所以找到一条通路即:v0、v1、v2,其路径长为19。
按照上述方法,我们还可以找到通路:v0、v3、v2和v0、v3、v4、v2,但是由于它们的路径长分别为19和20,不产生对通路v0、v1、v2的替换,所以在此不再详述。继续按着上述方法查找通路时会发现:M■■≠0,且存在M■■≠0,M12≠0,继续查找又会发现存在M■■≠0,M41≠0,进一步查找又会发现存在M03≠0,M34≠0,所以最终找到通路:v0、v3、v4、v1、v2,由于其路径长为18,所以按照上述原则对原通路v0、v1、v2进行替换,又由于已查找该有向图中所有通路,所以确定最短路径为v0、v3、v4、v1、v2,由于其路径长为18。
4 结论
本文针对物流配送系统中的投递等事务中路线优化的问题,提出了一种新的对最短路径算法的尝试,采用逆向标号,对待查节点进行优化选取,有效的利用了第一次计算的有用信息,避免重复计算,使得该算法搜索设计上要比以往算法节省时间,对于最短路径问题可以快速求解。虽然增加了邻接矩阵的乘法计算,但由于是稀疏矩阵,不会增加太多的计算量。本算法是具有实际意义的,可以在成本降低方面给出积极、高效的意见和解决方法,从而降低物流中的流通费用。
物流配送管理系统论文文献
[1]肖位枢.图论及其算法.北京:航空工业出版社,1993.
[2]任亚飞,孙明贵,王俊.民营快递业的发展及其战略选择.北京:中国储运,2006.
[3]周石林,尹建平,冯豫华.基于邻接矩阵的最短路径算法.北京:软件导报,2010.
[4]蔡临宁.物流系统规划—建模实例分析.北京:机械工业出版社,2003.
有关物流配送管理系统论文推荐:
1. 配送管理论文
2. 物流配送毕业论文范文
3. 浅谈仓储与配送管理论文
4. 物流管理专科毕业论文范文
5. 浅谈服装物流管理论文
6. 快递末端物流配送的风险分析与防范措施研究论文
那要理解矩阵的相乘,先拿两边举例-----------------------------------------------原矩阵如下: a b c a 1 1 0 1 1 0b 0 0 1 0 0 1c 1 0 0 1 0 0-----------------------------------------------上面第一行表示从a射出的所有边,a可以到a也可以到b,所以都是1,而第一列表示射回a的边,a,c都可以射回来.-------------------------------------------------因此两矩阵相乘,第一个元素aa=1*1+1*0+0*1=1;是第一行乘一第一列,正好是一出一进,两条边-------------------------------------------------而如果进出都为1就是1*1时才能有值,表示有一条这样的两边,1*0表示只出去了没回来,就没有值了.0*0,0*1就不用说了..-------------------------------------------------而几个加起来之和就是所有从a出去再回a的两边的个数,所以相乘后的结果就是表示两边的个数之和,因此,3边4边就依次类推了...
初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。 高等代数发展简史 代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。 人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。 在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。 在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。 三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。 到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来。阿贝尔的这个证明不但比较难,而且也没有回答每一个具体的方程是否可以用代数方法求解的问题。 后来,五次或五次以上的方程不可能有代数解的问题,由法国的一位青年数学家伽罗华彻底解决了。伽罗华20岁的时候,因为积极参加法国资产阶级革命运动,曾两次被捕入狱,1832年4月,他出狱不久,便在一次私人决斗中死去,年仅21岁。 伽罗华在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见。我希望将来有人发现消除所有这些混乱对它们是有益的。” 伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了14年,才由刘维尔(1809~1882)编辑出版了他的部分文章,并向数学界推荐。 随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们所认识。伽罗华虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步的发展。在数学大师们的经典著作中,伽罗华的论文是最薄的,但他的数学思想却是光辉夺目的。 高等代数的基本内容 代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。 多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。 多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解。 我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比于1841年总结并提出了行列式的系统理论。 行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。 因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等。 矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。 代数学研究的对象,不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。 高等代数与其他学科的关系 代数学、几何学、分析数学是数学的三大基础学科,数学的各个分支的发生和发展,基本上都是围绕着这三大学科进行的。那么代数学与另两门学科的区别在哪儿呢? 首先,代数运算是有限次的,而且缺乏连续性的概念,也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证的统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别地研究认识,在综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本思想和方法。代数学注意到离散关系,并不能说明这时它的缺点,时间已经多次、多方位的证明了代数学的这一特点是有效的。 其次,代数学除了对物理、化学等科学有直接的实践意义外,就数学本身来说,代数学也占有重要的地位。代数学中发生的许多新的思想和概念,大大地丰富了数学的许多分支,成为众多学科的共同基础。
矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。
如果这两个不行,你可以把这两篇论文综合一下哦
组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 在1997年11月的南开大学组合数学研究中心成立大会上,吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。最近,吴文俊院士又指出,信息技术很可能会给数学本身带来一场根本性的变革,而组合数学则将显示出它的重要作用。杨乐院士也指出组合数学无论在应用上和理论上都具有越来越重要的位置,它今后的发展是很有生命力,很有前途的,中国应该倡导这个方面的研究工作。万哲先院士甚至举例说明了华罗庚,许宝禄,吴文俊等中国老一辈的数学家不仅重视组合数学,同时还对组合数学中的一些基本问题作了重大贡献。迫于中国组合数学发展自身的需要,以及中国信息产业发展的需要,在中国发展组合数学已经迫在眉睫,刻不容缓。 2. 组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。我在美国听到过一种说法,将来一个国家的经济实力可以直接从软件产业反映出来。我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。这样的阵地多几个,我们的软件产业就会产生新的局面。值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。 3. 组合数学在国外的状况 纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。当今计算机科学界的最权威人士很多都是研究组合数学出身的。美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。一些大公司,如IBM,AT&T都有全世界最强的组合研究中心。Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,AT&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。我所熟悉的美国重要的国家实际室(Los Alamos国家实验室,以造出第一颗原子弹著称于世),从曼哈顿计划以来一直重视应用数学的研究,包括组合数学的研究。我所接触到的有关组合数学的计算机模拟项目经费达三千万美元。不仅如此,该实验室最近还在积极充实组合数学方面的研究实力。美国另外一个重要的国家实验室Sandia国家实验室有一个专门研究组合数学和计算机科学的机构,主要从事组合编码理论和密码学的研究,在美国政府以及国际学术界都具有很高的地位。由于生物学中的DNA的结构和生物现象与组合数学有密切的联系,各国对生物信息学的研究都很重视,这也是组合数学可以发挥作用的一个重要领域。前不久召开的北京香山会议就体现了国家对生物信息学的高度重视。据说IBM也将成立一个生物信息学研究中心。由于DNA就是组合数学中的一个序列结构,美国科学院院士,近代组合数学的奠基人Rota教授预言,生物学中的组合问题将成为组合数学的一个前沿领域。 美国的大学,国家研究机构,工业界,军方和情报部门都有许多组合数学的研究中心,在研究上投入了大量的经费。但他们得到的收益远远超过了他们的投入,更主要的是他们还聚集了组合数学领域全世界最优秀的人才。高层次的软件产品处处用到组合数学,更确切地说就是组合算法。传统的计算机算法可以分为两大类,一类是组合算法,一类是数值算法(包括计算数学和与处理各种信息数据有关的信息学)。依我个人的浅见,近年来计算机算法又多了一类:那就是符号计算算法。吴文俊院士开创的机器证明方法就属于符号计算,引起了国际上的高度评价,被称为吴方法。而国际上还有专门的符号计算杂志。符号算法和吴方法跟代数组合学也有十分密切的联系。组合数学,数值计算(包括计算数学,科学计算,非线性科学,和与处理各种信息数据有关的信息学)和统计学可能是应用最广的数学分支,而组合数学的价值甚至不亚于统计学和数值计算。由于数学机械化近年来的发展和在计算机科学中的重要性,把数学机械化,科学计算和组合数学组合起来,就可以说是中国信息产业的基础。组合数学家H. Wilf和D. Zeilberger1998因为在组合恒等式的机械化证明方面的成果,获得1998年美国数学会的Steele奖。 Gian-Carlo Rota教授在他去年不幸逝世之前,还专门向我提出,希望我向中国有关部门和领导人呼吁,组合数学是计算机软件产业的基础,中国最终一定能成为一个软件大国,但是要实现这个目标的一个突破点就是发展组合数学。中国在软件技术上远远落后于美国,而在组合数学上则更是落后于美国和欧洲。如果中国只是想在软件技术上跟着西方走,而不在组合数学上下功夫,那么中国的软件将一直处于落后的状态。他特别强调组合数学在计算机科学中的作用,以及在大学计算机系加强组合数学教学和人才培养。 最近Thomson Science公司创刊的一份电子刊物《离散数学和理论计算机科学》即是一个很好的说明。它的内容涉及离散数学和计算机科学的众多方面。由于计算机软件的促进和需求,组合数学已成为一门既广博又深奥的学科,需要很深的数学基础,逐渐成为了数学的主流分支。本世纪公认的伟大数学家盖尔芳德预言组合数学和几何学将是下一世纪数学研究的前沿阵地。这一观点不仅得到国际数学界的赞同,也得到了中国数学界的赞同和响应。 加拿大在Montreal成立了试验数学研究中心,他们的思路可能和吴文俊院士的数学机械化研究中心的发展思路类似,使数学机械化,算法化,不仅使数学为计算机科学服务,同时也使计算机为数学研究服务。吴文俊院士指出,中国传统数学中本身就有浓厚的算法思想。 今后的计算机要向更加智能化的方向发展,其出路仍然是数学的算法,和数学的机械化。另外的一个有说服力的现象是,组合数学家总是可以在大学的计算机系或者在计算机公司找到很好的工作,一个优秀的组合数学家自然就是一个优秀的计算机科学家。相反,美国所有大学计算机系都有组合数学的课程。 除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。近几年,南美国家也在积极推动组合数学的研究。澳大利亚,新西兰也组建了很强的组合数学研究机构。值得一提的是亚洲的发达国家也十分重视组合数学的研究。日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。台湾、香港两地也从美国引进人才,大力发展组合数学。新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。 4. 组合数学花絮 ** 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 ** 我国古代的河洛图上记载了三阶幻方,即把从一到九这九个数按三行三列的队行排列,使得每行,每列,以及两条对角线上的三个数之和都是一十五。组合数学中有许多象幻方这样精巧的结构。1977年美国旅行者1号、2号宇宙飞船就带上了幻方以作为人类智慧的信号。 ** 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。 ** 在中小学的数学游戏中,有这样一个问题,一个船夫要把一只狼,一只羊和一棵白菜运过河。问题是当人不在场时,狼要吃羊,羊要吃白菜,而他的船每趟只能运其中的一个。他怎样才能把三者都运过河呢?这就是一个很典型、很简单的组合数学问题。 ** 我们还会遇到更复杂的调度和安排问题。例如,在生产原子弹的曼哈顿计划中,涉及到很多工序,许多人员的安排,很多元件的生产,怎样安排各种人员的工作,以及各种工序间的衔接,从而使整个工期的时间尽可能短?这些都是组合数学典型例子。 ** 航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足 不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是 组合数学的问题。 ** 对于城市的交通管理,交通规划,哪些地方可能是阻塞要地,哪些地方 应该设单行道,立交桥建在哪里最合适,红绿灯怎样设定最合理, 如此等等,全是组合数学的问题。 ** 一个邮递员从邮局出发,要走完他所管辖的街道,他应该怎样选择什么样的路径,这就是著名的"中国邮递员问题",由中国组合数学家管梅谷教授提出,著名组合数学家,J. Edmonds和他的合作者给出了一个解答。 ** 一个通讯网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。 ** 据说,假日饭店的管理中,也严格规定了有关的工序,如清洁工的第一步是换什么,清洗什么,第二步又做什么,总之,他进出房间的次数应该最少。既然,这样一个简单的工作都需要讲究工序,那么一个复杂的工程就更不用说了。 ** 库房和运输的管理也是典型的组合数学问题。怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取(如存储时间短的应该放在容易存取的地方)。 ** 我们知道,用形状相同的方型砖块可以把一个地面铺满(不考虑边缘的情况),但是如果用不同形状,而又非方型的砖块来铺一个地面,能否铺满呢?这不仅是一个与实际相关的问题,也涉及到很深的组合数学问题。 ** 组合数学中有一个著名问题:是否存在稳定婚姻的问题。假如能找到两对夫妇(如张(男)--李(女)和赵(男)--王(女)),如果张(男)更喜欢王(女),而王(女)也更喜欢张(男),那么这样就可能有潜在的不稳定性。组合数学的方法可以找到一种婚姻的安排方法,使得没有上述的不稳定情况出现(当然这只是理论上的结论)。这种组合数学的方法却有 一个实际的用途:美国的医院在确定录取住院医生时,他们将考虑申请者的志愿的先后次序,同时也给申请排序。按这样的 次序考虑出的总的方案将没有医院和申请者两者同时后悔的情况。 实际上,高考学生的最后录取方案也可以用这种方法。 ** 组合数学还可用于金融分析,投资方案的确定,怎样找出好的投资组合以降低投资风险。南开大学组合数学研究中心开发出了"金沙股市风险分析系统"现已投放市场,为短线投资者提供了有效的风险防范工具。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 胡锦涛同志在1998年接见"五四"青年奖章时发表的讲话中指出,组合数学不同于传统的纯数学的一个分支,它还是一门应用学科,一门交叉学科。他希望中国的组合数学研究能够为国家的经济建设服务。 如果21世纪是信息社会的世纪,那么21世纪也必将是组合数学大有可为的世纪。
解决步骤:1、将题目与页面边缘的距离调近,调节到一个比较合适的位置上,居中的处理不变。2、处理第二行剩余的题目了,光标放置在第一行末尾,按下Enter键进入第二行,这样就可以单独处理剩余的题目了。3、第二行是居中处理,需要将多余的下划线删除,选中下环线,再点击下划线图标就可以删除下划线,下划线的长度要稍稍超出文字内容。
好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!
除了竖线|| 大括号{}不能用 其他两个都能用 ()和[]都可以的
我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业
你可以去淘宝看看。
好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!
矩阵初等变换的应用 毕业论文擅长的,,,帮你.
百度文库有篇很好的,直接搜“毕业论文分块矩阵的应用”就行了。
矩阵是代数特别是线性代数中一个极其重要的概念Matrix algebra is a very important concept in linear algebra而矩阵的分块则是在处理级数较高的矩阵时常用的方法While the block matrix is used in the matrix series method when a high常在分块之后,矩阵间的相互关系会看的更清楚Often in the block after the relationship matrix between, will see more clearly像矩阵一样Like matrices分块矩阵具有广泛的应用Block matrix has a wide range of applications矩阵的分块运算是矩阵运算的一种重要方法Block matrix operation is an important method for matrix operations本文就是利用分块矩阵的特殊性质给出了它在求行列式值中的一些应用This paper is the use of block matrix to solve it in the determinant value of application合起来就是Matrix algebra especially in linear algebra is an extremely important concept and block matrix is the matrix series high commonly used method in block, relationship between matrix will see more clearly, like matrices, block matrix has a wide application, block matrix operation is an important method of matrix operations, this paper is to use block matrix to solve it in the determinant value of application
毕业论文论文摘要目录范例
论文提纲可分为简单提纲和详细提纲两种。简单提纲是高度概括的,只提示论文的要点,如何展开则不涉及。这种提纲虽然简单,但由于它是没有经过深思熟虑构成的,写作时难顺利进行。没有这种准备,边想边写很难顺利地写下去。下面是关于2016毕业论文论文摘要目录范例的范文,供大家阅读参考。
在工程项目造价控制的全过程中,一旦项目做出投资决策,控制项目造价的关键就在于设计阶段。国内外研究表明:占总费用不到 3%的设计阶段,对整个项目全生命周期成本的影响却超过 70%.然而在实际工作中,由于对设计阶段造价控制的轻视,以及对设计阶段造价控制的方法和制度缺乏深入的研究,造成了诸多建设过程中造价失控的现象。而限额设计方法作为设计阶段造价控制的最有效方法之一,在我国工程实际应用中虽取得一定的成效,但仍有较大的改进空间。
目 录
摘 要
第一章 绪论
1.1 研究的背景
1.2 研究的意义
1.3 国内外研究现状
1.3.1 国外研究现状
1.3.2 国内研究现状
1.4 研究的`目的和内容
1.4.1 研究的目的
1.4.2 研究的内容
1.5 研究的方法及技术路线
1.5.1 研究的方法
1.5.2 研究的技术路线
1.6 本章小结
第二章 建设工程设计阶段造价控制概述
2.1 建设工程造价的概述
2.1.1 工程造价的概念
2.1.2 工程造价的构成
2.1.3 工程造价的特点
2.2 建设工程造价控制的概述
2.2.1 建设工程造价控制的概念
2.2.2 工程造价控制的一般程序
2.2.3 建设工程造价控制的目标
2.2.4 国内工程造价控制的现状
2.3 基于设计阶段的造价控制概述
2.3.1 建筑工程设计的概念
2.3.2 设计阶段的主要内容
2.3.3 设计阶段影响工程造价的主要因素
2.4 国内设计阶段的造价控制的工作流程
2.4.1 方案设计阶段的造价控制任务及流程
2.4.2 初步设计阶段的造价控制任务及流程
2.4.3 施工图设计阶段的造价控制任务及流程
2.5 本章小结
第三章 设计阶段造价控制的相关理论
3.1 限额设计
3.1.1 限额设计的概念
3.1.2 限额设计的特点
3.1.3 限额设计造价控制的过程
3.1.4 限额设计的不足
3.2 价值工程
3.2.1 价值工程的概念
3.2.2 价值工程的原理
3.2.3 价值工程的工作程序
3.2.4 价值工程在设计阶段的应用
3.3 质量功能展开(QFD)法
3.3.1 QFD 的概念
3.3.2 QFD 的原理
3.3.3 QFD 的效果
3.4 全生命周期成本(LCC)理论
3.4.1 全生命周期成本的概念
3.4.2 全生命周期成本的计算
3.4.3 全生命周期成本的在设计阶段的应用
3.5 各方法应用对比分析
3.6 本章小结
第四章 限额设计方法的改进
4.1 限额设计方法改进的理论思路
4.2 建筑工程限额设计中限额的确定
4.2.1 QFD 法确定设计限额的工作流程
4.2.2 建立建筑工程质量表
4.2.3 确定各质量需求项重要度
4.2.4 建立质量需求与质量特性关系矩阵并计算
4.3 建筑工程限额设计中限额的分配
4.3.1 现行设计限额分配方法存在的不足
4.3.2 运用价值工程原理分配限额
4.3.3 功能目标成本的综合修正
4.4 本章小结
第五章 改进后的限额设计方法案例分析
5.1 工程概况
5.2 设计限额的确定
5.2.1 建立住宅工程质量表
5.2.2 确定质量需求重要度
5.2.3 建立质量需求与质量特性关系矩阵并计算
5.2.4 分析数据确定设计限额
5.3 设计限额的分配
5.3.1 功能定义与评价
5.3.2 相似工程的数据统计分析
5.3.3 功能目标成本的综合修正
5.4 本章小结
拓展资料:
2022毕业论文格式
一、 论文的格式要求
1.论文用A4纸打印;
2.论文标题居中,小二号黑体(加粗) ,一般中文标题在二十字以内;
4.副标题四号,宋体,不加粗,居中
5.论文内容摘要、关键词、参考文献、正文均统一用四号,宋体(不加粗);大段落标题加粗;
6.页码统一打在右下角,格式为“第×页 共×页” ;
7.全文行间距为1倍行距
8.序号编排如下:
一、(前空二格)――――――――――――此标题栏请加粗
(一) (前空二格)
1.(前空二格)
(1) (前空二格)
二、 内容摘要、关键词
内容摘要是对论文内容准确概括而不加注释或者评论的简短陈述,应尽量反映论文的主要信息。内容摘要篇幅以150字左右为宜。关键词是反映论文主题内容的名词,一般选用3-4个,每个关键词之间用分号隔开。关键词排在摘要下方。“内容摘要”和“关键词”本身要求用[关键词][内容摘要](综括号、四号、宋体、加粗)。
三、正文部分
正文是论文的核心,要实事求是,准确无误,层次分明,合乎逻辑,简练可读。字数不少于3000字。
文字要求规范;所有文字字面清晰,不得涂改。
数字用法 :公历世纪、年代、年、月、日、时刻和各种计数与计量,均用阿拉伯数字。年份不能简写,如2015年不能写成15年。
四、参考文献
参考文献其他部分统一使用四号宋体不加粗。“参考文献”本身要求用参考文献:(四号、宋体,加粗)。
五、致谢
致谢
两字本身用四号,宋体,加粗,居中。内容为四号宋体,不加粗。