最好在网上下载吧
【摘要】体育科学横跨自然科学与社会科学两大门类,具有极强的综合性特征,有其独特的研究对象和科学方法,体育科研论文的写作亦有自己的特点与要求。本文仅就体育科研论文的文章结构、基本格式以及内容与要求作一探讨。【关键词】科研论文;文章结构;基本格式;内容与要求OntheBasicStructureandFormofSportsScienceThesis【Keywords】Thesis;StructureandForm;ContentandRequirement***1前言从事体育科学研究活动,必须具备多学科的知识、多方面的能力和科学的方法。体育科技写作,不仅是体育工作者应具备的知识和能力,而且是必须把握的一种具体的科研方法。因为,一切体育科学研究之成果最后大都以科研论文这种书面表达形式,经科技信息载体传播于世的。体育科研成果如不能最后写成科技作品(论文),公布于众,那么一切个人的科学见解和观点,一切创造和发明,都不可能得到传播和利用,产生应有的社会效益,而只能是研究者头脑里的一些思维活动罢了,世人是无法知晓的,如然,也就失去了科学研究的意义了。诚然,人们衡量体育科研论文质量的标准主要取决于其理论和实践价值的大小,然而,论文所反映的研究成果能否迅速的向社会传播并准确的被人们所理解则取决于论文写作水平的高低。这表明,一篇高质量的体育科研论文要求其内容和形式的统一。随着体育科学的迅速发展,科技信息量与日俱增,据报道,目前全世界体育期刊已达5000余种,每年问世的体育科技文献约25000—30000篇,平均天天有80余篇。体育科研成果的传播、贮存与利用,引起了人们的高度重视,借助于现代科技工具——计算机对体育科技成果、信息进行贮存、检索,使之迅速地传播与利用,已成为一种先进的传播交流手段。微机贮存与检索,要求体育科技学术期刊编排实现规范化,而期刊编排规范化首先要求论文写作的规范化。要实现体育科研论文写作的规范化,就必须了解体育科技写作知识,把握其写作方法和技巧。笔者因职业之原故,拜读体育科研论文原稿颇多,从研读原稿论文感到许多科研论文的选题和所研究的内容颇有价值,但论文写作不符合期刊编排规范化和科研论文撰写的要求。其中最为普遍的突出的问题是文章结构层次混乱、写作格式极不统一(尤其是理论型和实验型的“定量化”研究论文)。这不仅给编者和读者熟悉和理解论文之精髓增加了难度,也直接影响了体育科研成果的传播、贮存和利用。体育科技写作,作为一种科研方法,涉及的知识结构内容颇多,不同文体的体育科技作品有不同的写作要求。本文仅对体育科研论文的文章结构和基本撰写格式的内容与要求作一探讨。2体育科研论文的文章结构根据写作目的的不同、研究对象和方法的差别,体育科研论文大致分为两类,一类是学位论文,一类是学术论文。学位论文,是体育院校的学生或体育科研院(所)研究人员旨在取得学位而写作的论文。如学士论文、硕士论文、博士论文。学术论文,是广大体育工作者在体育实践中为研究和解决某一问题而写作的论文。目前,体育科学技术、理论研究的新成果大部分都是以学术论文的形式发表在体育科技学术刊物上。由于研究对象和方法的差别,学术论文又分为两种类型,即理论型论文和实验型论文。虽然体育科研论文的种类很多,构成的形式多样,但就其文章的主体结构有它的基本型,即序论、本论、结论的三段式。2。1序论部分的写作内容与要求序论,是论文的开头、引子,好比一出长剧的序幕,要有吸引力。通常以引言、导言、绪言、前言等小标题冠之,也可以不冠以任何小标题。该部分的写作内容主要有三个方面:①介绍课题研究的背景材料,前人的工作和现在的知识空白;②研究的理由、目的,理论依据和实验基础,预期结果及其在相关领域里的地位、作用和意义;③交待课题研究的范围、任务。这一部分要写得简明扼要,在整篇文章中它所占的比例要小。具体要求是背景材料的介绍要准确、具体,紧扣课题;研究的说明要实事求是,对作用意义不可夸大和自我评价;任务的交待应具体、明确。2。2本论部分的写作内容与要求本论也称正论,它是体育科研论文的主体,课题的“创造性”主要在这一部分表达出来,它反映了论文所建立的学术理论、采用的技术路线和研究方法达到的水平,简言之,本论水平决定了整个论文的水平。
高分辨率光学显微术在生命科学中的应用【摘要】 提高光学显微镜分辨率的研究主要集中在两个方面进行,一是利用经典方法提高各种条件下的空间分辨率,如用于厚样品研究的SPIM技术,用于快速测量的SHG技术以及用于活细胞研究的MPM技术等。二是将最新的非线性技术与高数值孔径测量技术(如STED和SSIM技术)相结合。生物科学研究离不开超高分辨率显微术的技术支撑,人们迫切需要更新显微术来适应时代发展的要求。近年来研究表明,光学显微镜的分辨率已经成功突破200nm横向分辨率和400nm轴向分辨率的衍射极限。高分辨率乃至超高分辨率光学显微术的发展不仅在于技术本身的进步,而且它将会极大促进生物样品的研究,为亚细胞级和分子水平的研究提供新的手段。【关键词】 光学显微镜;高分辨率;非线性技术;纳米水平在生物学发展的历程中显微镜技术的作用至关重要,尤其是早期显微术领域的某些重要发现,直接促成了细胞生物学及其相关学科的突破性发展。对固定样品和活体样品的生物结构和过程的观察,使得光学显微镜成为绝大多数生命科学研究的必备仪器。随着生命科学的研究由整个物种发展到分子水平,显微镜的空间分辨率及鉴别精微细节的能力已经成为一个非常关键的技术问题。光学显微镜的发展史就是人类不断挑战分辨率极限的历史。在400~760nm的可见光范围内,显微镜的分辨极限大约是光波的半个波长,约为200nm,而最新取得的研究成果所能达到的极限值为20~30nm。本文主要从高分辨率三维显微术和高分辨率表面显微术两个方面,综述高分辨率光学显微镜的各种技术原理以及近年来在突破光的衍射极限方面所取得的研究进展。1 传统光学显微镜的分辨率光学显微镜图像的大小主要取决于光线的波长和显微镜物镜的有限尺寸。类似点源的物体在像空间的亮度分布称为光学系统的点扩散函数(point spread function, PSF)。因为光学系统的特点和发射光的性质决定了光学显微镜不是真正意义上的线性移不变系统,所以PSF通常在垂直于光轴的x-y平面上呈径向对称分布,但沿z光轴方向具有明显的扩展。由Rayleigh判据可知,两点间能够分辨的最小间距大约等于PSF的宽度。根据Rayleigh判据,传统光学显微镜的分辨率极限由以下公式表示[1]:横向分辨率(x-y平面):dx,y=■轴向分辨率(沿z光轴):dz=■可见,光学显微镜分辨率的提高受到光波波长λ和显微镜的数值孔径N.A等因素的制约;PSF越窄,光学成像系统的分辨率就越高。为提高分辨率,可通过以下两个途径:(1)选择更短的波长;(2)为提高数值孔径, 用折射率很高的材料。Rayleigh判据是建立在传播波的假设上的,若能够探测非辐射场,就有可能突破Rayleigh判据关于衍射壁垒的限制。2 高分辨率三维显微术在提高光学显微镜分辨率的研究中,显微镜物镜的像差和色差校正具有非常重要的意义。从一般的透镜组合方式到利用光阑限制非近轴光线,从稳定消色差到复消色差再到超消色差,都明显提高了光学显微镜的成像质量。最近Kam等[2]和Booth等[3]应用自适应光学原理,在显微镜像差校正方面进行了相关研究。自适应光学系统由波前传感器、可变形透镜、计算机、控制硬件和特定的软件组成,用于连续测量显微镜系统的像差并进行自动校正。 一般可将现有的高分辨率三维显微术分为3类:共聚焦与去卷积显微术、干涉成像显微术和非线性显微术。2.1 共聚焦显微术与去卷积显微术 解决厚的生物样品显微成像较为成熟的方法是使用共聚焦显微术(confocal microscopy) [4]和三维去卷积显微术(three-dimensional deconvolution microscopy, 3-DDM) [5],它们都能在无需制备样品物理切片的前提下,仅利用光学切片就获得样品的三维荧光显微图像。共聚焦显微术的主要特点是,通过应用探测针孔去除非共焦平面荧光目标产生的荧光来改善图像反差。共聚焦显微镜的PSF与常规显微镜的PSF呈平方关系,分辨率的改善约为■倍。为获得满意的图像,三维共聚焦技术常需使用高强度的激发光,从而导致染料漂白,对活生物样品产生光毒性。加之结构复杂、价格昂贵,从而使应用在一定程度上受到了限制。3-DDM采用软件方式处理整个光学切片序列,与共聚焦显微镜相比,该技术采用低强度激发光,减少了光漂白和光毒性,适合对活生物样品进行较长时间的研究。利用科学级冷却型CCD传感器同时探测焦平面与邻近离焦平面的光子,具有宽的动态范围和较长的可曝光时间,提高了光学效率和图像信噪比。3-DDM拓展了传统宽场荧光显微镜的应用领域受到生命科学领域的广泛关注[6]。2.2 选择性平面照明显微术 针对较大的活生物样品对光的吸收和散射特性,Huisken[7]等开发了选择性平面照明显微术(selective plane illumination microscopy,SPIM)。与通常需要将样品切割并固定在载玻片上的方式不同,SPIM能在一种近似自然的状态下观察2~3mm的较大活生物样品。SPIM通过柱面透镜和薄型光学窗口形成超薄层光,移动样品获得超薄层照明下切片图像,还可通过可旋转载物台对样品以不同的观察角度扫描成像,从而实现高质量的三维图像重建。因为使用超薄层光,SPIM降低了光线对活生物样品造成的损伤,使完整的样品可继续存活生长,这是目前其他光学显微术无法实现的。SPIM技术的出现为观察较大活样品的瞬间生物现象提供了合适的显微工具,对于发育生物学研究和观察细胞的三维结构具有特别意义。2.3 结构照明技术和干涉成像 当荧光显微镜以高数值孔径的物镜对较厚生物样品成像时,采用光学切片是一种获得高分辨3D数据的理想方法,包括共聚焦显微镜、3D去卷积显微镜和Nipkow 盘显微镜等。1997年由Neil等报道的基于结构照明的显微术,是一种利用常规荧光显微镜实现光学切片的新技术,并可获得与共聚焦显微镜一样的轴向分辨率。干涉成像技术在光学显微镜方面的应用1993年最早由Lanni等提出,随着I5M、HELM和4Pi显微镜技术的应用得到了进一步发展。与常规荧光显微镜所观察的荧光相比,干涉成像技术所记录的发射荧光携带了更高分辨率的信息。(1)结构照明技术:结合了特殊设计的硬件系统与软件系统,硬件包括内含栅格结构的滑板及其控制器,软件实现对硬件系统的控制和图像计算。为产生光学切片,利用CCD采集根据栅格线的不同位置所对应的原始投影图像,通过软件计算,获得不含非在焦平面杂散荧光的清晰图像,同时图像的反差和锐利度得到了明显改善。利用结构照明的光学切片技术,解决了2D和3D荧光成像中获得光学切片的非在焦平面杂散荧光的干扰、费时的重建以及长时间的计算等问题。结构照明技术的光学切片厚度可达0.01nm,轴向分辨率较常规荧光显微镜提高2倍,3D成像速度较共聚焦显微镜提高3倍。(2)4Pi 显微镜:基于干涉原理的4Pi显微镜是共聚焦/双光子显微镜技术的扩展。4Pi显微镜在标本的前、后方各设置1个具有公共焦点的物镜,通过3种方式获得高分辨率的成像:①样品由两个波前产生的干涉光照明;②探测器探测2个发射波前产生的干涉光;③照明和探测波前均为干涉光。4Pi显微镜利用激光作为共聚焦模式中的照明光源,可以给出小于100nm的空间横向分辨率,轴向分辨率比共聚焦荧光显微镜技术提高4~7倍。利用4Pi显微镜技术,能够实现活细胞的超高分辨率成像。Egner等[8,9]利用多束平行光束和1个双光子装置,观测活细胞体内的线粒体和高尔基体等细胞器的精微细节。Carl[10]首次应用4Pi显微镜对哺乳动物HEK293细胞的细胞膜上Kir2.1离子通道类别进行了测量。研究表明,4Pi显微镜可用于对细胞膜结构纳米级分辨率的形态学研究。(3)成像干涉显微镜(image interference microscopy, I2M):使用2个高数值孔径的物镜以及光束分离器,收集相同焦平面上的荧光图像,并使它们在CCD平面上产生干涉。1996年Gustaffson等用这样的双物镜从两个侧面用非相干光源(如汞灯)照明样品,发明了I3M显微镜技术(incoherent, interference, illumination microscopy, I3M),并将它与I2M联合构成了I5M显微镜技术。测量过程中,通过逐层扫描共聚焦平面的样品获得一系列图像,再对数据适当去卷积,即可得到高分辨率的三维信息。I5M的分辨范围在100nm内。2.4 非线性高分辨率显微术 非线性现象可用于检测极少量的荧光甚至是无标记物的样品。虽有的技术还处在物理实验室阶段,但与现有的三维显微镜技术融合具有极大的发展空间。(1)多光子激发显微术:(multiphoton excitation microscope,MPEM)是一种结合了共聚焦显微镜与多光子激发荧光技术的显微术,不但能够产生样品的高分辨率三维图像,而且基本解决了光漂白和光毒性问题。在多光子激发过程中,吸收几率是非线性的[11]。荧光由同时吸收的两个甚至3个光子产生,荧光强度与激发光强度的平方成比例。对于聚焦光束产生的对角锥形激光分布,只有在标本的中心多光子激发才能进行,具有固有的三维成像能力。通过吸收有害的短波激发能量,明显地降低对周围细胞和组织的损害,这一特点使得MPEM成为厚生物样品成像的有力手段。MPEM轴向分辨率高于共聚焦显微镜和3D去卷积荧光显微镜。(2)受激发射损耗显微术:Westphal[12]最近实现了Hell等在1994年前提出的受激发射损耗(stimulated emission depletion, STED)成像的有关概念。STED成像利用了荧光饱和与激发态荧光受激损耗的非线性关系。STED技术通过2个脉冲激光以确保样品中发射荧光的体积非常小。第1个激光作为激发光激发荧光分子;第2个激光照明样品,其波长可使发光物质的分子被激发后立即返回到基态,焦点光斑上那些受STED光损耗的荧光分子失去发射荧光光子的能力,而剩下的可发射荧光区被限制在小于衍射极限区域内,于是获得了一个小于衍射极限的光点。Hell等已获得了28nm的横向分辨率和33nm的轴向分辨率[12,13],且完全分开相距62nm的2个同类的分子。近来将STED和4Pi显微镜互补性地结合,已获得最低为28nm的轴向分辨率,还首次证明了免疫荧光蛋白图像的轴向分辨率可以达到50nm[14]。(3)饱和结构照明显微术:Heintzmann等[15]提出了与STED概念相反的饱和结构照明显微镜的理论设想,最近由Gustafsson等[16]成功地进行了测试。当光强度增加时,这些体积会变得非常小,小于任何PSF的宽度。使用该技术,已经达到小于50nm的分辨率。(4)二次谐波 (second harmonic generation, SHG)成像利用超快激光脉冲与介质相互作用产生的倍频相干辐射作为图像信号来源。SHG一般为非共振过程,光子在生物样品中只发生非线性散射不被吸收,故不会产生伴随的光化学过程,可减小对生物样品的损伤。SHG成像不需要进行染色,可避免使用染料带来的光毒性。因其对活生物样品无损测量或长时间动态观察显示出独特的应用价值,越来越受到生命科学研究领域的重视[17]。3 表面高分辨率显微术表面高分辨率显微术是指一些不能用于三维测量只适用于表面二维高分辨率测量的显微技术。主要包括近场扫描光学显微术、全内反射荧光显微术、表面等离子共振显微术等。3.1 近场扫描光学显微术 近场扫描学光显微术(near-field scanning optical microscope, NSOM)是一种具有亚波长分辨率的光学显微镜。由于光源与样品的间距接近到纳米水平,因此分辨率由光探针口径和探针与样品之间的间距决定,而与光源的波长无关。NSOM的横向分辨率小于100nm,Lewis[18]则通过控制在一定针尖振动频率上采样,获得了小于10nm的分辨率。NSOM具有非常高的图像信噪比,能够进行每秒100帧图像的快速测量[19],NSOM已经在细胞膜上单个荧光团成像和波谱分析中获得应用。3.2 全内反射荧光显微术 绿色荧光蛋白及其衍生物被发现后,全内反射荧光(total internal reflection fluorescence,TIRF)技术获得了更多的重视和应用。TIRF采用特有的样品光学照明装置可提供高轴向分辨率。当样品附着在离棱镜很近的盖玻片上,伴随着全内反射现象的出现,避免了光对生物样品的直接照明。但因为波动效应,有小部分的能量仍然会穿过玻片与液体介质的界面而照明样品,这些光线的亮度足以在近玻片约100nm的薄层形成1个光的隐失区,并且激发这一浅层内的荧光分子[20]。激发的荧光由物镜获取从而得到接近100nm的高轴向分辨率。TIRF近来与干涉照明技术结合应用在分子马达步态的动力学研究领域, 分辨率达到8nm,时间分辨率达到100μs[21]。3.3 表面等离子共振 表面等离子共振(surface plasmon resonance, SPR) [22]是一种物理光学现象。当入射角以临界角入射到两种不同透明介质的界面时将发生全反射,且反射光强度在各个角度上都应相同,但若在介质表面镀上一层金属薄膜后,由于入射光被耦合入表面等离子体内可引起电子发生共振,从而导致反射光在一定角度内大大减弱,其中使反射光完全消失的角度称为共振角。共振角会随金属薄膜表面流过的液相的折射率而改变,折射率的改变又与结合在金属表面的生物分子质量成正比。表面折射率的细微变化可以通过测量涂层表面折射光线强度的改变而获得。1992年Fagerstan等用于生物特异相互作用分析以来,SPR技术在DNA-DNA生物特异相互作用分析检测、微生物细胞的监测、蛋白质折叠机制的研究,以及细菌毒素对糖脂受体亲和力和特异性的定量分析等方面已获得应用[23]。当SPR信息通过纳米级孔道[24]传递而提供一种卓越的光学性能时,将SPR技术与纳米结构设备相结合,该技术的深入研究将有可能发展出一种全新的成像原理显微镜。【参考文献】[1] 汤乐民,丁 斐.生物科学图像处理与分析[M].北京:科学出版社,2005:205.[2] Kam Z, Hanser B, Gustafsson MGL, et al.Computational adaptive optics for live three-dimensional biological imaging[J]. Proc Natl Acad Sci USA,2001,98:3790-3795.[3] Booth MJ, Neil MAA, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proc Natl Acad Sci USA,2002, 99:5788-5792.[4] Goldman RD,Spector DL.Live cell imaging a laboratory manual[J].Gold Spring Harbor Laboratory Press,2005.[5] Monvel JB,Scarfone E,Calvez SL,et al.Image-adaptive deconvolution for three-dimensional deep biological imaging[J].Biophys,2003,85:3991-4001.[6] 李栋栋,郭学彬,瞿安连.以三维荧光反卷
不知道怎么写的话也可以参考下别人是怎么写的呀~看下(材料科学)或者(材料化学前沿)这样类似的期刊多学习学习下呗~
抽的一样的题
这个你算问对人了,我是在橡树论文网找到王老师的,他每天都会为我指导。
稀土掺杂氟化物多波长红外显示材料的研究摘 要本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+AbstractThis paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed materials.Key Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+目 录摘要Abstract第一章 绪论 11.1 稀土元素的光谱理论简介 11.1.1 稀土元素简介 11.1.2 稀土离子能级 11.1.3 晶体场理论 21.1.4 基质晶格的影响 21.2 上转换发光材料的发展概况 31.3 上转换发光的基本理论 41.3.1 激发态吸收 41.3.2 光子雪崩上转换 41.3.3 能量传递上转换 51.4 敏化机制与掺杂方式 61.4.1 敏化机制 61.4.2 掺杂方式 71.5 上转换发光材料的应用 81.6 本论文研究目的及内容 8第二章 红外激光显示材料的合成与表征 102.1 红外激光显示材料的合成 102.1.1 实验药品 102.1.2 实验仪器 102.1.3 样品的制备 112.2 红外激光显示材料的表征 122.2.1 XRD 122.2.2 荧光光谱 12第三章 结果与讨论 143.1 基质材料的确定 143.2 助熔剂的选择 153.3 烧结时间的确定 153.4 烧结温度的确定 163.5 掺杂浓度的确定 17结 论 21参考文献 22致 谢 23第一章 绪论1.1 稀土元素的光谱理论简介1.1.1 稀土元素简介稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。稀土发光材料具有许多优点:(1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;(2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;(3)荧光寿命跨越从纳秒到毫秒6个数量级;(4)吸收激发能量的能力强,转换效率高;(5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。1.1.2稀土离子能级稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。1.1.3 晶体场理论晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。1.1.4 基质晶格的影响基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:(1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。1.2 上转换发光材料的发展概况发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。1.3 上转换发光的基本理论通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。1.3.1激发态吸收激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。图1-1 上转换的激发态吸收过程1.3.2 光子雪崩上转换光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。图1-2 光子雪崩上转换1.3.3能量传递上转换能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。(a)普通能量传递 (b)多步连续能量传递(c)交叉弛豫能量传递 (d)合作发光能量传递(e)合作敏化上转换能量传递图1-3 几种能量传递过程的示意图稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:Itamin ∝ Iexcitationn其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。1.4 敏化机制与掺杂方式1.4.1 敏化机制通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:Dexc+A→D+AexcD表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。(1)直接上转换敏化对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。图1-4 直接上转换敏化(2)间接上转换敏化由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。图1-5 间接上转换敏化1.4.2 掺杂方式表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。表1-1 常见的掺杂体系稀土离子组合 激发波长 基质材料 敏化机制单掺杂 Er3+ 980nm ZrO2纳米晶体 —Nd3+ 576nm ZnO–SiO2–B2O3 —Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化Yb3+:Ho3+ 980nm YVO4 直接敏化Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化1.5 上转换发光材料的应用稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。1.6 本论文研究目的及内容Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。第二章 红外激光显示材料的合成与表征经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。2.1 红外激光显示材料的合成2.1.1 实验药品(1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。(2)ErF3、YbF3的配制制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:Er2O3+6HNO3→2Er(NO3)3+3H2OYb2O3+6HNO3→2Yb(NO3)3+3H2O再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:Er(NO3)3+3HF→ErF3↓+3HNO3Yb(NO3)3+3HF→YbF3↓+3HNO3生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。2.1.2 实验仪器SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)WGY-10型荧光分光光度计(天津市港东科技发展有限公司)DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)1064nm半导体激光器(长春新产业光电技术有限公司)4-13型箱式电阻炉(沈阳市节能电炉厂)2.1.3 样品的制备(1)实验方法本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。(2)实验步骤根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:图2-1 实验流程图2.2 红外激光显示材料的表征2.2.1 XRDX射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo M.Rietveld鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、RS0.3mm.、SS1 mm,扫描速度10度/min(普通扫描)、0.02度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。
其实是transactions of materials and heat treatment ,你打错了,它的意思是“材料热处理学报”
7005的化学成分主要有:Si Fe Cu Mn Mg Cr Zn Zr Ti 以及Al
7005铝合金热处理工艺研究 冯展鹰 赵仁祥 摘 要:通过力学性能以及抗应力腐蚀的测定,对7005铝合金的热处理工艺进行了研究.结果表明,该合金较为理想的热处理制度是470 ℃固溶处理后水淬,人工时效制度为双级时效100 ℃×8 h +120 ℃×24 h.热处理后,合金的室温拉伸强度达到400 MPa以上,抗腐蚀性能良好,析出相呈细小而弥散分布,对合金有很好的强化效果. 关键词:7005铝合金;热处理;力学性能;抗腐蚀性能 分类号:TG15 文献标识码:A 文章编号:1008-5300(2006)05-0046-03 A Study on Heat Treatment Process of the 7005 Alloy FENG Zhan-ying ZHAO Ren-xiang 作者简介:冯展鹰(1981- ),男,毕业于南京航空航天大学材料学院,主要从事焊接、热处理工艺技术研究工作. 作者单位:冯展鹰(南京电子技术研究所,江苏,南京,210013) 赵仁祥(南京电子技术研究所,江苏,南京,210013) 参考文献: [1]张华.变形程度及退火温度对7005板材组织性能的影响[J].轻合金加工技术,1998(2) [2]沈健,唐京辉,谢水生.Al-Zn-Mg合金的热变形组织演化[J].金属学报,2000(10) 收稿日期:2006年1月17日 出版日期:2006年10月15日 请参考吧。
学术堂最新整理了十个关于服装设计与服装材料的参考文献供大家参考:[1]夏冰月.虚拟仿真技术在服装材料教学中的应用[J].轻纺工业与技术,2020,49(07):162-163.[2]王丽艳.服装材料与人体健康[J].西部皮革,2020,42(11):73+94.[3]张航,叶广龙,吴玲玲,叶玉奇,沃筱垒.基于纳米材料的防液汗服的设计与应用[J].黑龙江纺织,2020(02):14-16.[4]林谷彦,李羚.刺绣工艺在服装材料中的深入应用[J].纺织报告,2020,39(05):61-62.[5]苑慕华. 服装艺术设计中的塑形实践研究[D].山东工艺美术学院,2020.[6]董玉芝.浅析舞蹈服装设计中材料与造型的关系[J].纺织报告,2020(03):91-92.[7]陈茜,杨蓓,秦梦茹,金桂蓉,万雪儿.立体拼布设计及服装设计应用的探索研究[J].艺术与设计(理论),2020,2(03):82-84.[8]白珊.基于服装材料学课程的服装与服饰设计专业教改研究[J].福建茶叶,2019,41(12):186.[9]张妍妍.服装视觉效应中材料的再造设计[J].山东纺织经济,2019(12):24-26.[10]刘宝垚.服装设计中材料的创新应用研究[J].花炮科技与市场,2019(03):238-239.
因出差回答晚了,前面答过[1]姜宇冰,司国红,孟祥玉. 服装材料与服装设计的关系[J]. 黑龙江纺织,2002,(1). [2]黄志青,吴红. 服装材料的再创造——21世纪服装设计发展的新方向[J]. 纺织科技进展,2005,(2). [3]徐仂. 服装材料的再创造在服装设计中的运用[J]. 装饰,2007,(12). [4]赵锦. 高职院校服装设计专业服装材料学课程教学模式研究[J]. 美与时代(上半月),2009,(1). [5]张吉升. 服装材料在服装设计中的应用[J]. 山东纺织经济,2007,(6). [6]秦芳. 艺术类服装设计专业中《服装材料学》教学改革与实践[J]. 科技创新导报,2008,(18). [7]杨梅,郭凤芝. 服装设计专业《服装材料学》教学初探[J]. 科技信息,2008,(26). [8]胡宝琴. 服装材料是服装设计的出路[J]. 管理观察,2008,(13). [9]潘向荣. 浅谈服装设计与服装材料[J]. 职业技术,2005,(7). [10]张岸芬. 不同服装材料在服装设计中应注意的问题[J]. 山东纺织科技,1999,(4). [11]欧阳静. 服装材料与服装设计[J]. 无锡轻工业学院学报,1991,(2). [12]张晓丹. 数字化时代服装材料与服装设计的关系研究[J]. 科技信息,2010,(31). [13]江明洁,王安霞. 浅析服装设计中服装材料的运用、发展及趋势[J]. 艺术与设计(理论),2009,(7). [14]杨俊. 服装材料在服装设计中的视觉表现研究[D]. 江西师范大学: 江西师范大学,2010.
可以。在word文档中打开写好的论文,开始插入参考文献。有两种方式,一种是“脚注式”参考文献,一种是“尾注式”参考文献。这个主要是看写论文时的具体要求,要求用脚注就用脚注,要求用尾注就用尾注。还有一种特殊情况是,有些要求不用插入,直接把参考文献列在文后即可。下面我们把这几种方式都介绍一下。脚注式参考文献。这种插入方式比较简单,把鼠标放在引用的那段文字后面,点击word文档左上角“插入”——“引用”——“脚注和尾注”,点击“脚注和尾注”。选择“脚注”,这里有两种符号可以选择。一是点击“编号格式”下拉框,选择带有圈1、圈2符号一栏,然后点击插入;二是自定义标记,在英文大写状态下,选择键盘上的左右中括号,输入数字1,然后点击插入。尾注式参考文献。这种插入方式有简单的一面,也有复杂的一面。若是参考文献没有重复,直接按照顺序插入即可。要是引用的文献有重复,就得注意排列顺序。
如果满意再追加100分。 2009-03-22 19:31可以再充分点吗?谢谢了
资格证可以在当地的化妆摄影学校办到的很简单,不过我个人觉得没有什么用,主要还是看技术
① 大学里的摄影专业是学什么
文学常识:即高中课本涵盖的文学诗词等内容
中外摄影史:主要包括摄影的发展,从最初的胶片时代是如何进步到现在的数码时代。
摄影理论:包括摄影的拍摄原理、摄影的分类以及摄影的构成及使用。
画面组合:主要讲述摄影拍摄过程中需要如何匹配画面、如何让画面更美观。
摄影(图片)作品分析:讲述从专业的角度去分析一副图片,主要通过用光、构图、影调、景别、主题内涵等角度去分析。
摄影(影视)作品分析:讲述从专业的角度去分析一部影视作品,主要通过电影风格、电影梗概、中心论点、人物形象、艺术手法等角度去分析。
室内静物拍摄:在专业摄影棚内,通过调节灯光和静物的组合,拍摄出具有艺术美感的摄影作品。
(1)大学摄影有什么专业课程扩展阅读:
摄影专业开设课程:
主要课程:
美术基础、美术欣赏、照明技术、摄影技术与技巧、摄影构图、特技摄影、非线性编辑、摄影造型、广告摄影等等。
核心课程:
数码摄影实用技艺、数码影像基础、摄影构图、摄影美学、摄影照明、摄影曝光控制、数码图形图像制作;新闻摄影、纪实摄影、风光建筑摄影、民俗艺术摄影、内外景婚纱摄影、商业广告摄影、平面色彩构成、版式设计、世界摄影史、中国摄影史、摄影图片鉴赏等课程。
② 大学学摄影是什么专业
这个还挺多的,我看那些视频编辑还有那个广告学,他们都是要学这个摄影的。
③ 摄影专业在大学主要学什么
1.主要课程:美术基础、美术欣赏、照明技术、摄影技术与技巧、摄影构图、特技回摄影、非答线性编辑、摄影造型、广告摄影等等。 2.核心课程:数码摄影实用技艺、数码影像基础、摄影构图、摄影美学、摄影照明、摄影曝光控制、数码图形图像制作;新闻摄影、纪实摄影、风光建筑摄影、民俗艺术摄影、内外景婚纱摄影、商业广告摄影、平面色彩构成、版式设计、世界摄影史、中国摄影史、摄影图片鉴赏等课程。 3.虽然中国的摄影行业取得了长足的发展,但与日韩、欧美等发达国家相比,不论从规模到人才,还有行业规范到管理水平都处于初期阶段,与成熟产业的标准还有较大差距,整个行业发展潜力很大。摄影行业是一个高速发展的朝阳产业,未来行业对摄影人才的需求将逐年增加,其中经过正规培训的高端摄影人才将更加抢手。
④ 中国传媒大学摄影专业有哪些课程
除公共基础课外,本专业开设的主要课程有:艺术概论、影视美学、绘画基础、平面构成、三维动画设计、色彩学、摄影技术、摄影构图、照明技术与艺术、视听语言、影视精品赏析、影视摄影艺术、纪录片创作、电视编辑、摄影创作、数字节目制作、剪辑艺术、导演艺术等。
摄影专业(图片摄影方向)
除公共基础课外,本专业开设的主要课程有:艺术概论、色彩学、摄影技术、照相机与暗房、人像摄影、风景摄影、新闻图片摄影、摄影照明与光线、摄影构图、摄影制作、及影视作品分析和数字制作电脑三维与平面设计等课程。
照明艺术专业
除公共基础课外,本专业开设的主要课程有:艺术概论、视听语言、绘画基础、影视色彩学、摄影技术、摄影构图、影视照明技术、影视照明艺术、演播室照明、影视光线艺术与照明技巧、影视剧照明创作等。
⑤ 求大学摄影专业科目
103707 *** 思想、 *** 理论和‘ *** ’重要思想概论3203706思想道德修养与法律基础2304729大学语文4410018计算机应用基础4501188影视色彩学6601169影视摄影技术6701189摄影构图6804586数字图像处理6901190艺术摄影创作61001191视觉心理学51101192静物摄影61201193广告影像制作5五选三1301194摄影作品赏析51401195图片专题摄影51501196中外摄影史51600653中国新闻事业史6总学分72/732、独立本科段 专业代码:01B0507序号课程代码课程名称学分备注103708中国近现代史纲要2203709马克思主义基本原理概论3300015英语二14任选一门00016日语二00017俄语二401197视听元素6501171电视摄影造型基础6601199电视新闻报道取材5701170电视画面编辑基础6801172数字制作技术基础6901200影视剧摄影创作61001201摄影感光材料应用原理61101202影视摄影51201178电视艺术概论5四选一1301179非线性编辑61401203影视精品解读51501204电视纪录片创作610150 毕业论文
⑥ 大学摄影专业 的课程内容包括哪些
摄影构图,摄影用光。摄影史~~~~每个学校的课程都是不一样的,关键在于学校主要的发展方向是什么
⑦ 中国传媒大学摄影专业要学哪些课程
摄影专业属于传媒大学影视艺术学院,目前分三个方向:摄影专业(影视剧摄影方向),摄影专业(图片摄影方向),照明艺术专业。具体可查询学校学院网站或电话咨询。//ccte.cuc.e.cn/content.php?y=jianjie&w=1 摄影专业(影视剧摄影方向) 除公共基础课外,本专业开设的主要课程有:艺术概论、影视美学、绘画基础、平面构成、三维动画设计、色彩学、摄影技术、摄影构图、照明技术与艺术、视听语言、影视精品赏析、影视摄影艺术、纪录片创作、电视编辑、摄影创作、数字节目制作、剪辑艺术、导演艺术等。 摄影专业(图片摄影方向) 除公共基础课外,本专业开设的主要课程有:艺术概论、色彩学、摄影技术、照相机与暗房、人像摄影、风景摄影、新闻图片摄影、摄影照明与光线、摄影构图、摄影制作、及影视作品分析和数字制作电脑三维与平面设计等课程。 照明艺术专业 除公共基础课外,本专业开设的主要课程有:艺术概论、视听语言、绘画基础、影视色彩学、摄影技术、摄影构图、影视照明技术、影视照明艺术、演播室照明、影视光线艺术与照明技巧、影视剧照明创作等。
⑧ 大学学摄影都学什么课程
大学学摄影,这也是属于艺术类特长生,跟画画等艺术类专业有回很多相通的地方,如审美观答、抽象思维、灵感思维、角度理论、色彩分析与搭配、物的组合等等。摄影如果与画画结合起来,两者是相辅相成的,而且今后很有可能成为大师级的人物。
不可以。通常情况下,如果参考文献是期刊论文,则页码信息为该篇文献所在期刊的起止页码,也就是总页码。不需要精确到具体参来考的部分页码。若参考文献为书籍、专著,参考文献的页码信息则为所具体引用内容所在页。文献是有历史意义或研究价值的图书、期刊、典章。最主要的是自根据载体把其分为印刷型、缩微型、机读型和声像型:1、印刷型:是文献的最基本方式,包括铅印、油印、胶印、石印等各种资料。优点查可直接、方便地阅读。2、缩微型:是以感光材料为载体的文献,又可分为缩百微胶卷和缩微平片,优点是体积小、便于保存、转移和传递。但阅读时须用阅读器。3、计算机阅读型:是一种最新形式的载体。它主要通过编码和程序设度计,把文献变成符号和机器语言,输入计算机,存储在磁带或磁盘上,知阅读时,再由计算机输出,它能存储大量情报,可按任何形式组织这些情报,并能以极快的速度从中取出所需的情报。出现的电子图书即属于这种类型。4、声像型:又称直感型或视听型,是以声音和图像形式记录在载体上的文献,如唱片、录音带、录像带、科技电影、幻灯片道等。