首页 > 学术发表知识库 > 细胞衰老机制研究最新进展论文

细胞衰老机制研究最新进展论文

发布时间:

细胞衰老机制研究最新进展论文

至少30年后才有机会实现

《北京参考》:与衰老关系密切的因素有哪些? 童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢?同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。 世界卫生组织将60岁定为老年期的开始。人的衰老犹如春夏秋冬、花开花谢一样,是自然界的美丽现象,人虽然做不到永生,但是我们能追求健康长寿。探讨长寿的奥秘,是医学界的艰巨使命。如果做到80岁、90岁甚至100岁以前不显老,或者做到无病无痛而衰老呢?为此,笔者特意走访了我国初步解开衰老之谜的中国科学院院士、北京大学衰老研究中心主任、北京大学医学部童坦君教授。 人的自然寿命约120岁 《北京参考》人的寿命究竟有多长? 童坦君:法国著名的生物学家巴丰(Buffon)指出:哺乳动物的寿命约为生长期的5-7倍,通常称之为巴丰寿命系数。人的生长期约为20-25年,一次预计人的自然寿命为100-175年。海佛里克证明人类从胚胎到成人、死亡,其纤维母细胞可进行50次左右的有丝分裂,每次细胞周期约为2.4年,推算人类的自然寿命,应为120岁左右。虽然不同学者解答的方式各不相同,但是结论基本一致,目前一般认为人的自然寿命为120岁左右。 《北京参考》:100年以后人的寿命还是120岁吗? 童坦君:平均寿命受环境影响很大,但是各种动物的最高寿限都相当稳定。鼠类最高寿限约为3年,猴约为28年,犬约为34年、大象约为62年,而人类约为120岁。100年以后,老鼠的最高寿命还是3年。但是100年以后人的平均寿命势必会提高。譬如我国解放前后,平均寿命就提高了一大截。要提高人类最高寿命困难重重,需要进行基因改造,虽然目前科学家在果蝇、蠕虫中试验成功,对其进行某些基因导入或使一些基因突变(改造)则可达到延长其最高寿命的作用。 《北京参考》:作为个体,人的寿命能否预测? 童坦君:预测寿命有多长?是很多人都希望知道的。为迎合这种心理,国内外一些非正式医学书刊登了寿命预测法。预测的主要依据,是将影响健康的一些列因素罗列起来,对健康有利的,根据性质或程度,分别加寿一至数年,对健康不利因素,根据危害性质或程度,分别减寿一至若干年。最后,将全部数据加起来得到总和,再与固定寿命指数或寿命基数相加减便可得出预测到的寿命年龄。但是在现实生活中,基因在人体不同的发育阶段是怎样控制衰老演变的?不前还不清楚。因此,目前世界上还没有公认能正确预测人类寿命的方法。 肺最容易衰老 《北京参考》:人什么时候开始衰老?人体器官有衰老次序吗? 童坦君:衰老分生理成分分生理衰老与病理衰老。同一物种不同个体,即使同一个体不同的组织或器官其衰老速度也不相同。从出生到16岁前各组织器官功能增长快,从16--20岁左右开始到平稳期直到30---35岁,从35岁开始有的器官和组织功能开始减退,其衰老速度随增龄而增加。如果以30岁人的各组织器官功能为100的话,则每增一岁其功能下降为:(休息状态下)神经传导速度以 o.4%下降,心输出量以0.8%下降,肾过滤速率以1.0%下降,最大呼吸能力以1.1%下降。可以理解为肺最容易衰老。其次为肾脏的肾小球,再是心脏,而神经、脑组织衰老速度相对慢一些。各组织器官功能随增龄呈线形进行性下降,因此老年人容易患病,这是一般规律。但在现实生活中有的人衰老速度衰老的生物学指标 《北京参考》:那么,什么情况提示人衰老了? 童坦君:制约哺乳动物衰老研究的一个重要因素就是缺少可靠、易测的评估生物学年龄的标志。我们在细胞水平、分子水平发现了一些指标,可作为衰老生物学标志,但是还只是在实验室阶段,离应用到生活中去还有很长的一段路要走。以下5个指标都和衰老有关,但单独使用都有欠缺与不足的地方: 一、成纤维细胞的体外增殖能力。根据细胞的衰老假说,成纤维细胞体外增殖能力是可靠的估算供者衰老程度的指标。 二、DNA损伤修复能力。多种 DNA损伤,如:染色体移位、DNA单双链断裂、片段缺失都随年龄积累。这一现象除与衰老过程中自由基生成率升高及抗氧化剂水平降低有关外,与DNA修复能力降低密切相关。作为估算DNA修复能力的指标包括非程序DNA合成、DNA聚合酶B及内切脱氧核糖核酸酶UV2DNase和AP2DNase。另外,检测各种DNA损伤的方法亦可用于检测该种DNA损伤的修复能力。 三、线粒体DNA片段缺失。线粒体 DNA片段缺失的检测可以毛发为材料,应用甚为便利,是一项很好的衰老生物学标志。 四、DNA甲基化水平。DNA甲基化是真核生物基因表达渐成性调节的重要机制,通过改变染色体的结构,影响DNA与蛋白质的相互作用,抑制基因表达。 五、端粒的长度。对人体不同的组织进行端粒长度检测,发现端粒长度与细胞的寿限相关,精子、胚胎的端粒最长,而小肠粘膜细胞的端粒最短。 Zglinicki等报道,氧化压力造成的单链断裂是端粒缩短的主要原因,过氧化氢诱导细胞出现衰老表型的同时,也加快端粒的缩短。因此,端粒长度不单是细胞分裂次数的"计数器",而是一项细胞衰老的标志。改善环境改变衰老 《北京参考》:与衰老关系密切的因素有哪些? 童坦君:环境与遗传因素影响着衰老进程。其中遗传控制起着关键作用。衰老并非单一基因决定,而是一连串"衰老基因"、"长寿基因"激活和阻滞以及通过各自产物相互作用的结果。DNA(特别是线粒体DNA)并不像原先设想的那么稳定,包括基因在内的遗传控制体系可受内外环境,特别是氧自由基等损伤因素的影响,会加速衰老过程。在环境还没尽善尽美的条件下,环境是影响衰老的重要因素。譬如我国解放前平均寿命只有35岁,而现在北京市民平均寿命约76岁。还有我国的长寿地方如新疆的和田、江苏的南通、广西的巴马,说明了环境很重要。老百姓延缓衰老能做到的也只有尽量改善环境。但是,同一个长寿村,为什么不是每个人都长寿呢?同时说明遗传起着关键作用。在普通地域,常常有长寿家族,说明长寿基因可以通过遗传来表达。 端区长度随增龄缩短 女性比男性长寿 《北京参考》:人的衰老有性别差异吗? 童坦君:流行病学调查表明,人类女性比男性长寿。从分子水平如何解释女性寿命比男性长这一普遍的生命现象呢?这得从衰老机理说起,比较公认的如氧自由基学说,还有现代的DNA损伤修复学说、线粒体损伤学说以及端区假说等。下面将目前国际上衰老研究的热点结合我们自身的研究工作介绍如下,人类除干细胞外,大多数体细胞端区长度随年龄增加而缩短,而体外培养的细胞端区长度随传代而缩短;端区缩短到一定程度,细胞不再分裂,即不能传代,最终衰老直至死亡。端区是指染色体末端的特殊结构,此结构可防止两条染色体末端的DNA链(又名脱氧核糖核酸,它是蕴含遗传信息的遗传物质)因互相交联而造成染色体的畸变。研究中发现,相同年龄组的成年男性的端区长度长于女性,但随增龄端区长度缩短速率却比女性快,每年差3bp。 《北京参考》:人能够改变衰老吗? 童坦君:运动医学专家研究表明,心肺功能、骨质疏松情况、肌肉力量、身体的耐久力、胆固醇水平、血压等,通过长年锻炼或参加体力劳动、保健是可以改善的。难以改善的指标,只有头发的变白与皮肤弹性减退及萎缩变薄两项。从分子水平讲,我们在细胞衰老相关基因及信号传递通路的先后研究中发现抑癌基因p16通过调节1Kb蛋白活性,不通过端粒酶,就可影响端粒长度、 DNA修复能力与细胞寿命,初步阐明 p16是人类细胞衰老遗传控制程序中的主要环节。这是我国在人类细胞衰老机理研究上取得的突破,还发现衰老相关基因p2 1可保护衰老细胞免于凋亡。至于还有哪些基因管着衰老、怎么管着衰老的速度,都是人类将要继续研究的课题。 《北京参考》:老百姓目前如何做到延缓衰老? 童坦君:改善内外环境--遵循平衡饮食、适当运动、心理平衡原则。对于好的环境因素,我们充分利用它;对于不好的因素,要了解它、调控它。平平常常普普通通轻轻松松《北京参考》:童老您今年多大年纪?您看上去很精神,请介绍一下您的养生之道。 童坦君:我71岁。老年人要平平常常过日子,不要有压力。 我觉得健康老人最重要的是双腿灵、手脚要利落,不要老是坐着不动或躺着。如能胜任长途步行,则反映心脏功能良好。值得一提的是,老年人不要一看电视就好几个小时。对于饮食要普普通通,不要太挑剔,也不忌口,譬如说肥肉,我也吃它一口,但总量不要太多。在心理方面,平时要做高兴的事,以求轻轻松松。譬如爬山时,你可以什么事情都不想。老年人退休后的生活也可以出彩儿,但不要太累;帮着带带孙子,其实是最幸福的事情。 以崇尚科学为荣以愚昧无知为耻 《北京参考》:您当初从事衰老研究工作是怎么想的? 童坦君:据统计,一个人一生的医药费用有三分之二花在老年阶段,随着老年人的增多,其医疗费用将成为家庭和社会的沉重负担,因此老年医学越来越重要。对衰老的研究目的就是要提高老年人的生命质量,延长老年人的健康期、缩短带病期而不仅仅是多活几年。衰老研究是一个年轻的学科,过去的研究方向是整体器官研究,现在是在细胞水平方面研究,以后还要做模式动物研究,但是又不能把动物研究的直接结果用在人的身上,因此,衰老研究还要多样化,不仅要在细胞水平做,还要在器官水平、整体水平做,这样衰老机理研究才能跟上国际与时代。老年医学基础研究对老年临床医学有着重要的作用。我国老年医学基础研究还比较薄弱,如掉队就很难赶上,我们应以崇尚科学为荣,以愚昧无知为耻,我国虽然是人口大国,但是衰老研究工作并不矛盾,在国际上应该处于先进行列。美科学家衰老新解 人类寿命是可以改变的2005年02月07日 09:12 新华网 美国《新闻周刊》1月17日一期刊登一篇题为《岁月的皱纹》的文章,介绍五位科学家对衰老的生物化学过程提出的新解释;他们有一个共同的认识,即人类的寿命并不是固定不变的。文章摘要如下: 虽然死亡与纳税一样不可避免,但是未来人们的衰老过程会变慢,寿命也会明显延长。五位科学家对衰老的生物化学过程提出了新的解释,为益寿延年药物的问世敞开了大门。虽然他们的研究方法不尽相同,但都有一个共同的认识,即人类的寿命并不是固定不变的。增强:目标基因在抗衰老方面更加活跃,几年前,分子遗传学家辛西娅·凯尼恩的学生拿着一盘蚯蚓问过往行人他们认为这些蚯蚓有多大。多数人说,它们只有5天那么大。他们并不知道凯尼恩已经修补了这些蚯蚓的基因。这些蠕动的生物的健康状况完全像刚出生5天的样子,但实际上它们已经出生144天了 — 这是它们正常寿命的6倍。 十年来,凯尼恩坚持不懈的研究已经表明:通过改变激素水平增强约100种基因的功能,“就可以轻而易举地使寿命大为改变”,至少蚯蚓是这样。这些基因有的能够产生抗氧化剂;有的能够制造天然的杀菌剂;有的则参与将脂肪运送到整个身体;还有一些被称作是监护人,据凯尼恩说,它们“能够使细胞成分保持良好的工作状态”。一般来说,这些基因越活跃生物的寿命就可能越长。 1993年,凯尼恩关于蚯蚓基因的研究成果首次发表,持怀疑态度者预言这项成果在人类身上行不通。科学家们仍不了解人类和蚯蚓寿命长短如此悬殊的确切原因,更不知道改变蚯蚓寿命长短对人类来说可能意味着什么。不过,蚯蚓的细胞构成很大程度上与高等哺乳动物十分相似。这项发现为生产保健营养品的长生公司打开了大门,该公司正在尝试开发一种药物,这种药物能够产生与凯尼恩的基因修改相同的效果。凯尼恩说:“我并不是说改变一些基因,人类就能够长生不死,但是这可以使80岁的老人看上去像40岁的样子。”对此,谁会反对呢? 压力:长期紧张使细胞衰老得更快 如果你抱怨压力使你又增添了新的皱纹或白发,很有可能你是对的。 《国家科学院学报》去年秋季发表的一项研究报告为你的这种看法提供了科学依据。参与这项研究的加州大学精神病学助理教授埃莉莎·埃佩尔和她的同事们发现,长期处于紧张状态,或仅仅是感到了紧张,就能明显缩短端粒的长度。端粒就是细胞内染色体端位上的着丝点,可用来衡量细胞衰老过程。端粒越短,细胞的寿命就越短,人体衰老的速度就越快。 埃佩尔对39名年纪在20岁—50岁之间的女性进行了研究,她们的孩子有的患严重的慢性病,比如大脑性麻痹。埃佩尔将她们与同一年龄组但孩子都很健康的另外19名母亲进行了比较。母亲照顾患病小孩的时间越长,她的端粒就越短,而且她所面临的氧化压力(释放损害DNA的自由基的过程)就越大。与感觉压力最小的妇女相比,两组女性中自称压力最大的人,其端粒与年长她们10岁的人相当。 虽然埃佩尔承认要想证实她的发现还需要进行更多的研究,但是她认为这个结果可能有积极意义。她说:“既然我们认为我们能够看到压力会造成细胞内的损伤,人们可能会更加重视精神健康。”她补充说,DNA受损可逆转是“绝对”有希望的,“改变生活方式,学会化解压力,就有可能改进你的生活质量、情绪和延长寿命”。 限制:严格控制卡路里摄取可能减缓衰老速度 1986年,当伦纳德·瓜伦特第一个提出通过限制卡路里的摄取来研究生物学的衰老时,这个主意听上去荒唐可笑。然而在过去十年中,研究人员主要了解为什么突然降低卡路里的摄取能激发一种名为SIR2的基因的活性并能延长简单生物体的寿命,而且取得了很大进展。 瓜伦特和一位名叫戴维·辛克莱的哈佛大学研究者都是这方面的顶尖专家,他们主要研究名为“sirtuins”的抗衰老酶,这是SIR2或哺乳动物身上的与SIR2类似的SIRT1所产生的蛋白家族。瓜伦特的实验已经搞清楚了SIR2背后的很多基本分子过程。例如一种名为NADH的天然化学物质可以抑制“sirtuins”发挥作用;他们已经确认NADH含量较低的酵母存活的时间更长。辛克莱发现白藜芦醇与限制卡路里摄取有关联。研究表明,酵母在大剂量白藜芦醇的作用下能延长寿命70%。 因为很少有人愿意大幅度限制卡路里的摄取,瓜伦特就开始寻找一种有相同功效的药剂。长生公司也开始利用瓜伦特的研究成果,这意味着有朝一日不用再提节食这个字眼,人类或许照样能从限制卡路里摄取中获得好处。 补给:两种化学物质使老鼠变年轻 据《国家科学院学报》2002年发表的研究报告说,加州奥克兰研究所儿童医学专家布鲁斯·埃姆斯和他的同事把两种在体细胞中发现的化学物质 — 乙酰基L肉碱和α硫辛酸 — 给老鼠吃。这不仅使老鼠在解决问题和记忆测试中表现更佳,而且行动起来也更加轻松和充满活力。 研究人员确认,不同化学物质混合起来能够改善线粒体和细胞器的功能,而细胞器是细胞主要的能量来源。埃姆斯在一项研究中发现,当加入过氧化铁或过氧化氢的时候,硫辛酸能保护细胞不被氧化。衰老:透过现象看本质一、前言当前,生命科学有关衰老机制的研究,正处于百花齐放、硕果累累的时期(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Kirkwood, 1999; Warner, 2005; Yin & Chen, 2005),然而,由于衰老过程极其复杂,影响因素千变万化,又由于各个领域研究工作者的知识局限和专业偏见,我们实际面临的是一个鱼龙混杂,莫衷一是的混乱局面(Medvedev, 1990; Olshansky et al. 2002; de Grey et al., 2002; de Magalhaes, 2005)。在这篇论文中,我们将首先简明地回顾有关衰老机理研究的重要进展,探讨在衰老过程中,遗传基因调控与不可避免的环境因子损伤的相互作用。接着,我们强调指出,为了研究真正意义上的衰老过程,应该将注意力集中在健康状态下的种种生理性老化改变,而不是病理性变化。例如,生物体内蛋白质的增龄性损变是一个最为普遍存在的老化现象。在详细阐述自由基氧化和非酶糖基化生化过程,以及熵增性老年色素形成生化机理后,重点探讨了羰基毒化(应激)在衰老过程中的特殊重要意义(Yin & Brunk,1995)。最后,透过现象看本质,提出生化副反应损变失修性累积是生理性衰老过程的生化本质。二、衰老理论概述和对衰老机理研究的总体评论大量的生命现象和实验事实提示,尽管少数低等动物的死亡显示出有一些神秘的“生命开关”在起作用,但衰老过程,尤其是高等动物在成年后的衰老过程已被清楚地认识到是一个受环境因素影响的缓慢渐进的损伤和防御相拮抗的过程。大量现行的重要的衰老研究成果都无可争辩地显示了这一点(Comfort, 1979; Medvedev, 1990; Hayflick, 1998; Yin, 2002)。为了便于分析和讨论,我们首先列出数十种迄今最为重要的衰老学说:整体水平的衰老学说主要有:磨损衰老学说(Sacher 1966)、差误成灾衰老学说(Orgel 1963)、代谢速率衰老学说、自体中毒衰老学说(Metchnikoff 1904)、自然演进衰老学说(程控学说)、剩余信息学说(程控学说)、交联衰老学说; 器官水平的衰老学说有:大脑衰退学说、缺血损伤衰老学说、内分泌减低衰老学说(Korencheysky, 1961)、免疫下降衰老学说(Walford 1969);细胞水平的衰老学说有:细胞膜衰老学说(Zs.-Nagy, 1978)、体细胞突变衰老学说(Szilard, 1959)、线粒体损伤衰老学说(Miquel et al., 1980)、溶酶体(脂褐素)衰老学说(Brunk et al., 2002)、细胞分裂极限学说(程控学说);分子水平的衰老学说有:端粒缩短学说(程控学说)、基因修饰衰老学说、DNA修复缺陷衰老学说(Vilenchik, 1970)、自由基衰老学说(Harman, 1956, 2003)、氧化衰老学说(Sohal & Allen, 1990; Yu & Yang, 1996)、非酶糖基化衰老学说(Cerami, 1985)、羰基毒化衰老学说(Yin & Brunk, 1995)和微量元素衰老学说(Eichhorn, 1979)等等。其它重要的衰老学说还有熵增衰老学说(Sacher 1967, Bortz, 1986)、数理衰老学说和各种各样的综合衰老学说(Sohal, 1990; Zs.-Nagy, 1991; Kowald & Kirkwood, 1994)。从上述26种主要的衰老学说可以初略的看出绝大多数衰老学说(22种)认为,衰老是因生命过程中多种多样的外加损伤造成的后果。简言之,是一个被动的损伤积累的过程。应该说明的是在4种归类为“程控学说”的衰老理论中,细胞分裂极限学说和端粒缩短学说所观察研究的所谓“细胞衰老”与动物整体的衰老有着很大的差别。就“细胞不分裂”这个概念本身而言,并不是“细胞衰老”的同义词。解释很简单,终末分化的神经细胞和绝大多数肌肉细胞在生命的早期(胎儿或婴儿)时期完成了分化以后,便不再分裂,却仍然健康的在动物体内延用终身(Sohal, 1981; Porta, 1990)。近来Lanza等甚至用体外培养接近倍增极限的胎牛二倍体成纤维细胞作为供核细胞成功地培育出了6只克隆牛(Lanza et al., 2000),所述的6只克隆牛的端粒比同龄有性生殖牛还长。其实,从衰老过程的常识(或定义:衰老是生物体各种功能的普遍衰弱以及抵抗环境伤害和恢复体内平衡能力逐渐降低的过程)的角度来讲:端粒缩短与细胞和整体动物的增龄性功能下降基本无关。因篇幅所限,本文不作详谈(Wakayama et al. 2000; Cristofalo et al., 2004)。生命科学对于遗传因子与环境损伤各自如何影响衰老进程的认识经历了漫长的“各自为证”的阶段。经过遗传生命科学家几十年的辛勤探索,现已实验确定的与衰老和长寿有关的基因已达几十种(Finch & Tanzi 1997; Warner, 2005;),例如:age-1, Chico, clk-1, daf-2, daf-16, daf-23, eat-2, gro-1, hsf-1, hsp-16, hsp-70, Igflr+/-, indy, inR, isp-1, KLOTHO, lag-1, lac-1, MsrA, mth, αMUPA, old-1, p66sh, Pcmt, Pit-1, Prop-1, ras2p, spe-26, sag, sir2, SIRT1, sod1 基因等等(Hamet & Tremblay, 2003; Warner, 2005)。这些寿命相关基因可被大致分为四类:1)抗应激类基因(如,抗热休克,抗氧应激类);2)能量代谢相关基因(如,胰岛素/胰岛素因子信号途径,限食或线粒体相关基因);3)抗损伤和突变类基因(如,蛋白质和遗传因子的修复更新等);4)稳定神经内分泌与哺乳动物精子产生的相关基因等。好些“寿命基因”的生物学功能目前还不是很清楚。另外,研究发现的与细胞分裂和衰老相关的细胞周期调控因子有CDK1、PI3K、MAPK、IGF-1和 P16等等(Wang et al., 2001; de Magalhaes, 2005)。因此,生命科学家已经清醒地认识到确有与衰老和长寿相关的基因,但掌管寿命长短的遗传因子不是一个或几个,也不是一组或几组,而是数以百计的遗传因子共同作用的结果(Holliday, 2000; Warner, 2005)。衰老过程是与生理病理相关的,在调控、防御、修复、代谢诸多系统中的多个基因网络共同协调,抵御种种环境损伤的总结果。总之,衰老是先天(遗传)因素和后天(环境)因素共同作用的结果,已逐渐成为衰老生物学研究领域公认的科学事实。认清了动物衰老的上述特征,关于衰老机制的研究便可理性地聚焦在(分子层面上的)损伤积累和防御修复的范围之内。三、衰老的生理性特征和潜藏的分子杀手为了讨论真正意义上的衰老机制,有必要对衰老和老年疾病作较为明晰的界定。一般来讲,学术界普遍认同:衰老不是一种疾病。衰老机制主要研究的是生物体健康状态下的生理性老化改变。考虑到衰老过程是一个普遍存在的、渐进性的、累积性的和不可逆的生理过程,因此造成生理性衰老的原因应该是有共性的损伤因素(Strehler, 1977)。这些因素造成的积累性的,不可逆的改变才是代表着实际意义的衰老改变。其实无论是整体水平、器官水平还是细胞水平的衰老改变归根结底还是分子水平的改变,是分子水平的改变分别在不同层次上的不同的表现形式而已。许多非疾病性衰老改变,例如增龄性血管硬化造成的血压增高,又例如胶原交联造成的肺纤维弹性降低和肺活量下降,还有皮肤松弛,视力退化,关节僵硬等等都隐含着生物大分子的内在改变(Bailey, 2001)。这些改变从整体和组织器官的角度来讲不算生病,但分子结构已经“病变”了。例如,蛋白质的交联硬化就是一个最为常见的不断绞杀生命活力的生化“枷锁”,即使是无疾而终的老人,体内蛋白质的基本结构与年轻人的相比也早已面目全非了。生物体内蛋白质的增龄性损变和修饰是一个普遍存在的老化现象。衰老的身体,从里到外、从上到下都可观察到增龄性的蛋白质损变。当然,许多学者会毫不犹豫地赞同,基因受损应该是导致衰老的重要原因之一。然而,‘衰老过程为体细胞突变积累’的假说却遭到了严谨的科学实验无情地反驳,例如,辐射损伤造成遗传因子突变在单倍体和二倍体黄蜂(wasp)身上应该造成明显的寿差,但研究结果表明,DNA结构遭受加倍辐射损伤的二倍体黄蜂的寿命与单倍体黄蜂相比没有出现显著性的寿命差别,否定了上述推测 (Clark & Rubin, 1961; Lamb, 1965)。另外,大量的生物医学研究表明,衰老过程中DNA损伤和突变的增加主要导致病理性改变(Bohr, 2002; Warner, 2005),比如,造成各种各样的线粒体DNA的疾病(Holliday, 2000; Wallace, 2003)以及癌变的产生等。考虑到衰老过程明显的生理特征,蛋白质的增龄性损伤和改变则显然比遗传物质的损伤、变构对“真正衰老”做出了更多“实际的贡献”(Kirkwood,1999; Ryazanov & Nefsky,2002; Yin & Chen, 2005)。 另外,Orgel (1963) 提出的“差误成灾衰老学说”认为:衰老是生物体对‘蛋白质合成的正确维护的逐渐退化’也遇到了科学实验的强烈挑战而基本被否定(Gallant & Palmer 1979; Harley CB et al., 1980)。Harley等人(1980)的研究表明:‘体外培养的人体成纤维细胞在衰老过程中蛋白质的合成错误没有增加’(注意,对于蛋白质来说,氧化应激几乎为无孔不入和无时不在的生命杀手)。进而,该领域的科学家们越来越清楚地认识到,蛋白质的表达后损变才是生命活动和衰老的最主要的表现。因为与衰老相关的蛋白质变构在衰老身体的各个部位比比皆是(如身体各器官组织的增龄性纤维化和被种种疾病所加速的纤维化),而且组织内蛋白质的衰老损变是最终的也是最普遍的衰老现象。事实上,老化蛋白质损伤几乎在每个衰老假说中都有所涉及。因此,本论文的分析和讨论的重点将聚焦在蛋白质的损伤和修复与衰老的相关性等范畴。总的来说,蛋白质的合成、损变与更新贯穿于整个生命过程中。在生命成熟以后,蛋白质的合成与降解(速度)处于动态平衡中。随着年龄增长,这个平衡逐渐出现倾斜(Bailey, 2001; Terman, 2001)。衰老的生物体细胞内无论是结构蛋白还是功能性蛋白质的损伤和改变的报道比比皆是(Stadtman, 1992, 2003; Rattan, 1996; Ryazanov & Nef

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

细胞再生最新研究进展论文

细胞工程论文

细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。下面是我为大家整理的细胞工程论文,欢迎阅读。

【摘要】 目的制作去细胞肌肉组织工程支架,并检测其与人羊膜上皮细胞的生物相容性。方法 采用TNT和十二烷基磺酸钠结合的化学萃取方法制作去细胞肌肉组织工程支架,冰冻切片观察其结构。将人羊膜上皮细胞种入支架培养7 d后,用免疫组化检测羊膜上皮细胞的增殖活性、NT3及BDNF的表达,扫描电子显微镜观察其超微结构。结果 支架中细胞去除完全,其主要结构为平行排列的管状结构。细胞外基质的主要成分弹性纤维和胶原纤维保持完好。羊膜上皮细胞在支架里有增殖活性,并呈现NT3、BDNF免疫反应阳性。扫描电镜显示,羊膜上皮细胞在支架中分布均匀,生长良好。结论 成功的制作了去细胞肌肉组织工程支架,其与人羊膜上皮细胞有良好的相容性。

【关键词】 去细胞肌肉;人羊膜上皮细胞;生物相容性

近年来组织工程研究的重要进展之一就是采用自体或异体移植物制作天然生物降解材料的组织工程支架。其中去细胞移植物与机体有良好的生物相容性。去细胞肌肉支架可作为生物工程支架支持神经细胞轴突再生。Mligiliche等〔1〕把去细胞肌肉移植入大鼠坐骨神经缺损处,4 w后发现有大量神经轴突长入去细胞肌肉支架中。由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限,去细胞肌肉支架要发挥更大的作用往往需要向支架中植入种子细胞〔2,3〕。研究表明羊膜上皮细胞可分泌多种神经因子〔4,5〕,促进神经元轴突的生长,是一种良好的治疗神经系统疾病的种子细胞。本研究利用化学去细胞的方法制成去细胞肌肉支架,并把羊膜上皮细胞种入去细胞肌肉支架内,探究两者的相容性,为开展组织工程治疗神经系统方面的疾病提供新的途径。

1 材料与方法

1.1 材料

1.1.1 实验动物 Wistar 大鼠由吉林大学白求恩医学院实验动物中心提供。

1.1.2 试剂 IMDM培养基及小牛血清由Hyclone 公司提供。5′溴尿嘧啶核苷(BrdU) 及BrdU 单克隆抗体购自Neomarker公司;神经营养素(NT)3,脑源性神经营养因子(BDNF)兔抗人多克隆抗体购自武汉博士德公司,SABC免疫组化试剂盒购自福州迈新生物公司。人羊膜上皮细胞株为本实验室保存。

1.2 方法

1.2.1 去细胞肌肉支架的制备 参考 Brown等〔6〕去细胞膀胱的制作方法制备去细胞肌肉支架,简述如下:取Wistar大鼠腹锯肌,放入蒸馏水中,在摇床中以37℃、50 r/min摇48 h后,转入3%的TritonX100溶液,摇床中37℃、50 r/min摇48 h。然后放入蒸馏水中,摇床37℃、50 r/min摇48 h。换成1% SDS溶液,摇床37℃,50 r/min摇48 h。PBS洗24 h。PBS中4℃保存备用。

1.2.2 支架形态结构的观察及成分鉴定 肉眼观察去细胞肌肉的形态。去细胞肌肉用4%多聚甲醛PBS固定1 h,5%蔗糖90 min,15%蔗糖90 min,30%蔗糖过夜以梯度脱水,OCT包埋,冷丙酮速冻,之后放入-70℃冰箱保存。恒冷箱切片机切片,HE 染色,观察其内部结构。此外对切片进行Van Gienson(VG)染色和 Weigert染色(VG+ET染色)检测支架的细胞外基质成分。

1.2.3 人羊膜上皮细胞的培养 人羊膜上皮细胞在DMEM培养液中(含10%胎牛血清,100 U/ml青霉素,100 mg/ml链霉素,200 μg/ml的谷氨酰胺),37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,待单层培养细胞生长至80%汇合后,传代培养。

1.2.4 人羊膜上皮细胞与去细胞肌肉支架相容性的鉴定

1.2.4.1 取生长良好的人羊膜上皮细胞,80%细胞接近融合,弃去培养液,0.25%胰蛋白酶消化,当胞体回缩,细胞间隙变宽时,用血清终止消化,反复轻吹瓶壁细胞,制成单细胞悬液于离心管中,1 000 r/min,离心3 min。用DMEM重悬细胞。用1 ml注射器吸入细胞悬液,以2×106/ml 密度注入去细胞肌肉支架中分装至24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,培养1 w。掺入Brdu(终浓度为10 mg/L),继续培养1 d后,恒冷箱切片机切片(方法同前)。切片经PBS 洗后,3% H2O2灭活内源性过氧化物酶10 min,血清封闭20 min;一抗用BrdU(1∶1 000稀释)单克隆抗体,BDNF和NT3多克隆抗体(1∶100稀释)4℃孵育过夜,PBS 洗后,二抗37℃孵育30 min,PBS 洗后,SABC37℃孵育30 min,DAB显色。光镜下观察。

1.2.4.2 扫描电子显微镜鉴定羊膜上皮细胞在去细胞肌肉支架上的生长情况 取生长良好的人羊膜上皮细胞,80%细胞接近融合时,用上述方法消化下来后,把羊膜上皮细胞种植到去细胞肌肉支架中,放在24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养7 d后,用2%戊二醛固定后,梯度乙醇脱水,CO2临界点干燥,镀膜,采用扫描电子显微镜观察并拍照。

2 结 果

2.1 支架的组织结构与成分 去细胞肌肉外观呈乳白色,半透明,质地柔软。从大体上看,肌肉去细胞前后整体大小与形状无显著变化。支架纵切面的HE染色观察可见骨骼肌细胞成分消失,而纤维网架结构保持完整,支架内主要为平行管道。VG+ET染色证明支架成分主要为胶原纤维和弹力纤维等细胞外基质成分,胶原纤维为红色波浪状结构,弹性纤维为蓝色丝状结构,见图1。

2.2 羊膜上皮细胞与去细胞肌肉支架的兼容性 见图2,HE染色显示人羊膜上皮细胞在支架中生长良好,分布均匀(图

图1 去细胞肌肉支架大体与组织切片染色

图2 去细胞肌肉支架的病理图片2A)。免疫组化染色显示,BrdU阳性细胞数目多,提示支架中的人羊膜上皮细胞有增殖能力(图2B)。抗NT3和BDNF染色显示,支架中的人羊膜上皮细胞含有NT3、BDNF阳性颗粒,呈棕褐色分布在细胞质中(图2C,2D)。JSM5600LV扫描电子显微镜显示,在支架内部分布有大量细胞,细胞在支架中分布比较均匀,生长状态良好(图2E)。

3 讨 论

理想的支架材料应与细胞外基质类似,与活体细胞有良好的生物相容性〔7,8〕。去细胞肌肉作为治疗神经损伤的生物工程支架材料有如下优势:(1)去细胞肌肉的细胞外基质成分对组织细胞的'迁移、黏附、生长代谢都有重要作用,研究表明再生的轴突可以很好的黏附在去细胞肌肉支架上〔9〕。(2)去细胞肌肉的排列结构与神经膜管类似,仅在直径上略大于神经膜管〔10〕,它们提供了轴突可生长穿过的足够空间〔9〕,该结构对于诱导神经轴突再生是十分重要的。 Fansa等比较了接种施万细胞的不同去细胞生物材料(肌肉,静脉,神经外膜)桥接缺损的外周神经的结果,发现缺乏神经膜管样结构的去细胞肌肉支架(静脉和神经外膜支架)中的再生轴突是无序和排列混乱的,而有神经膜管样结构的去细胞肌肉支架中的再生轴突是有序排列的〔11〕。这种轴突再生的有序性对神经损伤的轴突再生同样也是十分重要的。(3)去细胞肌肉引起的免疫排斥反应较小〔9,12〕。这些优势都说明去细胞肌肉可作为治疗神经损伤的理想的材料。本研究采用的制作去细胞肌肉的方法主要用来减少异种移植材料的免疫排斥反应。该方法能有效的去除脂膜和膜相关抗原以及可溶性蛋白,并能有效的保留细胞外基质成分的原始空间结构。肌细胞正常呈平行分布,其细胞外基质成分也是平行分布的,从支架纵切面的结果看支架的纤维成分也是平行排布的,VG+ET染色结果显示细胞外基质的主要成分胶原纤维和弹性纤维保持完好。这些结果进一步证实此方法可成功制备去细胞肌肉支架。

由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限〔13〕,去细胞肌肉的生物相容性也有待验证。本研究用人羊膜上皮细胞作为种子细胞种入去细胞肌肉支架以探讨其相容性。研究表明,羊膜上皮细胞中含有多种生物活性因子,包括黏蛋白、转移生长因子、前列腺素E、表皮生长因子样物质,IL1,IL8 等因子,另外,还可分泌BDNF和NT3等重要的神经营养因子〔4〕。其中层黏蛋白、BDNF和NT3等生物活性因子对神经损伤的治疗具有十分重要的作用。羊膜上皮细胞可作为一种较理想的种子细胞,与去细胞肌肉支架结合可能成为治疗神经系统疾病的一个理想的组织工程材料。本实验观察到人羊膜上皮细胞在去细胞肌肉支架中分布均匀,抗BrdU、BDNF及NT3免疫组化显示去细胞肌肉支架中羊膜上皮细胞有良好的增殖能力,并能表达BDNF和NT3,说明羊膜上皮细胞在去细胞肌肉支架中保持了良好的生物学活性。以上结果一方面证明了本研究制作的去细胞肌肉支架有良好的生物相容性,另一方面为应用羊膜上皮细胞和去细胞肌肉支架结合治疗神经系统疾病提供了理论和实验基础。

总之 ,本研究成功制备了去细胞肌肉支架,并证实人羊膜上皮细胞在去细胞肌肉支架中能分泌重要的神经营养因子,人羊膜上皮细胞与去细胞肌肉支架桥接体为神经缺损再生提供了基底膜、神经营养因子等种种有利因素,构成了良好的神经再生微环境,有利于使神经缺损得到较好地修复,为进一步研究羊膜上皮细胞与去细胞肌肉支架桥接体治疗神经损伤奠定了一定的实验基础。

【参考文献】

1 Mligiliche N,Kitada M,Ide C.Grafting of detergentdenatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve〔J〕.Arch Histol Cytol,2001;64 (1):2936.

2 Fansa H,Keilhoff G,Forster G,et al.Acellular muscle with Schwanncell implantation:an alternative biologic nerve conduit〔J〕.J Reconstr Microsurg,1999;15(7):5317.

3 Gulati AK,Rai DR,Ali AM.The influence of cultured Schwann cells on regeneration through acellular basal lamina grafts〔J〕.Brain Res,1995;705(12):11824.

4 朱 梅,陈 东,盂晓婷,等.羊膜上皮细胞移植治疗帕金森病大鼠的实验研究〔J〕.中国老年学杂志,2006;26(2):2279.

5 Meng XT,Chen D,Dong ZY,et al.Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cells coculture〔J〕.Cell Biol Intern,2007;31:6918.

6 Brown AL,BrookAllred TT,Waddell JE,et al.Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscleurothelial cell interactions〔J〕.Biomaterials,2005;26:52943.

7 Suh JK,Matthew HW.Application of chitosanbased polysaccharide biomaterials in cartilage tissue engineering:A review〔J〕.Biomaterials,2000;21(24):258998.

8 Grande DA,Halberstadt C,Naughton G,et al.Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts〔J〕.J Biomed Mater Res,1997;34(2):21120.

9 Fansa H,Schneider W,Wolf G,et al.Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts〔J〕.Transplantation,2002;74(3):3817.

10 李培建,胥少汀.去细胞肌肉支架移植及神经生长因子对脊髓横断性损伤的修复作用〔J〕.中国脊柱脊髓杂志,2000;10(4):2203.

11 Fansa H,Keilhoff G.Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects〔J〕. Neurol Res,2004;26(2):16773.

12 Brown AL,Farhat W,Merguerian PA,et al.22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model〔J〕.Biomaterials,2002;23:217990.

13 李培建,李兵仓,胥少汀.肌基膜管移植修复脊髓缺损的实验研究〔J〕.中华创伤杂志,2001;17(9):5258.

头颈鳞状细胞癌最新研究进展论文

病理报告单上显示的“鳞癌”,你知道是怎样的一种癌吗?这些常识需要弄清楚。

高碳水化合物饮食就是吃富含高碳水化合物的实物,有高碳水化合物食物:

1.面点:馒头、包子、面条、面包、饼干、麻薯等;

2.谷物:米饭、高粱、麦子、薏米、糯米等;

3.根茎蔬菜:芋头、马铃薯、红薯、白薯、山药;

4.水果:香蕉、荔枝、橙、梨、桃;

5.零食:花生、核桃、巧克力、糖、冰激凌。

扩展资料:

有关高碳水化合物饮食研究:

美国研究人员发现,高碳水化合物饮食可能影响头颈部肿瘤患者癌症复发和死亡风险,而治疗后摄入适量脂肪和全麦、土豆和豆类等含淀粉食物可能起到一定保护作用,降低癌症复发和死亡风险。

研究涉及400多名头颈部鳞状细胞癌患者。伊利诺伊大学厄巴纳-尚佩恩分校和亚拉巴马大学伯明翰分校研究人员借助调查问卷了解研究对象接受治疗前一年以及接受治疗一年期间的饮食情况。

研究人员在由最新一期《国际癌症杂志》刊载的论文中写道,治疗开始前每日摄入总碳水化合物以及蔗糖、果糖、乳糖和麦芽糖等各种糖类最多的研究对象,癌症复发和死亡几率较高;在接受治疗的一年中摄入总碳水化合物和各种糖类最多的研究对象,死亡风险较高。

参考资料来源:百度百科—碳水化合物

参考资料来源:新华网—美研究发现:高碳水饮食或增癌症复发风险

衰老与肿瘤关系最新研究进展论文

摘要: 肿瘤是目前威胁人类健康的重要因素。靶向肿瘤的新药与肿瘤免疫新疗法的研发如火如荼,这些研究为攻克肿瘤带来了全新的希望。但受限于患者作为研究对象的不可操控性,而实验动物与人差异巨大,目前从基础到临床的转化效率极低,肿瘤类器官的兴起为转化医学提供了全新的技术平台。从最初单个肿瘤样本类器官的成功构建,到现在建立了大规模的肿瘤类器官库,肿瘤类器官研究已经成为肿瘤基础和临床研究中的重要工具,尤其在结合基因修饰技术的基础上,对揭示肿瘤发生发展的机制、快速评估肿瘤药物与免疫细胞的治疗效果意义重大。 关键词: 肿瘤;类器官;基因修饰;新药研发;免疫疗法;临床转化 抗生素和疫苗发现以前,传染性疾病曾肆虐全球,是人类健康的头号杀手。而现今,非传染性疾病已成为健康问题的主要影响因素,其中,肿瘤更是首要致死原因。最新统计学数据预测,2018年将有超过1800万新增肿瘤病例,960万肿瘤死亡病例[1],肿瘤所造成的巨大经济、社会负担毋庸置疑。 人类与肿瘤的斗争历史源远流长。从希波克拉底时代开始,就有对肿瘤的描述性研究,包括其生长形态、表面溃烂的形成与否等等,肿瘤(carcinoma/carcinos)在希腊语是螃蟹(crab)的意思,由此,罗马医生将carcinoma/carcinos翻译为cancer,成为癌症的最初定义。近年来,随着理论和技术的飞速发展,包括“肿瘤是不可愈合的创口”、“种子与土壤学说”、“肿瘤免疫互作四部曲”、“肿瘤放射化学药物疗法”、“肿瘤免疫治疗”等,我们对肿瘤的认识日渐深入,部分肿瘤甚至已经有了完全治愈的方法。但目前对绝大多数肿瘤,我们一方面没有有效的预防和监测手段,另一方面可以选择的治疗策略极其有限。因此,对肿瘤的研究一直是生物医药领域的核心热点。有意思的是,每年肿瘤相关研究的学术论文发表量数以万计,绝大多数肿瘤在实验室已经得到了成百上千次治愈,但能真正转化到临床应用的治疗方案却极少。美国食品与药品监管局统计发现,临床前研究具有治疗作用的新药进入临床试验后,85%在早期就被证明没有效果,而那些成功通过三期临床试验的药物,只有一半能被FDA批准进入临床应用[2]。目前肿瘤新药研究的主要工具是体外培养的肿瘤细胞和啮齿类动物(主要是小鼠)上建立的肿瘤模型,但越来越多的证据表明,小鼠与人在疾病过程中的变化及其对药物的反应性存在一定的差异[3]。此外,小鼠模型通常只能模拟人类疾病的一个阶段,无法从病因、时间和进展速度等方面再现人肿瘤发生发展的全过程,在此基础上开发的肿瘤治疗方案,并不能预测其临床应用的有效性。更重要的是,实验小鼠基因背景、生长环境、致病因素和用药处理均非常单一,自然无法应对临床多种多样肿瘤病人的复杂情况。 动物模型的局限性促使人们转向直接研究肿瘤病人标本,常用的人源肿瘤模型包括人来源肿瘤细胞系培养和免疫缺陷动物人源肿瘤组织异种移植。肿瘤细胞培养的确提供了研究特定患者肿瘤细胞特性及其对药物敏感性的机会,但并非所有肿瘤均能成功体外扩增,另外,体外单一肿瘤细胞培养使其丧失了与肿瘤微环境中其他组分的相互作用,而肿瘤微环境对肿瘤的发生发展以及对药物的反应性决定至关重要。同样,人源肿瘤组织异种移植至免疫缺陷小鼠中也存在类似的问题,一方面移植成功率较低,另一方面免疫缺陷小鼠形成的肿瘤微环境与患者体内环境相差较大,可能导致肿瘤组织发生小鼠样进化[4]。 1 类器官在肿瘤研究中的发展 近年来,组织器官3D培养技术发展迅猛。2009年,Hans Clevers实验室将单个LGR5+小肠干细胞种植于含有R-spondin1、EGF、BMP抑制剂等干细胞维持因子的基质胶中,发现干细胞增殖分化,形成了具有增殖隐窝和高分化绒毛的类小肠结构[5]。随后,该实验室在小鼠小肠干细胞成类器官技术的基础上,进一步加入Wnt3A nicotinamide、Alk抑制剂及p38抑制剂,实现了人结直肠肿瘤类器官培养[6]。同年,Eduard Batlle实验室分离出人大肠EPHB2高表达干细胞,并在体外3D培养中使单个细胞分化成为具有维持长期自我更新和多向分化潜能的大肠隐窝结构[7]。随后,包括前列腺[8, 9]、味蕾[10]、食管[11]、输卵管[12]、肝脏[13]、胰腺[14]、胃[15]、唾液腺[16]和乳腺[17]等在内的多个器官均成功在体外获得正常组织或肿瘤的类器官(图一)。由此可见,利用目前对肿瘤细胞和肿瘤微环境相互作用机制的认识,从肿瘤病人样本出发,通过加入多种细胞因子或小分子抑制剂,构建出患者特异性的肿瘤类器官,用于新药筛选和药物敏感性研究是可行的。 相比于传统2D培养和肿瘤组织异种移植,肿瘤类器官一方面构建成功率明显增高,且可长期低成本快速培养,便于基因修饰和大规模药物筛选等;另一方面,3D培养保留了肿瘤的组织特性,在研究过程中不会丢失肿瘤微环境的影响作用,为肿瘤药物研发提供更真实的环境。目前已经成功构建出包括结直肠癌、乳腺癌、胰腺癌、前列腺癌、肝癌、胃癌等在内多种组织的肿瘤类器官。常用的肿瘤类器官构建技术有两类,一种是通过诱导性多能干细胞(induced pluripotent stem cells,iPSCs)分化而来,另一种是直接来源于肿瘤组织。iPSCs来源的肿瘤类器官构建成功与否很大程度上依赖于肿瘤类型,操作更复杂,由此导致构建效率较低。此外,依靠iPSCs分化获得的肿瘤类器官也会丢失肿瘤微环境的复杂性。因此,直接通过肿瘤组织培养或干细胞分化,辅以细胞因子、肿瘤基质等补充,是肿瘤类器官研究的发展趋势。 肿瘤类器官对源肿瘤组织异质性的保存是类器官研究的核心基础。研究发现,肿瘤组织体外类器官培养可以获得大量不同特性的肿瘤类器官,单个类器官分析结果也表明同一肿瘤来源的类器官的异质性[18]。与此同时,组织化学分析发现肿瘤类器官内部即存在与源肿瘤相似的组织结构,通过原位DNA分析进一步证实类器官中同样存在源肿瘤相同的基因突变位点[18]。由此可见,肿瘤类器官在基因、转录、代谢、细胞和组织学上均较高水平地重现了其来源肿瘤的多样性和复杂性。更重要的是,体外培养过程对肿瘤类器官不会呈现明显均一化[19, 20]。但也有研究利用荧光标记不同突变体实验发现,大肠癌肿瘤类器官体外培养30-40天后,类器官会被某一种荧光标记的细胞主导,意味着培养过程中的确出现了特定突变体细胞优势生存的现象[21]。但这一现象并非体外类器官培养所独有,在体肿瘤中各类突变体也非均匀分布。由此说明肿瘤类器官确实在很大程度上模拟了在体肿瘤的各方面特性,是目前肿瘤基础研究和临床应用之间相互转换跨越的桥梁。 2 类器官在肿瘤发生发展机制研究中的应用 肿瘤的发生初始于细胞基因突变的累积,大量临床数据和实验室结果都显示正常个体内即存在大量的突变,且这些突变与年龄、生存环境、生活方式等均有一定的相关性,但并非所有的突变都会诱发肿瘤,不同组织对突变的耐受程度也不同。虽然已经有许多细胞和动物实验阐明从突变到肿瘤生成的关键因素和决定机制,由于无法监测和干预人体内肿瘤发展最初期的过程,目前对人体内肿瘤发生发展的认识还非常粗浅。类器官培养技术的兴起,为研究人体正常组织向肿瘤组织转变的过程提供了可能。 统计预测发现高达五分之一的肿瘤与感染相关[22],虽然从感染到肿瘤的发展过程已有研究加以证明,但具体发生机制,尤其在人体内是如何进展的尚不明确。将病原体与健康组织类器官共培养,观察在感染情况下健康组织的突变起始和累积过程,评估感染作为肿瘤危险因子的相关性。如胃类器官可作为研究幽门螺旋杆菌在胃癌发生中作用机制的载体,精细观察幽门螺旋杆菌在胃上皮细胞的定植和克隆,及其对胃上皮细胞在基因、转录和蛋白水平的影响。结果显示在幽门螺杆菌注入能引起胃类器官发生强烈的炎症反应[23],而慢性炎症与肿瘤发生有着密不可分的联系。此外,沙门氏杆菌与胆囊癌、人乳头状瘤病毒与宫颈癌、乙型肝炎病毒与肝癌等等,均可利用相应组织的类器官,研究病原体与宿主细胞之间的相互作用及致瘤机制。由于感染诱发肿瘤往往是一个长期慢性的过程,且伴随炎症的发生,因此,一方面类器官的长期稳定培养是前期基础,另一方面,在上皮细胞构建的类器官基础上,引入免疫系统和组织基质也是类器官应用的重要需求。 除了感染,肿瘤危险因素还包括年龄、家族史、物理化学诱变因素等,而这些因素诱导的突变累积是一个长期存在的过程。通过分析比较不同年龄供体来源、不同组织类器官中的突变体发现,体内的确以平均每年新增40个突变位点的速度在累积,且不同组织间突变模式相差较大,这可能是由于不同组织中细胞更新增殖水平相差较大,而细胞快速增殖过程中DNA复制为基因突变创造了先决条件[24]。值得注意的是,同一组织不同个体间突变频率和范围差异均较小,在一定程度上解释了肿瘤发生与年龄的相关性[24]。但不同个体间肿瘤发生的类型、进展速度等各不相同,因此,突变频率和突变模式并非决定肿瘤发生发展的唯一因素,而在肿瘤已经发生之后,突变累积和筛选已经完成,无法追踪到最初始的突变特性。在类器官培养健康组织的基础上,利用各种诱变因子诱导健康组织向肿瘤转化,将极大地加速对肿瘤发生过程的研究。 不管是感染、物理化学诱变剂或是年龄增长导致肿瘤发生,最终都是由于基因突变发生和累加导致正常细胞癌变。因此,结合类器官培养和基因修饰技术可以快速建立肿瘤体外模型,研究肿瘤的发生发展过程。Drost实验室第一次在正常大肠类器官中通过CRISPR技术引入常见的大肠癌突变基因,如APC、TP53、KRAS和SMAD4,研究不同突变体在初始阶段对肿瘤发生的影响[25]。结果显示,突变后的肠类器官生长不依赖于肠干细胞生长维持因子EGF、WNT、R-spondin 1和noggin等,与此同时,他们还发现APC和TP53的突变是导致染色体不稳定和形成多倍体的关键因素[25]。将基因修饰后的肿瘤类器官皮下移植至免疫缺陷小鼠可以存活,但不会发生转移。而如果将上述诱导的肠癌类器官移植在小鼠盲肠,肿瘤会向肝脏和肺部转移[26, 27]。这一现象说明肿瘤转移需要特定组织微环境的支持,也提示虽然肠癌类器官的生长不依赖于肠干细胞维持因子,这些因子在肿瘤转移过程中必不可少。 肿瘤类器官以其特性模拟人肿瘤组织、可大规模长期稳定培养、容易基因修饰、处理因素可控和表型观察便捷的特性,成为肿瘤基础研究中替代人而又超越实验动物的有力工具。此外,肿瘤类器官作为体外培养体系,非常利于结合最新技术如基因修饰、单细胞分析、高分辨率电子/光学影像等联合应用,将突破肿瘤研究完全依赖于动物实验的时间、技术瓶颈。 3 类器官在肿瘤治疗策略研究的应用 肿瘤治疗是目前生物医学领域最大、最急迫的难题之一。一方面实验室研究越来越多,另一方面新药临床转化效率却依然低下。类器官培养为肿瘤药物快速有效研发提供了新的技术平台。有研究认为肿瘤类器官敏感的药物超过80%的可能性对应的肿瘤患者对该药也敏感,而在肿瘤类器官上无治疗效果的化疗药物对该肿瘤患者也无效。 随着类器官培养技术的迅速发展,越来越多的实验室和医院开始有意识地采集肿瘤类器官及其对应的健康组织类器官,并运用合适的冻存传代方法进行大规模保存,形成类器官库。根据患者信息、组织来源、基因表型等多个方面对类器官进行归类,使之成为公共的肿瘤研究资源,用于评测抗肿瘤药物的肿瘤杀伤效果和正常组织毒副作用。最早于2011年Masahiro Inoue实验室尝试大规模采集肿瘤组织体外成球培养保存[28],但这一培养方法无法实现正常组织的长期保存。2015年,Hans Clevers团队第一次成功构建了20个结直肠癌患者来源的肿瘤与对应正常组织类器官库[18]。利用这些类器官样本,他们发现只有WNT 拮抗剂泛素连接酶RNF43突变的肿瘤类器官表现出对WNT分泌抑制剂的敏感性[18]。同时,结合类器官的突变表型和药物筛选,他们一方面验证了已知的突变体与特定药物的相关性,另一方面还发现了多个对肿瘤具有杀伤作用的化学药物。此外,由于正常组织类器官对照的存在,在验证药物肿瘤杀伤作用的同时,也能评估其对正常组织的毒副作用,最终选择出肿瘤杀伤强、毒副作用小的化疗药物用于临床。更重要的是,这一类器官库除了用于药物筛选,还被其他项目利用,从基因组和蛋白组学对不同个体肿瘤类器官与正常组织类器官进行对比分析[29],实现对患者肿瘤状态的精准评估,为肿瘤的个性化治疗提供参考信息。目前已有包括结直肠癌、胰腺导管腺癌、乳腺癌、前列腺癌、肝癌等在内的多个组织肿瘤类器官库,尤其是结直肠癌与乳腺癌,类器官库中患者数目已达到上百个,为肿瘤新药大规模筛选和临床前研究奠定了基础。 借助于肿瘤类器官与对应健康组织类器官库的建立,同时基于肿瘤类器官对药物肿瘤杀伤效果预测的准确性,可以在制定肿瘤患者治疗策略前,一方面通过检测肿瘤类器官的突变体类型,确定可能起作用的候选药;另一方面利用肿瘤类器官对药物进行筛选,获得在类器官上对肿瘤有杀伤作用而对健康组织毒副作用较小的药物,应用于临床,真正实现肿瘤的个体化治疗。这一策略不仅适用于化疗药物的选择,更有利于免疫疗法的有效性评估。与化疗药物的普遍性杀伤不同,免疫疗法具有较高的特异性,更需要直接来源于患者的样本进行临床前检测。利用肿瘤类器官与免疫细胞共培养,可以快速有效地检测免疫细胞对肿瘤细胞的杀伤作用。研究发现特定T细胞亚群与乳腺癌肿瘤类器官共培养后,可以显著性杀伤三阴性乳腺癌细胞[30]。最近,Emile E. Voest实验室利用外周血单个核细胞与肺癌或结直肠癌肿瘤类器官共培养诱导出一群肿瘤特异性T细胞[31]。进一步研究发现这群肿瘤杀伤性T细胞不会攻击正常组织类器官[31],说明通过肿瘤类器官中的新抗原表位获得杀伤细胞用于临床肿瘤个体化免疫治疗具有很好的应用潜能。 4 展望 类器官在肿瘤研究中的应用目前尚处于起步阶段,但不管是在基础研究还是临床转化,均获得了很好的研究成果。相对于肿瘤细胞系培养和小鼠异种移植,类器官具有培养成功率高、能快速获得大规模资源库、同时可以采集对应的正常组织对照、最接近患者真实信息等多个优势,但目前类器官培养也存在许多问题亟待解决。首先虽然类器官本身去除了异种移植鼠源进化的问题,但目前3D培养用的基质胶来源于小鼠,且一些类器官培养还需要加小牛血清等动物源物质,可能对细胞性质与药物筛选过程中的反应性有未知的影响。因此,无血清培养基、非动物来源基质胶等是目前类器官研究的重点之一。此外,利用成体干细胞培养获得的类器官成分依然比较单一,血管、基质和免疫系统均缺失,也有许多研究关注于类器官中肿瘤微环境的构建。最后,目前仅仅上皮细胞源肿瘤成功构建了类器官,而非上皮细胞类肿瘤如血液细胞肿瘤是否能进行类器官培养尚且未知。虽然类器官培养在肿瘤研究中还存在一定的问题,但这一技术的确搭建了从基础到临床转化的快速通道,为肿瘤新药研究和个体化治疗提供了新的平台。 参考文献 1.      Bray,F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence andmortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 2.      Ledford,H., Translational research: 4 ways to fix the clinical trial. Nature, 2011.477(7366): p. 526-8. 3.      Uhl,E.W. and N.J. Warner, Mouse Models as Predictors of Human Responses:Evolutionary Medicine. Curr Pathobiol Rep, 2015. 3(3): p. 219-223. 4.      Ben-David,U., et al., Patient-derived xenografts undergo mouse-specific tumor evolution.Nat Genet, 2017. 49(11): p. 1567-1575. 5.      Sato,T., et al., Single Lgr5 stem cells build crypt-villus structures in vitrowithout a mesenchymal niche. Nature, 2009. 459(7244): p. 262-5. 6.      Sato,T., et al., Long-term expansion of epithelial organoids from human colon,adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011.141(5): p. 1762-72. 7.      Jung,P., et al., Isolation and in vitro expansion of human colonic stem cells. NatMed, 2011. 17(10): p. 1225-7. 8.      Karthaus,W.R., et al., Identification of multipotent luminal progenitor cells in humanprostate organoid cultures. Cell, 2014. 159(1): p. 163-175. 9.      Chua,C.W., et al., Single luminal epithelial progenitors can generate prostateorganoids in culture. Nat Cell Biol, 2014. 16(10): p. 951-61, 1-4. 10.   Ren,W., et al., Single Lgr5- or Lgr6-expressing taste stem/progenitor cellsgenerate taste bud cells ex vivo. Proc Natl Acad Sci U S A, 2014. 111(46): p.16401-6. 11.   DeWard,A.D., J. Cramer, and E. Lagasse, Cellular heterogeneity in the mouse esophagusimplicates the presence of a nonquiescent epithelial stem cell population. CellRep, 2014. 9(2): p. 701-11. 12.   Kessler,M., et al., The Notch and Wnt pathways regulate stemness and differentiation inhuman fallopian tube organoids. Nat Commun, 2015. 6: p. 8989. 13.   Huch,M., et al., Long-term culture of genome-stable bipotent stem cells from adulthuman liver. Cell, 2015. 160(1-2): p. 299-312. 14.   Boj,S.F., et al., Organoid models of human and mouse ductal pancreatic cancer.Cell, 2015. 160(1-2): p. 324-38. 15.   Bartfeld,S., et al., In vitro expansion of human gastric epithelial stem cells and theirresponses to bacterial infection. Gastroenterology, 2015. 148(1): p. 126-136e6. 16.   Maimets,M., et al., Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven byWnt Signals. Stem Cell Reports, 2016. 6(1): p. 150-62. 17.   Sachs,N., et al., A Living Biobank of Breast Cancer Organoids Captures DiseaseHeterogeneity. Cell, 2018. 172(1-2): p. 373-386 e10. 18.   vande Wetering, M., et al., Prospective derivation of a living organoid biobank ofcolorectal cancer patients. Cell, 2015. 161(4): p. 933-45. 19.   Pauli,C., et al., Personalized In Vitro and In Vivo Cancer Models to Guide PrecisionMedicine. Cancer Discov, 2017. 7(5): p. 462-477. 20.   Schutte,M., et al., Molecular dissection of colorectal cancer in pre-clinical modelsidentifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun,2017. 8: p. 14262. 21.   Fujii,M., et al., A Colorectal Tumor Organoid Library Demonstrates Progressive Lossof Niche Factor Requirements during Tumorigenesis. Cell Stem Cell, 2016. 18(6):p. 827-38. 22.   DeFlora, S. and P. Bonanni, The prevention of infection-associated cancers.Carcinogenesis, 2011. 32(6): p. 787-95. 23.   McCracken,K.W., et al., Modelling human development and disease in pluripotentstem-cell-derived gastric organoids. Nature, 2014. 516(7531): p. 400-4. 24.   Blokzijl,F., et al., Tissue-specific mutation accumulation in human adult stem cellsduring life. Nature, 2016. 538(7624): p. 260-264. 25.   Drost,J., et al., Sequential cancer mutations in cultured human intestinal stemcells. Nature, 2015. 521(7550): p. 43-7. 26.   Fumagalli,A., et al., Genetic dissection of colorectal cancer progression by orthotopictransplantation of engineered cancer organoids. Proc Natl Acad Sci U S A, 2017.114(12): p. E2357-E2364. 27.   Fumagalli,A., et al., A surgical orthotopic organoid transplantation approach in mice tovisualize and study colorectal cancer progression. Nat Protoc, 2018. 13(2): p.235-247. 28.   Kondo,J., et al., Retaining cell-cell contact enables preparation and culture ofspheroids composed of pure primary cancer cells from colorectal cancer. ProcNatl Acad Sci U S A, 2011. 108(15): p. 6235-40. 29.   Cristobal,A., et al., Personalized Proteome Profiles of Healthy and Tumor Human ColonOrganoids Reveal Both Individual Diversity and Basic Features of ColorectalCancer. Cell Rep, 2017. 18(1): p. 263-274. 30.   Zumwalde,N.A., et al., Analysis of Immune Cells from Human Mammary Ductal EpithelialOrganoids Reveals Vdelta2+ T Cells That Efficiently Target Breast CarcinomaCells in the Presence of Bisphosphonate. Cancer Prev Res (Phila), 2016. 9(4):p. 305-16. 31.   Dijkstra,K.K., et al., Generation of Tumor-Reactive T Cells by Co-culture of PeripheralBlood Lymphocytes and Tumor Organoids. Cell, 2018. 174(6): p. 1586-1598 e12.

癌症不是机体老化的自然机制,为了更好科普什么癌症,下面我将从多个方面来介绍相关的癌症知识。

癌症可以在身体的任何位置开始。当细胞失去控制并排挤正常细胞时,它就开始了。这使得身体很难以应有的方式工作。

癌症对许多人来说可以得到很好的治疗。事实上,在癌症治疗后,比以往任何时候更多的人过着充实的生活。

在这里,我们将解释什么是癌症,以及如何治疗它。在这本回到的末尾,你会发现一个关于癌症的一些专用词,以及它们的含义。

癌症不仅仅是一种疾病。这不仅仅是一种疾病,有许多类型的癌症。癌症可能从肺部、乳房、结肠甚至血液中开始。癌症在某些方面是一样的,但它们在生长和传播的方式上是不同的。

我们体内的细胞都有一定的工作要做。正常细胞有条不紊地分裂。当它们衰老或损坏时,它们会死亡,新的细胞将代替它们。癌症是当细胞开始生长失控。癌细胞不断生长和制造新的细胞。他们排挤正常细胞。这会导致癌症开始的身体部分出现问题。

癌细胞也可以扩散到身体的其他部位。例如,肺中的癌细胞可以传播到骨头并在那里生长。当癌细胞扩散时,它被称为转移(meh-TAS-tuh-sis)。当肺癌扩散到骨骼时,它仍然被称为肺癌,医生认为,这些骨骼中的癌细胞看起来就像肺中的癌细胞。除非从癌细胞从骨骼开始,否则不叫骨癌。

有些癌症生长和传播很快,其它癌症则发展的较慢。它们也以不同的方式回应治疗。某些类型的癌症最好通过手术治疗;其它类型对称为化疗的药物反应更好(Key-mo-THER-uh-pee)。通常使用 2 种或更多治疗来获得最佳效果。

当某人患了癌症时,医生会想知道它是什么癌症。癌症患者需要对他们的癌症类型有效的治疗。

大多数癌症形成一个称为肿瘤或生长的肿块。但并非所有肿块都是癌症。医生拿出一块肿块,看看它,看看是不是癌症。非癌症的肿块称为良性肿块。

癌症的肿块称为恶性(粘连体)。有一些癌症,如白血病(血液癌),不形成肿瘤。它们生长在血细胞或身体的其他细胞中。

“当你被告知你患有癌症时,你会感到恐惧。开始想除了你的诊断之外,别无他法。这是你每天早上首先想到的。我希望癌症患者知道它确实会好转。谈论你的癌症可以帮助你处理所有你感觉的新情绪。记住,心烦意乱是正常的。”-----癌症幸存者 德洛雷斯。

医生还需要知道癌症是否扩散到哪里,这称为癌症阶段。你可能听到其他人说他们的癌症是阶段1或阶段2。了解癌症的阶段有助于医生决定哪种治疗类型是最好的。

对于每种类型的癌症,可以进行测试,以找出癌症的阶段。通常,较低的阶段(如第 1 阶段或 2 阶段)意味着癌症没有扩散太多。较高的数字(如阶段 3 或 4)表示其传播更多。第 4 阶段是最高阶段。

请医生解释你的癌症的阶段,以及这对你意味着什么。

最常见的癌症治疗是手术、化疗和放射治疗(射线-dee-A-顺)。手术可以用来切除癌症病灶,这样,医生可能会将患者的癌症病灶从身体中拿出来,从而消除影响。

对于乳腺癌,部分(或全部)乳房可能被切除。对于前列腺癌,前列腺可能被取出。手术不用于所有类型的癌症。例如,像白血病这样的血癌最好用药物治疗。化疗的简称是使用药物杀死癌细胞或减缓癌细胞的生长。有些化疗可以通过静脉注射(通过针头进入静脉),而另一些是你吞咽的药丸。因为化疗药物传播到身体几乎所有部位,它们对已经扩散的癌症有效。

辐射也用于杀死或减缓癌细胞的生长有效方法。它可以单独使用,也可以用于手术或化疗。放射治疗就像接受X光检查。有时,它是通过在癌症病灶内放置一个"种子"来发出辐射。

“对我来说,有帮助的是花时间退后一步,看看大局。得到我问题的答案有助于我做出一个好的决定。我做了我想做的事和需要做的事。我做的事情让我感觉很舒服,而不是别人认为我需要做的舒服。”

你的癌症治疗将取决于什么最适合你。有些癌症对手术反应更好;其他类型癌症对化疗或辐射的反应更好。知道你的癌症类型是了解哪种治疗方法最适合你的第一步。

癌症的阶段也将有助于医生决定最适合您的治疗。第3或4期癌症可能对治疗全身的治疗有较好的反应,如化疗。

你的 健康 和你喜欢的治疗也会在决定癌症治疗方面起到一定的作用。不是所有类型的治疗都对你的癌症有起作用,所以问问你有什么选择。治疗确实有副作用,所以问问每次治疗会发生什么。不要害怕问问题。您有权知道哪些治疗方法最有可能有帮助,以及它们的副作用可能是什么。

癌症患者经常问,“我做错了什么?医生不确定是什么原因导致癌症。当医生不能给出原因时,人们可能会提出他们自己的想法,自己为什么会患癌症。”

有些人认为他们因为过去做过或没做过的事情而受到惩罚。大多数人怀疑他们是否做了一些导致癌症的事情。

如果你有这些感觉,你并不孤单。像这样的思想和信仰对癌症患者来说是很常见的。你需要知道,癌症不是对你过去行为的惩罚。尽量不要责怪自己,也不要专注于寻找预防癌症的方法。癌症不是你的错,几乎从来没有办法找出是什么原因造成的。相反,现在要集中精力照顾好自己。

谈论癌症可能很难,即使是和你爱的人。知道自己得了癌症会激起很多情绪,比如悲伤、愤怒和恐惧。有时候很难知道自己感受,更不要说跟别人谈论了。

你所爱的人可能也很难谈论癌症。对他们来说,要知道该说什么来帮助你或让你感觉好些并不容易。

这里有一些提示,以帮助你和你的亲人处理癌症:

“你第一次大声说'我患了癌症'是最难的。你说的越多,说话就越容易。我越谈论我的乳腺癌,我就越容易接受我所经历的一切。有时,我为自己所说的感觉很奇怪。”----癌症幸存者海伦

癌症可以在身体的任何位置开始。当细胞失去控制并排挤正常细胞时,它就开始了。这使得身体很难以应有的方式工作。

癌症对许多人来说可以得到很好的治疗。事实上,在癌症治疗后,比以往任何时候更多的人过着充实的生活。

在这里,我们将解释什么是癌症,以及如何治疗它。在这本挥到的末尾,你会发现一个关于癌症的一些专用词,以及它们的含义。现实生活中的抗衰基因的坚强就是靠人自己来铸造,,养成好的生活习惯,从小走每步,敬老也不忘,泛学锻炼身体忙,诗意|趣幽逗乐酣,一生轻松绵…营养健身自琢研,…耄耋之年照蹁跹…人生幸福甜…就是将来真那个…也和癌症无关…只是机能彻底枯竭了…

研究者Stuart Rushworth说道,本文研究提供了证据来证明癌症会促进机体衰老,而且癌细胞自身还会驱动附近非癌变细胞的老化过程,同时白血病会利用一种特殊的生物学机制来加速疾病的进展。NOX2是一种参与机体对感染产生反应的特殊酶类,其主要存在于急性髓性白血病(AML)细胞中,同时其还主要负责产生机体的老化症状。

从上述分析看来,老化是不能预防、不能治疗、不能阻止、不可避免的事情。而恶性肿瘤是基本是可以预防、可以有治疗思路,如果病情治疗得当,可能导致缓解。因此,癌症不是老化的自然机制。

也就是说,目前我们没有很好的方法来抵御机体的老化,但我们能够通过一些措施,降低人类的患癌风险。

大多我们常见的癌症,如肺癌、肝癌、胃癌、结直肠癌等确实都是老年病,要活久见。

问题是如何解释个中缘由呢?

整体上看,癌症发生需要两个最核心因素, 第一个是基因突变, 它发生在基因复制时期。

就好比母鸡下蛋,一群好蛋中突然出现了一个“坏蛋”,这个“坏蛋”就是癌细胞的前身,

它需要一系列的变身,最能终才发展成面目可憎的癌细胞。

第二个是免疫逃逸。 人体的免疫系统可以通俗理解为安保系统,它负责查杀所有的异体力量,

当然也包括异常的突变细胞。癌细胞既要积累很多突变,同时又要摆脱体内免疫系统的追捕,

日积月累,才能发展成有规模、有杀伤力的癌症。

整个过程需要十几年,甚至几十年的时间,所以癌症注定是“活久见”。

随着人年龄的增长,细胞分裂次数的增加,突变细胞出现的几率增加了,而免疫系统的老化也使突变细胞被消灭的机会变小了。两者相加的结果,就是癌症。

但也有例外,比如儿童患癌症,最常见的是白血病,这种现象怎么解释呢?

癌症是由突变引起的,后天因素导致突变需要时间积累,但先天因素的突变却不需要。

婴儿,或者几岁的儿童,他们得癌症必然有先天因素的帮助,要么是从父母那遗传了致癌基因,

要么就是在怀孕的过程中产生了突变,使他们体内的突变细胞随着生长发育也迅速壮大,

因而节省了癌症从量变到质变的积累时间,使疾病爆发大大提前。

所以,不能简单说癌症是机体衰老的调节机制。它是机体调节失衡的结果,只是这个失衡,有遗传因素的原因,也有寿命和外界刺激的影响。

……这题是我在(任麦兜…)先生栏看刭的,先生简叙了事…

,,,就癌症是不是身体老化的一种自然机制?

,,,粗略答之…癌症的产生是因人体的某个机能的免疫力下降,抗衰基因减弱了,让病毒基因站了上风,它牛B的够呛,任球野泼和播种,在人体狭窄的土地上,癌症病毒占领了主要地方,任由疯狂,抗衰基因再无地盘茁壮,怄憋够呛,才至世态炎凉,凄凄苍茫…谁要轮上,魂断寸肠,立了今生,来生的领导是阎王…永远睡觉觉…魂飞灵飘扬…多情的风光…谁也怕去晃……要命的地方…

,,,关于人体内的病毒基因和抗衰两大组织来说,它俩同一地方,同饮水一江,从小较劲纠缠不让,死争高低和茁壮,我壮你够呛…你壮我够呛…此山只能一方强,想长寿活命,二者死磕扛…胜者好模样,当王任疯狂…

,,,现时生活中的抗衰基因的坚强就是靠人自已来铸造,,养成好的生活习惯,从小走美步,刭老也不忘,泛学锻炼身体忙,诗意|趣幽逗乐酣,一生轻松绵…营养健身自琢研,…耄耋之年照蹁跹…人生幸福甜…就是将来真那个…也和癌症无关…只是机能彻底枯竭了…

,,,所以人们常怕的癌症,都是因自已的体质衰弱了,免疫力下降了,让它得到机会繁衍,让人儿受搓苦熬…死不甘心作业交…梦断魂桥…彼岸报道…

,,,其实近些年的一批旺旺中年人,因勤劳苦拚,为富足不择手段,冒险换来美好江山,狂风来慢卷,心慌涎…忧无边…憔不浅…饭菜不奢甜,狼狈不堪入牢狱或逃去国外,,十五年前,我在深圳和南京认识的6/7位大心们…都在5O岁左右早早去了那边…什么家中的字画和(满尼)大大的有…其中一位在文工团呆过的风情浪娇给相好老乡嘚瑟…我家就八辈子也花不完的钱……逃国外3年后回来…扬帆荡漾不刭半年…心上不祥…有的是钱,3o1和国外最好的医院,一天3万针药都不在眨眼的…也就半年多时光,照去摸那西河里的月亮…

,,所以人的绝症大多与人的心情有关…你要心焦愁,忧虑慌,怯揪紧,暗渠红水不顺畅,很快使那片富饶的土地成荒梁…杂草长…禾苗再不壮……就这样…

,,,天下你我行,美步耕勤奋,淡看茁壮成,幽趣乐呵经,今生只悦灵…就是将来彻底要不行…也不能让病魔的阴谋得逞……永是漂亮 健康 人!

近日,一项刊登在国际杂志Blood上的研究报告中,来自东安格利亚大学的科学家们通过研究发现,白血病或会促进机体 健康 的骨髓细胞过早衰老,即 健康 骨髓细胞周围的癌细胞会导致其早衰。

我们都知道,老化会促进癌症发生,但这项研究中,研究人员首次发现癌症也会促进机体细胞过早衰老;更重要的是,衰老的骨髓细胞会加速白血病的发生和进展,这样就会产生一种恶性循环加速疾病发展。文章中,研究者通过研究鉴别出了白血病患者机体骨髓过早衰老发生的分子机制,相关研究结果也有望帮助研究人员开发出新型策略减缓上述过程的发生。

研究者Stuart Rushworth说道,本文研究提供了证据来证明癌症会促进机体衰老,而且癌细胞自身还会驱动附近非癌变细胞的老化过程,同时白血病会利用一种特殊的生物学机制来加速疾病的进展。NOX2是一种参与机体对感染产生反应的特殊酶类,其主要存在于急性髓性白血病(AML)细胞中,同时其还主要负责产生机体的老化症状。

如今研究者发现,NOX2酶能产生超氧化物来驱动机体的老化过程,通过抑制NOX2研究者们就能减少老化的非癌变细胞的水平,从而减缓癌症的进展。最后研究者表示,此前我们并未发现白血病会诱发局部非癌环境中细胞的衰老,后期我们希望通过更为深入的研究来阐明其中所涉及的分子机制,从而开发出新型疗法抑制癌症促进机体过早衰老的过程。

癌症的本质,其实是一种遗传病,但它并不是一种机体老化的自然机制。

我们都有一种很明显的感觉,那就是人越老,患癌的概率也就会越大,而据相关数据统计发现,一个人只要活到了100岁,那么他患癌的概率就会高达50%。同时,事实上我们的身体每天都会有好几千的细胞想要发生癌变,只是因为它们要变成真正的癌细胞,并且还要发展起来形成肿瘤,这个过程太过复杂艰难了而已,因此癌症的发生其实也并不是那么的容易的。

那么,我提这个是想说明什么呢?其实就是想说,癌这个东西是会一直伴随着我们的一生的,从某种程度上说,我们正常生活,需要抗的不是癌,而是与癌共处。这听起来有些扯,但事实就是这样,癌离我们真的很近,只是它们在我们身体的免疫系统的防御下没有得到发展,形不成肿瘤而已,扩不散而已。

本质上来说,癌症是随着细胞的分裂次数的增多而丧失抗癌基因的基础上,原癌基因被病毒,化学物质,物理辐射大量激活,并最终使得身体免疫系统无法及时处理过来而发生的。从某种意义上说,癌症的发生可以理解为机体老化的一种普遍现象,毕竟无论是从细胞抑癌基因的缺失概率的增大,还是人体免疫力的下降来说,这都是在随着年龄的增大而增大的,即是说年龄越大,其本身患癌的概率也就越大。

当然,有些人认为癌症可能是机体老化的一种自然淘汰的机制,是大自然为了平衡以及节约资源而编制出来的。这种认为是有些道理的,但实际上它是不存在的,因为人体老化至生命终结的根本是机体的某个甚至是多个必要器官的彻底损坏而造成的,就这一条因必要器官的彻底老化不能再继续工作就足以将人类的寿命极限彻底地限制在120岁左右了,而人类活到100岁的患癌概率仅为50%,即便是到了120岁,患癌的概率也无法达到80%以上,因此这套说法是不存在的。

癌症问题多样,环境污染,生活方式,食物因素,情绪因素,化学药品,日化用品,病久不愈,自身因素等,都可以引起癌症。现全世界有近千万人患癌症,在七,八十年代是一万人有三两个是癌症,到现在过去仅仅几十年,一万人有十人有癌症,可能还要多。这是什原因呢?特别在我国癌症成倍增加,以前一个市都没几个癌症,现在一个小区就好几个了。 癌症同机体老化是有风险形成,如四十岁后各种各样癌症开始多发,有些三两岁一样有此列少点。

癌症不明原因,但有些病变是癌症因素造成,特别是迁延不愈炎症,如乙肝容易得肝癌,肠胃炎可能病变肠胃癌等,有病早治,早防才是防治癌症最好方法。

确实,年龄越大,患癌症的机会似乎越多。那么,癌症与老化到底是什么关系?

癌是指起源于上皮组织的恶性肿瘤。也就是说,癌症只是恶性肿瘤的一种。但根据题主的意思,应该是问恶性肿瘤会不会是机体老化的自然机制?

生物之所以能够成活,能够生长,因为细胞能够不断分裂。分裂是活细胞增殖过程,是由一个细胞分裂为两个细胞。自然规律显示,任何生命有了存活的机会,但不可能有无限存活的机会。也就是说,细胞的分裂不可能无限制进行。因此,为了生命的延续,就出现了生命繁衍另一个生命的过程~生殖。

而癌症细胞,往往是因为细胞基因发生了突变。导致细胞不受控制的异常增殖,分裂失去控制,并且浸润、转移、进而掠夺身体其他正常细胞的生成空间。导致机体的病变及死亡。

而老化,是由于基因表达的程序性,或渐进性的改变所致。这种改变使具有异常的,终末性不分裂细胞积聚,导致机体细胞分裂缓慢,或者是不再分裂。老化的细胞由于缺乏分裂的推动力,而最终失去分裂能力。这种内在性失去细胞增殖的能力称为细胞性老化或称复制性老化。

而引起的细胞变异,使细胞具有无限制的分裂增殖。较为明确的与因素有外源性和内源性两大类。外源性因素包括生活习惯,比如吸烟,比如长期食用霉变食物,比如有人认为长期食用过热食物或者长期饮用烈性酒可导致口腔、咽喉、食管癌变。还包括环境污染,空气、饮水、食物的污染。还有在一定条件下紫外线可引起皮肤癌以及病毒,细菌、寄生虫、真菌在一定条件下也可致癌等等,数不胜数。

还有内源性因素。比如遗传因素,遗传因素在大多数肿瘤发生中的作用是增加了机体发生肿瘤的倾向性和对致癌因子的易感性。比如免疫因素,先天性或后天性免疫缺陷易发生恶性肿瘤。我们熟知的艾滋病患者恶性肿瘤发生率明显增高,就是因为免疫缺陷原因引起。

同时,国际抗癌联盟认为,1/3的癌症是可以预防的,1/3的癌症如能早期诊断是可以治愈的,1/3的癌症可以减轻痛苦,延长生命。因而提出了恶性肿瘤的三级预防概念: 一级预防是消除或减少可能致癌的因素,防止癌症的发生。 二级预防是指癌症一旦发生,如何在早期阶段发现并予以及时治疗。 三级预防是治疗后的康复,防止病情恶化,提高生存质量,减轻痛苦,延长生命。

从上述分析看来,老化是不能预防、不能治疗、不能阻止、不可避免的事情。而恶性肿瘤是基本是可以预防、可以有治疗思路,如果病情治疗得当,可能导致缓解。因此,癌症不是老化的自然机制。

也就是说,目前我们没有很好的方法来抵御机体的老化,但我们能够通过一些措施,降低人类的患癌风险。

癌症不是机体老化的一种自然机制,正常人老年后身体开始衰老,脏器功能减退,各大系统的运转缓慢,开始出现一些病理指标,但这些指标往往集中在三高、心脑血管疾病及一些个体化疾病。而癌症与机体衰老没有直接相关性,但机体衰老后慢性病高发,一些慢性病不及时控制也会成为引发癌症的危险因素之一,但对于遗传性的癌症则一般在年轻时就已经发病了。下面我们详细探讨一下机体衰老与癌症的关系吧。

癌症是由内因(基因)和外因(物理因素,化学因素和生物因素等)之间相互作用的结果。其中基因因素包括先天遗传缺陷与体细胞累积突变。 先天癌症遗传基因在肿瘤发生中的贡献大约占了15%左右,环境危险因素对癌症的贡献大约20%多,由不良的生活方式和环境等危险因素导致的肿瘤驱动基因突变在肿瘤发生中占到60%多。 研究表明,肿瘤驱动基因的变异,是导致体细胞突变并累积的重要原因。驱动基因包含了抑癌基因、原癌基因等。

如果一个人在生活中经常受到外界致癌因素的刺激(比如电离辐射、烟草烟雾刺激、食入黄曲霉素等),正常细胞的基因就会发生无法预测的改变,这其中,可能就包括了某个细胞的原癌基因被激活,抑癌基因失活,导致基因编码的蛋白质功能发生改变,细胞生长进程受到影响,开始无限增殖,这时候,少数细胞癌变发生!了解到癌症的发病机制,我们不难发现他与机体老化没有直接相关性。

衰老是人体必然会发生的现象,这就好比一辆车,你再怎么爱护它,只要还在使用就会不断出现各种毛病,直到维修不划算而报废。人也是一样,有好多因素导致人体衰老。与癌症间接相关的因素如下:

1.人体衰老的过程中导致体内DNA修复的机制受到了损伤,或者体内细胞不断产生的自由基积累,这些都是诱发癌症形成的原因之一,这也是癌症在老年人群体中高发的原因。

2.人体衰老后会出现一些慢病和老年综合征,一方面这些慢性病本身就是癌症的危险因素之一,另一方面老年后身体一生中接触到的有毒物质、致癌物质、身体毒素也都积累到了相当高的水平,由量变到引发疾病这一质变的可能性增加,而在机体本身代谢能力、免疫力等均底下的老年时期,发生肿瘤的风险会比年轻时高很多。

总之,人机体衰老这一自然现象是引发肿瘤的间接因素,不会是引发癌症的一种自然机制。老年人预防癌症发生的关键还是要从改变不良生活习惯做起。

细胞研究最新论文

细胞工程论文

细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。下面是我为大家整理的细胞工程论文,欢迎阅读。

【摘要】 目的制作去细胞肌肉组织工程支架,并检测其与人羊膜上皮细胞的生物相容性。方法 采用TNT和十二烷基磺酸钠结合的化学萃取方法制作去细胞肌肉组织工程支架,冰冻切片观察其结构。将人羊膜上皮细胞种入支架培养7 d后,用免疫组化检测羊膜上皮细胞的增殖活性、NT3及BDNF的表达,扫描电子显微镜观察其超微结构。结果 支架中细胞去除完全,其主要结构为平行排列的管状结构。细胞外基质的主要成分弹性纤维和胶原纤维保持完好。羊膜上皮细胞在支架里有增殖活性,并呈现NT3、BDNF免疫反应阳性。扫描电镜显示,羊膜上皮细胞在支架中分布均匀,生长良好。结论 成功的制作了去细胞肌肉组织工程支架,其与人羊膜上皮细胞有良好的相容性。

【关键词】 去细胞肌肉;人羊膜上皮细胞;生物相容性

近年来组织工程研究的重要进展之一就是采用自体或异体移植物制作天然生物降解材料的组织工程支架。其中去细胞移植物与机体有良好的生物相容性。去细胞肌肉支架可作为生物工程支架支持神经细胞轴突再生。Mligiliche等〔1〕把去细胞肌肉移植入大鼠坐骨神经缺损处,4 w后发现有大量神经轴突长入去细胞肌肉支架中。由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限,去细胞肌肉支架要发挥更大的作用往往需要向支架中植入种子细胞〔2,3〕。研究表明羊膜上皮细胞可分泌多种神经因子〔4,5〕,促进神经元轴突的生长,是一种良好的治疗神经系统疾病的种子细胞。本研究利用化学去细胞的方法制成去细胞肌肉支架,并把羊膜上皮细胞种入去细胞肌肉支架内,探究两者的相容性,为开展组织工程治疗神经系统方面的疾病提供新的途径。

1 材料与方法

1.1 材料

1.1.1 实验动物 Wistar 大鼠由吉林大学白求恩医学院实验动物中心提供。

1.1.2 试剂 IMDM培养基及小牛血清由Hyclone 公司提供。5′溴尿嘧啶核苷(BrdU) 及BrdU 单克隆抗体购自Neomarker公司;神经营养素(NT)3,脑源性神经营养因子(BDNF)兔抗人多克隆抗体购自武汉博士德公司,SABC免疫组化试剂盒购自福州迈新生物公司。人羊膜上皮细胞株为本实验室保存。

1.2 方法

1.2.1 去细胞肌肉支架的制备 参考 Brown等〔6〕去细胞膀胱的制作方法制备去细胞肌肉支架,简述如下:取Wistar大鼠腹锯肌,放入蒸馏水中,在摇床中以37℃、50 r/min摇48 h后,转入3%的TritonX100溶液,摇床中37℃、50 r/min摇48 h。然后放入蒸馏水中,摇床37℃、50 r/min摇48 h。换成1% SDS溶液,摇床37℃,50 r/min摇48 h。PBS洗24 h。PBS中4℃保存备用。

1.2.2 支架形态结构的观察及成分鉴定 肉眼观察去细胞肌肉的形态。去细胞肌肉用4%多聚甲醛PBS固定1 h,5%蔗糖90 min,15%蔗糖90 min,30%蔗糖过夜以梯度脱水,OCT包埋,冷丙酮速冻,之后放入-70℃冰箱保存。恒冷箱切片机切片,HE 染色,观察其内部结构。此外对切片进行Van Gienson(VG)染色和 Weigert染色(VG+ET染色)检测支架的细胞外基质成分。

1.2.3 人羊膜上皮细胞的培养 人羊膜上皮细胞在DMEM培养液中(含10%胎牛血清,100 U/ml青霉素,100 mg/ml链霉素,200 μg/ml的谷氨酰胺),37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,待单层培养细胞生长至80%汇合后,传代培养。

1.2.4 人羊膜上皮细胞与去细胞肌肉支架相容性的鉴定

1.2.4.1 取生长良好的人羊膜上皮细胞,80%细胞接近融合,弃去培养液,0.25%胰蛋白酶消化,当胞体回缩,细胞间隙变宽时,用血清终止消化,反复轻吹瓶壁细胞,制成单细胞悬液于离心管中,1 000 r/min,离心3 min。用DMEM重悬细胞。用1 ml注射器吸入细胞悬液,以2×106/ml 密度注入去细胞肌肉支架中分装至24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,培养1 w。掺入Brdu(终浓度为10 mg/L),继续培养1 d后,恒冷箱切片机切片(方法同前)。切片经PBS 洗后,3% H2O2灭活内源性过氧化物酶10 min,血清封闭20 min;一抗用BrdU(1∶1 000稀释)单克隆抗体,BDNF和NT3多克隆抗体(1∶100稀释)4℃孵育过夜,PBS 洗后,二抗37℃孵育30 min,PBS 洗后,SABC37℃孵育30 min,DAB显色。光镜下观察。

1.2.4.2 扫描电子显微镜鉴定羊膜上皮细胞在去细胞肌肉支架上的生长情况 取生长良好的人羊膜上皮细胞,80%细胞接近融合时,用上述方法消化下来后,把羊膜上皮细胞种植到去细胞肌肉支架中,放在24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养7 d后,用2%戊二醛固定后,梯度乙醇脱水,CO2临界点干燥,镀膜,采用扫描电子显微镜观察并拍照。

2 结 果

2.1 支架的组织结构与成分 去细胞肌肉外观呈乳白色,半透明,质地柔软。从大体上看,肌肉去细胞前后整体大小与形状无显著变化。支架纵切面的HE染色观察可见骨骼肌细胞成分消失,而纤维网架结构保持完整,支架内主要为平行管道。VG+ET染色证明支架成分主要为胶原纤维和弹力纤维等细胞外基质成分,胶原纤维为红色波浪状结构,弹性纤维为蓝色丝状结构,见图1。

2.2 羊膜上皮细胞与去细胞肌肉支架的兼容性 见图2,HE染色显示人羊膜上皮细胞在支架中生长良好,分布均匀(图

图1 去细胞肌肉支架大体与组织切片染色

图2 去细胞肌肉支架的病理图片2A)。免疫组化染色显示,BrdU阳性细胞数目多,提示支架中的人羊膜上皮细胞有增殖能力(图2B)。抗NT3和BDNF染色显示,支架中的人羊膜上皮细胞含有NT3、BDNF阳性颗粒,呈棕褐色分布在细胞质中(图2C,2D)。JSM5600LV扫描电子显微镜显示,在支架内部分布有大量细胞,细胞在支架中分布比较均匀,生长状态良好(图2E)。

3 讨 论

理想的支架材料应与细胞外基质类似,与活体细胞有良好的生物相容性〔7,8〕。去细胞肌肉作为治疗神经损伤的生物工程支架材料有如下优势:(1)去细胞肌肉的细胞外基质成分对组织细胞的'迁移、黏附、生长代谢都有重要作用,研究表明再生的轴突可以很好的黏附在去细胞肌肉支架上〔9〕。(2)去细胞肌肉的排列结构与神经膜管类似,仅在直径上略大于神经膜管〔10〕,它们提供了轴突可生长穿过的足够空间〔9〕,该结构对于诱导神经轴突再生是十分重要的。 Fansa等比较了接种施万细胞的不同去细胞生物材料(肌肉,静脉,神经外膜)桥接缺损的外周神经的结果,发现缺乏神经膜管样结构的去细胞肌肉支架(静脉和神经外膜支架)中的再生轴突是无序和排列混乱的,而有神经膜管样结构的去细胞肌肉支架中的再生轴突是有序排列的〔11〕。这种轴突再生的有序性对神经损伤的轴突再生同样也是十分重要的。(3)去细胞肌肉引起的免疫排斥反应较小〔9,12〕。这些优势都说明去细胞肌肉可作为治疗神经损伤的理想的材料。本研究采用的制作去细胞肌肉的方法主要用来减少异种移植材料的免疫排斥反应。该方法能有效的去除脂膜和膜相关抗原以及可溶性蛋白,并能有效的保留细胞外基质成分的原始空间结构。肌细胞正常呈平行分布,其细胞外基质成分也是平行分布的,从支架纵切面的结果看支架的纤维成分也是平行排布的,VG+ET染色结果显示细胞外基质的主要成分胶原纤维和弹性纤维保持完好。这些结果进一步证实此方法可成功制备去细胞肌肉支架。

由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限〔13〕,去细胞肌肉的生物相容性也有待验证。本研究用人羊膜上皮细胞作为种子细胞种入去细胞肌肉支架以探讨其相容性。研究表明,羊膜上皮细胞中含有多种生物活性因子,包括黏蛋白、转移生长因子、前列腺素E、表皮生长因子样物质,IL1,IL8 等因子,另外,还可分泌BDNF和NT3等重要的神经营养因子〔4〕。其中层黏蛋白、BDNF和NT3等生物活性因子对神经损伤的治疗具有十分重要的作用。羊膜上皮细胞可作为一种较理想的种子细胞,与去细胞肌肉支架结合可能成为治疗神经系统疾病的一个理想的组织工程材料。本实验观察到人羊膜上皮细胞在去细胞肌肉支架中分布均匀,抗BrdU、BDNF及NT3免疫组化显示去细胞肌肉支架中羊膜上皮细胞有良好的增殖能力,并能表达BDNF和NT3,说明羊膜上皮细胞在去细胞肌肉支架中保持了良好的生物学活性。以上结果一方面证明了本研究制作的去细胞肌肉支架有良好的生物相容性,另一方面为应用羊膜上皮细胞和去细胞肌肉支架结合治疗神经系统疾病提供了理论和实验基础。

总之 ,本研究成功制备了去细胞肌肉支架,并证实人羊膜上皮细胞在去细胞肌肉支架中能分泌重要的神经营养因子,人羊膜上皮细胞与去细胞肌肉支架桥接体为神经缺损再生提供了基底膜、神经营养因子等种种有利因素,构成了良好的神经再生微环境,有利于使神经缺损得到较好地修复,为进一步研究羊膜上皮细胞与去细胞肌肉支架桥接体治疗神经损伤奠定了一定的实验基础。

【参考文献】

1 Mligiliche N,Kitada M,Ide C.Grafting of detergentdenatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve〔J〕.Arch Histol Cytol,2001;64 (1):2936.

2 Fansa H,Keilhoff G,Forster G,et al.Acellular muscle with Schwanncell implantation:an alternative biologic nerve conduit〔J〕.J Reconstr Microsurg,1999;15(7):5317.

3 Gulati AK,Rai DR,Ali AM.The influence of cultured Schwann cells on regeneration through acellular basal lamina grafts〔J〕.Brain Res,1995;705(12):11824.

4 朱 梅,陈 东,盂晓婷,等.羊膜上皮细胞移植治疗帕金森病大鼠的实验研究〔J〕.中国老年学杂志,2006;26(2):2279.

5 Meng XT,Chen D,Dong ZY,et al.Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cells coculture〔J〕.Cell Biol Intern,2007;31:6918.

6 Brown AL,BrookAllred TT,Waddell JE,et al.Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscleurothelial cell interactions〔J〕.Biomaterials,2005;26:52943.

7 Suh JK,Matthew HW.Application of chitosanbased polysaccharide biomaterials in cartilage tissue engineering:A review〔J〕.Biomaterials,2000;21(24):258998.

8 Grande DA,Halberstadt C,Naughton G,et al.Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts〔J〕.J Biomed Mater Res,1997;34(2):21120.

9 Fansa H,Schneider W,Wolf G,et al.Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts〔J〕.Transplantation,2002;74(3):3817.

10 李培建,胥少汀.去细胞肌肉支架移植及神经生长因子对脊髓横断性损伤的修复作用〔J〕.中国脊柱脊髓杂志,2000;10(4):2203.

11 Fansa H,Keilhoff G.Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects〔J〕. Neurol Res,2004;26(2):16773.

12 Brown AL,Farhat W,Merguerian PA,et al.22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model〔J〕.Biomaterials,2002;23:217990.

13 李培建,李兵仓,胥少汀.肌基膜管移植修复脊髓缺损的实验研究〔J〕.中华创伤杂志,2001;17(9):5258.

在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。

论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”

他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。

Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”

论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”

这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。

Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”

这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。

随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。

Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。

下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。

通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。

通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”

Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”

这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。

Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”

Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。

他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 Bioon.com)

参考资料: 1.Mark Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00641-w. 2.Kiran D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00649-2.

  • 索引序列
  • 细胞衰老机制研究最新进展论文
  • 细胞再生最新研究进展论文
  • 头颈鳞状细胞癌最新研究进展论文
  • 衰老与肿瘤关系最新研究进展论文
  • 细胞研究最新论文
  • 返回顶部