首页 > 学术发表知识库 > 高数论文参考文献

高数论文参考文献

发布时间:

高数论文参考文献

这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,2004.5[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究,2002.3 (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,2000.12[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],2002.9供参考。

论文格式 1、论文题目:要求准确、简练、醒目、新颖. 2、目录:目录是论文中主要段落的简表.(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整.字数少可几十字,多不超过三百字为宜. 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索.每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方. 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语. 5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头.引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍、紧扣主题. 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论.主体部分包括以下内容: a.提出-论点; b.分析问题-论据和论证; c.解决问题-论证与步骤; d.结论. 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行. 中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证. (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息.

高等数学对物流专业的影响 [摘 要] 随着物流管理专业的迅速发展,高等数学教学对于物流管理专门人才的培养具有极其重要意义。本文结合物流管理专业的特色阐述了高等数学对于物流管理专门人才培养的重要性及在物流方面重要用途。 [关键词] 高等数学物流管理 人才 高校 数学作为一门技术学科,在知识经济时代,越来越受到各行各业的重视。高等院校数学教学正在向以培养学生的数学素质为宗旨的能力教育转变。而物流管理是一门新兴学科,它主要包括理论、技术、设备三大方面,涉及企业管理、市场营销、电子商务、信息技术等多个学科的内容,因此高等数学教学对于物流管理专门人才的培养具有极其重要意义。 一、问题的提出 进入本世纪以来,尤其是我国加入WTO以后,我国经济快速、健康、稳定的发展给物流业带来了新的发展契机,现代物流业的蓬勃发展使得物流人才需求急剧升温,当前物流专业人才已被列为我国12类紧缺人才之一。2000年以来,我国高校物流管理专业急剧增加,全国已有75所高校开设了物流管理专业,其中包括一部分高职院校。物流管理学是在现代技术条件下,现代经济运行理念及世界经济全球化环境下产生的,是一门综合性、系统性较强的学科,是许多观念和方法的系统综合。这些观念原理和方法主要来自市场营销、企业、生产、会计、采购和运输领域的,特别来自应用数学。这些内容按现代物流管理技术要求有机地组合起来,形成了现代物流管理学体系。因此,在开展物流专业的数学的教学过程中,摆脱高等院校传统的数学教学模式,要渗透数学素质的教育和能力的培养,要培养出社会需要的复合型人才。 二、数学在物流方面的应用 物流专业的数学课程不是单一的为专业课打基础,而是教学中要渗透数学素质的教育和能力的培养,要培养出社会需要的复合型人才,同时要明确对于物流专业学生学习数学的目的,不是为了研究数学,而是为了应用数学,运用各种数学知识和方法解决自己所从事专业中遇到各种实际问题。中国现代物流的发展需要依靠一项项物流工程建设,依靠各个层次物流系统的运营来实现。物流工程包括物流基础工程、物流设施工程、物流管理工程、物流技术工程和物流运营工程。而物流运营基础工程是由国家建设的,如铁路线路建设工程、物流基地(中心)建设工程、货运站场建设工程、高速公路建设工程、货运枢纽建设工程、港口码头、货运航空港建设工程等,对物流的运营起到平台支持的作用。在现代物流中,物流基础设施平台决定整个物流系统的水平。一个能够有效共用的、高技术水平的、标准化的平台对提升物流运作水平有着极其重大的意义。而数学在研究投资主体在满足工程项目预定目标条件下如何使工程项目的建设成本达到最小,如何投资和管理物流工程项目中,发挥了重要的方法和工具的作用。 “建”即构造,“模”即模型, 建模教学是一种现代教法。所谓数学模型方法, 就是把所考察的实际问题, 化为数学问题, 构造相应的数学模型通过对模型的研究, 使实际问题得以解决的一种数学方法。其中, 建立起合适的数学模型是上述方法最关键的一步。建立数学模型的基本步骤是: 准备、假设、建立(模型)、求解、分析、检验。分析在问题中哪些是变量, 哪些是常量, 哪些量是已知的, 哪些量是未知的、待求的, 然后分析系统内部性质与关系。 例如:某跨国汽车制造公司在全球有m个生产基地Ai,i=1,2,3…n供应量是ai,i=1,2…m,有n个销地Bj,从Ai到Bj运输单位物资的运价(美元)为Cij,这些数据可归结为产销平衡。若Xij表示从Ai到Bj的运输量,那么在产销平衡条件下要求运费最小的方案有最优解?分析:我们可以先用数学建立模型,使其复杂的问题转化为数学问题,并用数学运筹学的方法解决实际问题。 以上的案例,通过数学建模及论证,运输问题有最优解,从而解决了物流运输的理论问题。 再例如,在物流工程项目中的财务分析中,数学提供了在单利和复利情况下,本金与利息之和的计算公式:单利情况时,公式为FV=PV(1+nr):,其中PV为本金(原投资额),r为利率,n为计息周期数,FV为本金与利息之和;复利情况时,公式为:FV=PV(1+nr)n,其中PV为本金(原投资额),r为利率,n为计息周期数,FV为本金与利息之和。例如,在学习导数概念时,除了举出书本上变化率问题中介绍的变速直线运动的速度外,还可介绍一些与专业有关的变化率问题。在物流专业教学中可介绍产品总运输量对时间的导数就是总运输量的变化率,物流总成本对运输量的导数就是运输产品总成本的变化率(边际成本)。在讲授微分方程时,可结合讲解物流运输模型等实例。我们还可以。数学运筹学解决了利用约束条件,求最优解的问题。这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流、实践与应用等活动利用这些学生熟悉的问题进行教学,可提高学生对数学学习的兴趣,激发他们利用所学知识,主动地去探索研究实际问题。 三、结论 总之,高等院校物流管理专业数学能力的培养是高等院校生存发展的需要,势在必行,合理的定位与体现,以适应高等教育迅速发展的形势和培养21世纪创新人才的需要。 参考文献: [1]钱颂迪:运筹学[M].北京:清华大学出版社,1990.82~92 [2]黎诣远:经济数学基础[M].北京:高教出版社, 1998,7 [3]王之泰:现代物流管理.中国工人出版社,2002 [4]宋 华 胡左浩:现代物流与供应链管理[M].北京:经济管理出版社,2002.50~56

高数极限论文参考文献

参考文献那么多,也要看你是写哪一方面的。

您好,看我资料

这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,2004.5[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究,2002.3 (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,2000.12[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],2002.9供参考。

高中数学论文参考文献

参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见D.A.Drennen,ed.,AModernIntroductiontoMetaphysics,NewYork:FreePressofGlencoe,1962。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见R.G.Collingwood,AnEssayonMetaphysics,Oxford:ClarendonPress,1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找

数学教学论文参考文献

教学论文就是“讨论”和“研究”有关教学问题的文章,属于议论文,具有议论文的一般特点。下面是我收集整理的数学教学论文参考文献范文,希望对您有所帮助!

参考文献一

[1]杜威着,许崇清译:《哲学的改造》[M],商务印书馆.1958 年,P46

[2]阮忠英.初中几何教学策略浅谈[J].理科爱好者,2009(2)

[3]胡蓉.利用信息技术优化几何教学[J].信息技术与应用,2008(4).

[4]吕月霞.杜威的“从做中学”之我见[J] .教育新论,2009.5

[5]陈琦,刘儒德.当代教育心理学[M].北京师范大学出版社,2007,P185

[6]袁振国.当代教育学[M].教育科学出版社,2004,P184

[7]尚晓青.DGS 技术与初中几何教学整合研究[D].重庆:西南大学博士学位论文,2008.

[8]周军.教学策略[M].北京:教育科学出版社,2007,P11

[9]中华人民共和国教育部.义务教育数学课程标准 [S].北京:北京师范大学出版社,2011

[10]左晓明等.基于 GeoGebra 的数学教学全过程优化研究[J],2010,P101

[11]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102

[12]李伯黍,燕国材.教育心理学[M].上海:华东师范大学出版社.2010.P132

参考文献二

[1]王汉澜.教育评价学 [M].开封:河南大学出版社,1995.

[2]吴钢.现代教育评价基础[M].上海:学林出版社,2004.

[3] 黎世法.异步教育学[M].北京:当代中国出版社,1994.

[4]虞应连.采用复合评分法 注重个体内差异评价[J].中小学管理,2001(1).

[5](美) Carol Ann Tomlinson,刘颂译.多元能力课堂中的差异教学[M].北京:中国轻工业出版社, 2003.

[6]茹建文.关于构建小学数学发展性评价体系的'思考[J].现代教育科学,2005(2).

[7]曾继耘.差异发展教学研究[M].北京:首都师范大学出版社,2006.

[8]顾泠沅等.寻找中间地带--国际数学教育改革的大趋势[M].上海:上海教育出版社, 2003.

[9]马艳云.评价应注意学生的心理需求[J].人民教育,2005(17).

[10]陈小菊.给自己一个支点超越自己-“个体内差异评价策略”探微[J].福建教育,2005(7).

[11](美)Diane Heacox ,杨希洁译.差异教学-帮助每个学生获得成功[M]. 北京:中国轻工业出版社,2004.

[12]陈泳超.差异评价“ 实施因材施教”[J].福建教育,2001(7、8).

[13]安艳.差异性学生评价研究--以济南市三所初中为例[D],济南.山东师范大学,2007.

[14]王俭.教育评价发展历史的哲学考察[J].教师教育研究,2008(3).

高数积分论文参考文献

数学论文范文参考

数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

( 一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

( 二) 教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

( 一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

( 二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

( 三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:

〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.

〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.

〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.

浅谈高中数学文化的传播途径

一、结合数学史,举办文化讲座

数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、

二、结合教学内容,穿插数学故事

数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、

三、结合生活实际,例解数学问题

作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、

四、结合其他学科,共享文化精华

科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、

五、结合课外活动,小组合作探究

由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、

六、结合教学评价,纳入数学考试

虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。

像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。

高等数学在我们生活中的具体应用论文

从小学、初中、高中到大学乃至工作,大家都尝试过写论文吧,论文是探讨问题进行学术研究的一种手段。你写论文时总是无从下笔?以下是我收集整理的高等数学在我们生活中的具体应用论文,希望对大家有所帮助。

摘要:

进入21世纪,随着经济的不断发展,社会竞争越来越大,对于人才的要求也越来越高。在这种情况下,高等数学的重要作用就凸显了出来,高等数学能够培养人们的思维能力,培养人们发现问题、解决问题的思维方式。高等数学在我们生活中的应用越来越广泛,并且渗透到了各行各业中,许多问题的解决都离不开数学模型的构建。针对高等数学的特点,分析其在我们生活中的具体应用。

关键词 :

高等数学;经济社会;应用;

引言:

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识。

一、高等数学在学术中的应用

高等数学在众多的学科中扮演着重要的角色,在物理学科中,高等数学与其关系极为紧密,高等数学中最为重要的一部分便是微积分,众所周知,微积分是其创始人,著名的物理学家、数学家牛顿先生在解决经典力学问题的过程中所创立的,力学作为物理学中重要的知识,几乎贯穿于整个物理知识体系中,而微积分就是解决物理知识的关键工具,构建了地球和天体主要运动现象的完整力学体系。

在生物学中,高等数学同样扮演着重要的角色,19世纪时,就有生物学家试图通过数学方法来研究生命现象。而在上世纪20年代中期,就有生物学家利用高等数学的一些知识来解决著名的地中海鳖鱼问题,经历了几十年的发展,生物数学已经成为了生物学中重要的部分,无论是心脏的跳动还是血液的循环、脉搏的周期,都可以用高等数学的知识通过方程组的形式进行表示,并且通过求解的方法来掌握一定的规律,描述生物界的一些现象。

二、高等数学在经济社会的应用

随着社会经济的不断进步以及高等数学的不断发展,数学的手段越来越多样化,经济问题也越来越多样化,利用数学问题对经济环节进行定量分析是十分重要的,最简单的例子就是我们平时生活中的存取款问题以及利率问题。高等数学在经济生活中的应用不止如此,除此之外,高等数学还可以为经营者提供科学合理的数据,以高等数学作为工具来得到最佳的决策。在经济学当中,许多的量如边际成本、边际收益、边际利润都需要用导数来进行计算。而通过这些量可以计算企业生产过程中的一些数据,来对企业的正常运转进行调控,从而达到最优的生产效果。每个经营者都希望用最少的钱创造更多的`价值,在实际经营过程中,难免会出现资金的浪费,利用高等数学知识,能够使资金得到最合理的应用,使成本降低,创造更加大的利润,这种问题,其实就是高等数学中最大值最小值的问题,将其转化为数学模型,能够更好地配置相关资源,合理安排生产,实现最大利润。

三、高等数学在军事中的应用

纵观两次世界大战,无论哪一次都少不了高等数学的身影。射击火力表一直都是数学家需要计算的重要任务。除此之外,各种新型武器装备的研发以及投产,都离不开高等数学的研究。不仅仅是空气动力学、流体动力学还是弹道学,等等,其中都包含着高等数学的知识,这充分说明了高等数学的重要地位。除此之外,高等数学还在原子弹、声呐等新型装备的研发过程中扮演着重要的角色,可能直接影响战争的格局和走向。未来,随着科学技术的不断发展,军事技术也一定会作用于各种新的高科技,而一切高科技领域都少不了高等数学的"加持"。

四、高等数学中概率和数理统计的应用

高等数学中涵盖的知识点较多,概率作为其中的一个知识点,在多种领域尤其是自然科学方面以及社会科学方面的应用十分广泛,而且,还与我们的日常生活息息相关。举例子来说,几年前,我国全面开放了二孩政策,在这项政策开放的背后,是相关专家针对我国人口发展的问题,根据众多的资料数据进行统计分析,判断后做出的决定。近几年,随着我国科学技术的不断进步,以高等数学为核心的生活方式迅速地辐射到了人们日常生活中的各个领域,从移动支付以及购物到智能机器人的应用,办公的自动化,这些都需要我们具有高等数学知识以及素养。

五、高等数学在学生思维构建方面的应用

高等数学通过建立模型,能够有效地培养学生的综合素质,开拓学生的思维。在教学过程中,教师通过给学生树立建模的思想,使学生能够得到全面的发展,能够最大程度地提高学生的学习热情。高等数学可以通过构建数学模型,以此来对现实中的一些事物进行有规律的描述。而高等数学进行数学模型的构建需要人类的思维活动,也就是说,高等数学能够提高学生对于数学理论以及思维方法应用的意识,使学生培养数学思维,利用数学知识解决生活实际问题。

六、结语

当代大学生学习数学的重要性显而易见,我们要想在21世纪的社会有一个立足之地就需要全面地发展自己,而我们学习的高等数学又是其中的重中之重。我们要认清当今社会的人才培养目标,深入地学习高等数学,为中国的经济建设献出自己的力量,为早日实现中华民族的伟大复兴而奋斗。

参考文献

[1]苏丽论高等数学在经济分析中的应用[J].信息记录材料,2016,(06)

[2]卢明宇浅析微积分在金融领域的作用[J].经贸实践,2017,(05)

[3]马源谈谈数学学习在经济金融学中的作用[J].经贸实践,2017,(15)

拓展:

专业论文格式模板

一、毕业论文(设计)资料按以下顺序排列:

(一)封面。包括论文题目、指导教师、学生姓名、学号、院(系)、专业、毕业时间等内容。论文封面由学校统一印制。

(二)中、外文摘要(包括关键词)。外文论文(设计)的中文摘要放在英文摘要后面编排。

(三)正文。

(四)注释。

(五)附录。

(六)参考文献。

(七)致谢。

二、毕业论文的打印与装订

除要检验学生书写规范的专业外,毕业论文(设计)须用计算机打印,一律采用A4纸。

(一)页面设置

毕业论文(设计)要求纵向打印,页边距的要求为:

上(T):2.5cm

下(B):2.5cm

左(L):2cm

右(R):2cm

装订线(T):0.5cm

装订线位置(T):左

其余采取系统默认设置。

(二)排式与用字

文字图形一律从左至右横写横排。

文字一律通栏编辑。

论文采用宋体,字迹清楚整齐,除特殊需要,一般不使用繁体字。

(三)段落设置

采用多倍行距,行距设置值为1.25。

其余采取系统默认设置。

(四)页眉、页脚设置

论文题目(不包括副题目)居中,采用五号宋体字。

页脚需设置页码,页码采用五号黑体字,加粗,居中放置,格式如:1,2,3……页。

三、毕业论文(设计)撰写的内容与要求

(一)封面

1、封面。

纸质封面由学校统一印制。不编排页码。

2、封一(中文摘要)

中文摘要:“中文摘要”四字在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。中文摘要一般不超过250—300字。

关键词:接中文摘要打印,“关键词”三字空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。关键词一般在3—8个之间。

3、封二(外文摘要)

外文摘要:“外文摘要”英文单词在第一行居中位置,使用小二号黑体字,加粗。内容使用小四号宋体字。起行空两格,回行顶格。外文摘要一般不超过250个实词。

关键词:接外文摘要打印,“关键词”英文单词空两格,后加冒号与关键词隔开,各关键词之间用逗号隔开。外文关键词应与中文关键词相对应。

(二)正文

正文一般使用小四号宋体字,重点文句加粗。

1、标题层次。

毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。

各层标题均单独占行。第一级标题居中放置;第二、三、四等级标题序数顶格放置,后空一格接标题内容,末尾不加标点。

标题序数采用1.、2.……1.1、1.2……1.1.1、1.1.2……1.1.1.1……的层次。正文中对总项包括的分项采用一、二、……(一)、(二)……1、2……(1)、(2)……①②……的层次,括号后不再加其他标点。

2、量和单位。各种计量单位一律采用国家标准GB3100—GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。

3、标点符号。标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。

4、外文字母。外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。

5、名词、名称。科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。

6、数字。文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。

7、公式。公式一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边,公式与编号之间不加虚线。

公式下有说明时,应在顶格处标明“注: ”。

较长公式的转行应在加、减、乘、除等符号处。

8、表格和插图。

(1)表格。每个表格应有自己的表序和表题。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。

(2)插图。每幅图应有自己的图序和图题。一般要求采用计算机制图。

文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。

(三)注释

注释采用页末注(将注文放在加注页的页脚)或篇末注(将全部注文集中在文章末尾),不可行中加注。注释编号选用带圈阿拉伯数字,注文使用小五号宋体字。

以下为引用各类文献注释格式:

专著:注释编号.作者.专著.书名[m].出版社,出版年.起止页码

期刊:注释编号.作者.期刊.题名[J].刊名,出版年(卷、期):起止页码

论文集:注释编号.作者.论文名称:论文集名[C].出版地:出版社,出版年度.起止页码

学位论文:注释编号.作者.题名[D].保存地点:保存单位,写作年度.

专利文献:注释编号.专利所有者.题名[P].专利国别:专利号,出版日期

光盘:注释编号.责任者.电子文献题名[电子文献及载体类型标识],出版年(光盘序号)

互联网:注释编号.责任者.文献题名.电子文献网址.访问时间(年-月-日)

文献作者3名以内的全部列出;3名以上则列出前3名,后加“等”(英文加“etc"”)

(四)附录

“附录”两字在第一行居中位置,使用小二号黑体字,加粗。

附录项目名称使用四号黑体字,加粗,居左顶格放置。另起一行空两格,使用小四号宋体字标注附录序号和题名,编排样式可参照正文。

(五)参考文献

参考文献一律放在文后,其书写格式应根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:M专著,C论文集,N报纸文章,J期刊文章,D学位论文,R研究报告,S标准,P专利;对于专著、论文集中的析出文献采用单字母“A”标识,其他未说明的文献类型,采用单字母“Z”标识。

“参考文献”四字居中放置,使用小二号黑体字,加粗。

内容使用小四号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式。

高数学习应该按照这些套路来。

课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。

至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。

当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。

数学中的无穷以潜无穷和实无穷两种形式出现。

在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。

数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。

数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。

以上内容参考 百度百科-高等数学

高等代数论文参考文献

等价无穷小性质的理解、延拓及应用【摘要】 等价无穷小具有很好的性质,灵活运用这些性质,无论是在在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用。通过举例,对比了不同情况下等价无穷小的应用以及在应用过程中应注意的一些性质条件,不仅使这些原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小。【关键词】 等价无穷小 极限 罗比塔法则 正项级数 比较审敛法Comprension,Expand and Application of Equivalent Infinitesimal's CharacterAbstract Equivalent Infinitesimal have good characters,both in opreation of test for Limit and determine whether the positive series converges or diverges,if these quality that apply flexibly can obtain more effect,the effection can not be replace by L'Hospital Rule.this paper give examples and compare some instance to pay attention to condition in application of Equivalent Limit,so the question can be simply and avoid error in application.Key words equivalent Infinitesimal; limit; L'Hospital rule positive series; comparison test等价无穷小概念是高等数学中最基本的概念之一,但在高等数学中等价无穷小的性质仅仅在“无穷小的比较”中出现过,其他地方似乎都未涉及到。其实,在判断广义积分、级数的敛散性,特别是在求极限的运算过程中,无穷小具有很好的性质,掌握并充分利用好它的性质,往往会使一些复杂的问题简单化,可起到事半功倍的效果,反之,则会错误百出,有时还很难判断错在什么地方。因此,有必要对等价无穷小的性质进行深刻地认识和理解,以便恰当运用,达到简化运算的目的。1 等价无穷小的概念及其重要性质〔1〕无穷小的定义是以极限的形式来定义的,当x→x0时(或x→∞)时,limf(x)=0,则称函数f(x)当x→x0时(或x→∞)时为无穷小。当limβα=1,就说β与α是等价无穷小。常见性质有:设α,α′,β,β′,γ 等均为同一自变量变化过程中的无穷小, ① 若α~α′,β~β′, 且limα′β′存在,则limαβ=limα′β′② 若α~β,β~γ,则α~γ性质①表明等价无穷小量的商的极限求法。性质②表明等价无穷小的传递性若能运用极限的运算法则,可继续拓展出下列结论:③ 若α~α′,β~β′, 且limβα=c(≠-1),则α+β~α′+β′证明:∵ limα+βα′+β′=lim1+βαα′α+β′α′=lim1+c1+αα′·βα·β′β=lim1+c1+c=1 ∴ α+β~α′+β′而学生则往往在性质(3)的应用上忽略了“limβα=c(≠-1)”这个条件,千篇一律认为“α~α′,β~β′,则有α+β~α′+β′④ 若α~α′,β~β′, 且limAα′±Bβ′Cα′±Dβ′存在,则当Aα′±Bβ′Cα′±Dβ′≠0且 limAα±BβCα±Dβ存在,有limAα±BβCα±Dβ=limAα′±Bβ′Cα′±Dβ′此性质的证明见文献〔2〕,性质③、④在加减法运算的求极限中就使等价无穷小的代换有了可能性,从而大大地简化了计算。但要注意条件“limβα=c(≠-1)”,“Aα′±Bβ′Cα′±Dβ′≠0”的使用。2 等价无穷小的应用2.1 在求极限中经常用到的等价无穷小有 x~sinx~arcsinx~tanx~arctanx~ln(1+x)~ex-1, 1-cosx~12x2, n1+x~1+xn,(x→0)例1 limx→0tanx-sinxx3解:原式=limx→0sinx(1-cosx)x3cosx=limx→0x·12x2x3(∵ sinx~x,1-cosx~x22)=12此题也可用罗比塔法则做,但不能用性质④做。∵ tanx-sinxx3=x-xx3=0,不满足性质④的条件,否则得出错误结论0。例2 limx→0e2x-31+xx+sinx2解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53用性质④直接将等价无穷小代换进去,也可用罗比塔法则做。例3 limx→0(1x2-cot2x)解法1:原式=limx→0sin2x-x2cos2xx2sin2x=limx→0(sinx+xcosx)(sinx-xcosx)x4=limx→0x2(1+cosx)(1-cosx)x4 (∵ sinx~x)=limx→0(1+cosx)(1-cosx)x2=limx→012x2·(1+cosx)x2=1解法2:原式=limx→0tan2x-x2x2tan2x=limx→0(tanx+x)(tanx-x)x4=limx→02x(tanx-x)x44 (∵ tanx~x)=limx→02(tanx-x)x3=limx→02(sec2x-1)3x2=23limx→0tan2xx2=23 (∵ tanx~x)两种解法的结果不同,哪一种正确呢?可以发现解法1错了,根源在于错用sinx-xcosx~x-xcosx (注意limx→0sinx-xcosx=-1), 由性质③ sinx-xcosx并不等价于x-xcosx 。 从解法2又可以看到尽管罗比塔法则是求极限的一个有力工具,但往往需要几种方法结合起来运用,特别是恰当适时地运用等价无穷小的代换,能使运算简便,很快得出结果。2.2 在正项级数的审敛判别法中,用得比较多的是比较审敛法的极限形式,它也是无穷小的一个应用。比较审敛法的极限形式:设∑∞n=1un 和∑∞n=1vn 都是正项级数, ① 如果limn→∞unvn=l(0≤l<+∞) ,且级数∑∞n=1vn收敛,则级数∑∞n=1un收敛。② 如果limn→∞unvn=l>0 或limn→∞unvn=+∞,且级数∑∞n=1vn发散,则级数∑∞n=1un发散。当l=1时,∑un,∑vn就是等价无穷小。由比较审敛法的极限形式知,∑un与∑vn同敛散性,只要已知∑un,∑vn中某一个的敛散性,就可以找到另一个的敛散性。例4 判定∑∞n=11n2-lnn 的敛散性解: ∵ limn→∞1n2-lnn1n2=limn→∞n2n2-lnn=1 又∑1n2 收敛 ∴ ∑∞n=11n2-lnn 收敛例5 研究∑∞n=11ln(1+n)的敛散性解: limn→∞1ln(1+n)1n=limn→∞nln(1+n)=1 而∑1n 发散 ∴ ∑∞n=11ln(1+n) 发散3 等价无穷小无可比拟的作用以例3看,若直接用罗比塔法则会发现出现以下结果:原式=limx→0tan2x-x2x2tan2x=limx→02(secx·tanx-x)2xtan2x+2x2tanx·secx=limx→0secx(tan2x-sec2x)-1tan2x+4x·tanx·secx+x2secx(sec2x+tan2x)式子越变越复杂,难于求出最后的结果。而解法2适时运用性质①,将分母x2tan2x替换成x4,又将分子分解因式后进行等价替换,从而很快地求出正确结果。再看一例:例6〔3〕 limx→0+tan(sinx)sin(tanx)解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用罗比塔法则)=limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分离非零极限乘积因子)=limx→0+sin(tanx)tan(sinx) (算出非零极限)=limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用罗比塔法则)=limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx)=limx→0+tan(sinx)sin(tanx)出现循环,此时用罗比塔法则求不出结果。怎么办?用等价无穷小代换。∵ x~sinx~tanx(x→0)∴ 原式=limx→0+xx=1而得解。由此可看到罗比塔法则并不是万能的,也不一定是最佳的,它的使用具有局限性〔3〕。只要充分地掌握好等价无穷小的4条性质就不难求出正确的结论。【参考文献】1 同济大学应用数学系,主编.高等数学.第5版.北京:高等教育出版社,2002,7(38):56~59.2 杨文泰,等.价无穷小量代换定理的推广.甘肃高师学报,2005,10(2):11~13.3 王斌.用罗比塔法则求未定式极限的局限性的探讨.黔西南民族师专学报,2001,12(4):56~58.

[1] 北京大学数学系几何与代数教研代数小组 编《高等代数》(第二版)北京高等出版社,1988[2] 熊廷煌 主编《高等代数简明教程》武汉湖北教育出版社,1987[3] 霍元极 主编《高等代数》北京师范大学出版社,1988[4] 丘维声 主编《高等代数》(上册)高等教育出版社,1996[5] 关治,陈精良《数学计算方法》北京清华大学出版社,1990[6] 邓建中,刘之行 《计算方法》西安交通大学出版社,2001[7] 张元达 《线性代数原理》上海教育出版社,1980[8] 蒋尔雄,等《线性代数》人民教育出版社,1978

  • 索引序列
  • 高数论文参考文献
  • 高数极限论文参考文献
  • 高中数学论文参考文献
  • 高数积分论文参考文献
  • 高等代数论文参考文献
  • 返回顶部