这都不会啊 看看王志强编的开关电源设计第二版 P14-----P21 看懂就会了
要求说清楚,可给你参考
找一些关于开关电源的书里面都有现成的。
这是个比大的主题,很久前会,早忘了。要反推 根据输出电流算线径,一般设计取3A每平方毫米发热量不会太大再根据电流算电流检测元件加过电流保护保护,比较烦有个地址有范本地址前有这个:(http://)application.weeqoo.com/2007/10/20071019145910120944.html
尊敬的评委老师:早上好!我叫×××,XXXX级社会学专业学生。我的毕业论文题目是《社会学视野下金庸小说中的婚恋观》。我的指导老师是张红老师。从确定选题、拟定提纲、完成初稿,到最后定稿,我得到了张老师的精心细致指导,使我很快掌握了论文的写作方法,并在较短的时间里完成了论文的写作。不管今天答辩的结果如何,我都会由衷的感谢指导老师的辛勤劳动,感谢各位评委老师的批评指正。截至目前,在学术界有关金庸武侠小说的论著非常多,但尚无从社会学视野下对金庸小说中婚恋观的研究。选择金庸小说作为毕业论文的写作题材,一方面是因为我对金庸小说比较喜欢,包括由金庸小说改编而成的电视剧。的确,金庸小说不仅向我们展现了侠客的快意恩仇,还借用江湖这个社会,使人物摆脱传统社会的束缚或少受社会制度的束缚。男女侠客不问出身,不讲家庭地位、社会背景,只讲两性相悦、以情相许,能实现真正意义上的男女平等、恋爱自由。另一方面结合当今社会现实,许多现象与金庸小说中的情节有一些相似,揭示其中的联系,警示世人,以倡导和谐的、理想的婚姻。在这篇论文中,主要采用了内容分析和现实对比的写作手法,各部分安排按照先典型分析,具体对照现象,理论分析,再阐明现代性特征的层次进行。具体结构如下:第一部分为所归纳的金庸小说中的五种爱情类型;第二部分为金庸小说中与现实相对应的婚姻类型;第三部分为关于金庸小说中择偶的社会学分析,分为宏观和和微观两个方面分析。宏观方面的主要理论有:对于择偶的个人主义解释;择偶的社会文化解释;择偶梯度理论;同类匹配理论。微观方面的理论有:1、相似性理论;2、需求互补理论。从以上这些择偶理论我们可以做出如下推论:相似性原则是择偶的基本规律。无论从哪个理论角度这个结论总是成立的,虽做出如下推论:相似性原则是择偶的基本规律。无论从哪个理论角度这个结论总是成立的,虽然对具体是什么“相似”有些争议。在外在社会条件上符合“同类匹配”,内在条件上又符合“需求互补”,这似乎就是最完满的理想婚姻模式。第四部分为金庸小说中婚恋观的现代性特征;在金庸小说中,男女侠客不问出身,不讲家庭地位、社会背景,只讲两性相悦、以情相许,能实现真正意义上的恋爱自由,而这些观念无疑与现代人的恋爱观相合。第五部分:结论。社会是历史积淀的产物,小说是反映生活、憧憬生活、甚至能够改造生活、提升生活品质的艺术。在某些传统思想仍在侵蚀当代人的今天,在已经冲破封建罗网,人们获得充分的个性自由,能够勇于追求自我爱情的今天,回味金庸小说中具有现代性特征的爱情婚恋,对我们仍有启迪。金庸小说中的爱情不仅反映了作者心目中的爱情观,也折射出传统文化孕育下的“集体无意识”及现代人的情感困惑与矛盾境况,从而具有重要的认识价值。因此,我们应当超越以爱情为基础的内涵性婚姻和以现实利益为基础的功利性婚姻的简单对立,使工具理性与价值理性相结合来构建一种理想的婚姻模式——综合权衡模式。限于各种条件的制约,特别是本人理论水平所限,使得本论文对金庸小说中婚恋观的现实意义仅停留在比较粗浅的层面,尤其是理论方面,还有很多问题需要继续进行深入、细致的思考和探索。最后,再次感谢张红老师在我的毕业论文写作过程中所给予的悉心帮助与指导;其次我要感谢各位专业师在这四年来对我的教育与培养,没有你们的教导,也就没有我的今天;最后也要感谢本专老业同学这几年来对我的关心与支持,和你们生活在一起的日子我永远也不会忘记!恳请各位老师、同学进行批评指正,谢谢大家!
论文答辩是一种比较正规的审查形式,有组织、有准备、有鉴定、有计划的。答辩会由校方、答辩委员会还有答辩者组成。我在此献上 毕业 答辩发言稿,希望大家喜欢。
毕业答辩发言稿一:
各位老师,上午好!
我叫赵晓琦,是土 木工 程__ 班的学生,我的论文题目为某某市八十八中学办公楼的设计。设计是在姚力老师的悉心指点下完成的,在那里我向我的老师表示深深的谢意,也向在坐各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对上大学来我有机会聆听教诲的各位老师表示由衷的敬意。
下面我将本论文设计的目的和主要资料向各位老师作一汇报,恳请各位老师批评指导。
首先我想简单介绍本设计。
本工程为某某市八十八中学办公楼采用多层框架结构,主体结构为6层,内外装修均为一般装修,为永久性建筑。该楼总建筑面积为3981㎡,拟建位置另行给定,抗震设防烈度为8度。
其次我想谈谈这篇论文的结构和主要资料。
毕业答辩发言稿二:
各位领导、来宾,老师、同学们:
大家上午好!
为了进一步提高广大学生的创业意识,鼓励创新观念的成长,促进同学们就业观念由“择业”向“创业”转换,促进产、学、研一体化发展,培养能够适应市场经济发展需求的骨干人才,厦门大学团委一直致力于激发大学生创新创业的热情,以“挑战杯” 创业计划 竞赛为契机,为大学生创新创业提供广阔的平台。
“恒安杯”厦门大学第五届创业计划竞赛从去年5月启动至今,共吸引了1000多名本科生、硕士生和博士生参加,申报了65个项目。有30支团队从去年10月的初赛中脱颖而出。经过初赛、复赛和决赛三个阶段的培训和角逐,目前闯入决赛的9支队伍今天在此进行决赛。现在我简要向各位介绍一下本次竞赛的举办情况。
毕业论文答辩流程
1、 自我介绍 :自我介绍作为答辩的发言稿,包括姓名、学号、专业。介绍时要举止大方、态度从容、面带微笑,礼貌得体的介绍自己,争取给答辩小组一个良好的印象。好的开端就意味着成功了一半。
2、答辩人陈述:收到成效的自我介绍只是这场答辩的开始,接下来的自我陈述才进入正轨。自述的主要内容包括论文标题;课题背景、选择此课题的原因及课题现阶段的发展情况;有关课题的具体内容,其中包括答辩人所持的观点看法、研究过程、实验数据、结果;答辩人在此课题中的研究模块、承担的具体工作、解决方案、研究结果。 文章 的创新部分;结论、价值和展望; 自我评价 。
3、提问与答辩:答辩教师的提问安排在答辩人自述之后,是答辩中相对灵活的环节,有问有答,是一个相互交流的过程。一般为3个问题,采用由浅入深的顺序提问,采取答辩人当场作答的方式。
4、 总结 :上述程序一一完毕,代表答辩也即将结束。答辩人最后纵观答辩全过程,做总结陈述,包括两方面的总结:毕业设计和论文写作的体会;参加答辩的收获。答辩教师也会对答辩人的表现做出点评:成绩、不足、建议。
5、致谢:感谢在毕业设计论文方面给予帮助的人们并且要礼貌地感谢答辩教师。
毕业答辩发言稿 范文 相关文章:
★ 毕业论文答辩发言稿精选5篇
★ 毕业论文答辩演讲稿范文合集5篇
★ 毕业论文答辩发言稿精选集总5篇
★ 毕业论文答辩演讲稿范文精选5篇
★ 2020本科毕业答辩演讲稿最新范文【五篇】
★ 毕业论文答辩演讲稿范文集锦
★ 本科毕业答辩演讲稿范文
★ 毕业论文答辩发言稿精选集总
★ 毕业论文答辩演讲稿范文汇总
★ 毕业论文答辩发言稿精选合集
论文答辩稿示范如下:
各位老师,下午好!
我叫XXX,是XX级XX班的学生,我的论文题目是《网络时代个人数据与隐私保护的调查分析》。
论文是在XX导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。
首先,我想谈谈这个毕业论文设计的目的及意义。
在计算机网路日益渗透人们日常生活和工作中的今天,人们自身的数据隐私能够得到有效保护已然成为了各方越来越关注的重点问题,对个人数据隐私的有效保护也是现今需要解决的重要课题。
本文主要结合当今社会在网络平台个人数据信息以及隐私保护的实际现状,剖析个人数据信息和隐私泄露的原因和途径,从个人数据信息及隐私保护的角度提出自己的看法和建议。
互联网技术的快速发展使人们可以在网络平台当中进行交流学习、娱乐和购物,网络已经成为了人们日常生活工作当中的重要组成。
但是,互联网的这种便利使人们处于一个自由开放和透明的空间当中,使人们的个人隐私遭到了一定的威胁,甚至对人们人身财产安全产生巨大的危害,对个人数据隐私的有效保护也是现今需要解决的重要问题。
在本文的研究当中,不仅能够梳理国内外在个人数据与隐私方面的研究理论和研究成果,还能够结合本文的相关研究健全和完善国内外的相关研究体系,为今后的研究提供一定的理论指导和经验支持。
其次,我想谈谈这篇论文主要内容。
通过明确在网络时代下对于个人数据及隐私的定义,研究当前社会网络环境下个人数据及隐私所面临的问题,探索和研究在当前网络时代中,如何提高人们保护个人数据和隐私的意识,合理解决网络中个人数据及隐私的泄露问题,以及如何保护个人数据及隐私的方法。
最后,我想谈谈这篇论文存在的不足
由于本人在个人数据与隐私保护方面的理论基础较为薄弱,对全文的把握和掌控可能存在一定的不足,对于个人数据与隐私的保护分析也缺乏全面性,不能很好的实现个人数据与隐私保护的完善分析。
另一方面,本文地从调查问卷的设计和实施和分析也存在一定的不足,实际的问卷分析可能会存在一些漏洞。而且,本文在对网络是到新的发展环境方面的把握也略显不足。
谢谢!
看你论文怎么写咯。先讲下电源的各种结构,然后讲下反激开关电源的特点,和其它电源结构有什么不同点,反激开关电源的主要应用。你做这个论文的成果及收获。答辩自述时间不是很长,上面那些内容铺开讲就可以了。至于,答辩组老师会问什么,看他们了,应该离不开你论文里的东西,自己掌握就好了
再加一千分我会给你更详细的
正激:在初级开关管导通时向次级传送能量反激:在初级开关管关闭时向次级传送能量最大区别:结构上单看变压器的话是不容易看出是正激还是反激的,但是区分正激和反激电源最明显的一点就是正激电源在次级必须有个电感存储能量,而反激电源时没有的。正激式变压器不蓄积能量,只担负偶合传输,反激式变压器需把开通过程中的能量蓄积在本身,关断过程中再释放:正激式绕组同相位,反激式绕组反相;正激式变压器不用调节电感值,反激式需调节.正激式工作存在剩磁为防饱和需消磁电路,本身不蓄能需要蓄能线圈和续流二极管.反激式不用..因为成本和它们的特性,一般反激式电源在100瓦以下,正激式100瓦以上,并不是它们不能互换做功率。
第1章 绪论11.1 电力电子技术简介11.2 开关电源61.2.1 开关电源的分类61.2.2 开关电源的发展71.3 电力电子与相关学科的关系10第2章 稳态开关电路的分析与建模方法112.1 变换器稳态分析法112.1.1 稳态分析法简介112.1.2 电感伏秒平衡、电容电荷平衡原则和小波纹近似法132.1.3 Boost变换器182.1.4 Buck-Boost变换器212.2 Cuk、Sepic和Zeta变换器232.2.1 Cuk变换器232.2.2 Sepic变换器262.2.3 Zeta变换器292.3 6种DC-DC开关变换器基本电路比较312.4 稳态等效电路模型322.4.1 直流变压器模型322.4.2 电感铜损耗342.4.3 构建等效电路模型362.5 如何对脉冲输入端建模39第3章 非连续导电模式的稳态分析433.1 Buck变换器非连续导电模式的临界条件433.2 Boost变换器非连续导电模式的临界条件503.3 Buck-Boost变换器553.4 Cuk变换器583.5 Zeta变换器603.6 Sepic变换器62第4章 电力电子器件674.1 电力电子器件概述674.1.1 简介674.1.2 电力电子器件的发展684.1.3 电力电子器件的分类694.2 功率二极管694.2.1 PN结694.2.2 PN结的电容效应704.2.3 PN结的反向击穿714.3 功率二极管的结构及特性714.3.1 功率二极管稳态伏安特性724.3.2 功率二极管开关特性734.3.3 功率二极管性能参数744.3.4 功率二极管的分类754.4 晶闸管764.4.1 晶闸管的结构764.4.2 晶闸管的工作原理774.4.3 晶闸管的基本特性784.4.4 晶闸管的主要参数804.5 晶闸管的派生器件814.6 功率场效应管844.6.1 基本结构与工作原理844.6.2 多元集成结构864.6.3 MOSFET的静态特性864.6.4 MDSFET的动态特性884.6.5 安全工作区894.7 功率MOSFET新进展914.7.1 CoolMOS914.7.2 低压低通态电阻MOSFET934.8 大功率晶体管944.8.1 结构944.8.2 工作特性954.8.3 GTR的主要参数964.8.4 GTR的二次击穿现象与安全工作区974.9 绝缘栅双极型晶体管984.9.1 IGBT基本结构984.9.2 IGBT与功率MOSFET的比较994.9.3 IGBT的工作原理994.9.4 IGBT的特性1014.9.5 IGBT的开关特性1024.9.6 IGBT的安全工作区1034.10 几种新型IGBT介绍1044.10.1 IGBT制造技术的发展历史1044.10.2 穿通型IGBT1054.10.3 非穿通型IGBT特性1054.10.4 逆阻型IGBT1064.10.5 沟槽终止型与场终止型IGBT1064.11 其他新型电力电子器件概述107第5章 开关电路1095.1 开关电路变换1095.1.1 交换源与负载1095.1.2 开关电路的级联1105.1.3 三端单元的旋转1125.2 开关电路简单列举1145.3 具有变压器隔离的变换电路1175.3.1 全桥与半桥隔离式Buck电路1185.3.2 正激式变换器1235.3.3 Buck衍生的推挽式开关电路1275.3.4 反激式开关电路1285.3.5 Boost电路衍生的隔离式开关电路1305.3.6 隔离式Sepic和Cuk电路132第6章 开关电源占空比控制芯片原理1376.1 开关电源系统的隔离技术1376.2 开关电源控制芯片1386.3 电压模式控制芯片1386.4 电流模式控制电路1406.5 软开关电源集成控制器1456.6 单片开关电源1516.6.1 TOPSwitch-II系列单片开关电源的性能特点1526.6.2 TOPSwitch-II系列单片开关电源的工作原理1536.6.3 TOPSwitch-FX系列单片开关电源1586.6.4 Topswitch-GX第四代单片开关电源163第7章 小信号开关电路的建模方法1647.1 简介1647.2 基本的交流建模方法1667.2.1 对电感的波形求均值1677.2.2 近似均值的讨论1677.2.3 对电容电流参数的波形求均值1687.2.4 对输入电流求均值1697.2.5 微扰和线性化1697.2.6 小信号等效电路模型的构成1717.2.7 关于微扰和线性化过程的讨论1737.2.8 基本变换器的小信号等效模型1747.2.9 非理想反激式的小信号等效模型1757.3状态空间平均1797.3.1 网络的状态方程1797.3.2 基本的状态空间平均模型1807.3.3 状态空间平均结果的讨论1827.4 电路平均和平均开关建模1877.4.1 获得时不变电路1897.4.2 电路平均1897.4.3 微扰和线性化1907.4.4 三端开关网络1937.5 开关电路统一的电路模型1967.6 脉宽调制器的小信号模型198第8章 开关电路的传输函数及控制部分设计2018.1 波特图回顾2018.1.1 单实极点响应2018.1.2 单实零点响应2038.1.3 较复杂的传输函数2058.2 双极点二次函数2068.3 二型误差放大器2088.4 三型误差放大器2108.5 变换器的传输函数分析2128.6 开关电源控制的设计2188.6.1 引言2188.6.2 反馈对传输函数的影响2198.7 稳定性2218.7.1 相位判据2228.7.2 相位裕量与品质因数的关系2238.8 补偿器的设计2238.8.1 简介2238.8.2 利用二型三型误差放大器做补偿放大器2248.8.3 超前补偿器2258.8.4 滞后补偿器2268.8.5 滞后超前补偿器2278.9 设计实例228第9章 磁性元件2379.1 磁性材料的基本特性2379.1.1 磁场的基本物理量2379.1.2 磁路的欧姆定律2389.1.3 磁性材料的磁特性及其功率损耗2399.1.4 线圈中的涡流2419.2 几种常用磁性器件2439.2.1 直流输出滤波电感2439.2.2 交流电感2439.2.3 耦合电感2449.2.4 变压器2449.2.5 反激式变压器2459.3 滤波电感设计2459.3.1 滤波电感设计的基本约束条件2459.3.2 滤波电感铁芯的几何常数2479.3.3 滤波电感的设计流程2479.3.4 多绕组电感的设计2489.3.5 滤波电感设计举例2499.4 变压器设计2519.4.1 变压器设计的基本约束条件2519.4.2 变压器的设计流程2539.4.3 变压器设计举例254第10章 软开关变换器简介25810.1 硬开关损耗25810.2 高频化与软开关25910.3 谐振开关的类型25910.3.1 准谐振开关电路25910.3.2 零开关PWM电路26210.3.3 零转换PWM电路265附录 常用符号及缩略语270参考文献272
开关电源的正激式与反激式的区别如下:
一、原理不同:
1、正激式开关电源是指使用正激高频变压器隔离耦合能量的开关电源,与之对应的有反激式开关电源。
正激具体所指当开关管接通时,输出变压器充当介质直接耦合磁场能量,电能转化为磁能,磁能又转化为电能,输入输出同时进行。
2、“反激”(FLY BACK)具体所指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量, 磁能转化为电能,输出回路中有电流。
二、优点不同
正激式开关电源优点: 功率比反激式开关电源大,输出变压器利用率高,适用于100W-300W的开关电源。
反击式开关电源优点:元器件少,电路简单,成本低,体积小,可同时输出多路互相隔离的电压。
三、缺点不同
正激式开关电源缺点:需要增加反电动势绕组,或拓补驱动,次级多加1个整流电感,成本高。
反激式开关电源缺点:开关管承受电压高,输出变压器利用率低,不适合作大功率电源 EMI比较大。
参考资料:百度百科-反激
百度百科-正激
其一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单. 其二是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法. 其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作最多.
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
现在不少大学生毕业(包括部分研究生)论文,不是抄写就是请人写,这是什么世道?
引言 众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。1 稳定性指标 衡量开关电源稳定性的指标是相位裕度和增益裕度。相位裕度是指:增益降到0dB时所对应的相位。增益裕度是指:相位为零时所对应的增益大小(实际是衰减)。在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。 在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。相位裕度只能用来保证“小信号稳定”。在负载阶跃变化时,电源不可避免要进入“大信号稳定”范围。工程中我们认为在室温和标准输入、正常负载条件下,环路的相位裕度要求大于45°。在各种参数变化和误差情况下,这个相位裕度足以确保系统稳定。如果负载变化或者输入电压范围变化非常大,考虑在所有负载和输入电压下环路和相位裕度应大于30°。 如图l所示为开关电源控制方框示意图,开关电源控制环路由以下3部分构成。<<<<<这个地方有图,不过百度只能上传1张图>>>>>> (1)功率变换器部分,主要包含方波驱动功率开关、主功率变压器和输出滤波器; (2)脉冲宽度调节部分,主要包含PWM脉宽比较器、图腾柱功率放大; (3)采样、控制比较放大部分,主要包含输出电压采样、比较、放大(如TL431)、误差放大传输(如光电耦合器)和PWM集成电路内部集成的电压比较器(这些放大器的补偿设计最大程度的决定着开关电源系统稳定性,是设计的重点和难点)。2 稳定性分析 如图1所示,假如在节点A处引入干扰波。此方波所包含的能量分配成无限列奇次谐波分量。如果检测到真实系统对不断增大的谐波有响应,则可以看出增益和相移也随着频率的增加而改变。如果在某一频率下增益等于l且总的额外相移为180°(此相移加上原先设定的180°相移,总相移量为360°),那么将会有足够的能量返回到系统的输入端,且相位与原相位相同,那么干扰将维持下去,系统在此频率下振荡。如图2所示,通常情况下,控制放大器都会采用反馈补偿元器件Z2减少更高频率下的增益,使得开关电源在所有频率下都保持稳定。<<<<这里也有图>>>>波特图对应于小信号(理论上的小信号是无限小的)扰动时系统的响应;但是如果扰动很大,系统的响应可能不是由反馈的线性部分决定的,而可能是由非线性部分决定的,如运放的压摆率、增益带宽或者电路中可能达到的最小、最大占空比等。当这些因素影响系统响应时,原来的系统就会表现为非线性,而且传递函数的方法就不能继续使用了。因此,虽然小信号稳定是必须满足的,但还不足以保证电源的稳定工作。因此,在设计电源环路补偿时,不但要考虑信号电源系统的响应特性,还要处理好电源系统的大信号响应特性。电源系统对大信号响应特性的优劣可以通过负载跃变响应特性和输入电压跃变响应特性来判断,负载跃变响应特性和输入电压跃变响应特性存在很强的连带关系,负载跃变响应特性好,则输入电压跃变响应特性一定好。对开关电源环路稳定性判据的理论分析是很复杂的,这是因为传递函数随着负载条件的改变而改变。各种不同线绕功率元器件的有效电感值通常会随着负载电流而改变。此外,在考虑大信号瞬态的情况下,控制电路工作方式转变为非线性工作方式,此时仅用线性分析将无法得到完整的状态描述。下面详细介绍通过对负载跃变瞬态响应波形分析来判断开关电源环路稳定性。3 稳定性测试 测试条件: (1)无感电阻; (2)负载变化幅度为10%~100%; (3)负载开关频率可调(在获得同样理想响应波形的条件下,开关频率越高越好); (4)限定负载开关电流变化率为5A/μs或者2A/μs,没有声明负载电流大小和变化率的瞬态响应曲线图形无任何意义。 图3(a)为瞬变负载波形。 图3(b)为阻尼响应,控制环在瞬变边缘之后带有振荡。说明拥有这种响应电源的增益裕度和相位裕度都很小,且只能在某些特定条件下才能稳定。因此,要尽量避免这种类型的响应,补偿网络也应该调整在稍低的频率下滑离。<<<<这里也有图>>>>图3(c)为过阻尼响应,虽然比较稳定,但是瞬态恢复性能并非最好。滑离频率应该增大。 图3(d)为理想响应波形,接近最优情况,在绝大多数应用中,瞬态响应稳定且性能优良,增益裕度和相位裕度充足。 对于正向和负向尖峰,对称的波形是同样需要的,因此从它可以看出控制部分和电源部分在控制内有中心线,且在负载的增大和减少的情况下它们的摆动速率是相同的。 上面介绍了开关电源控制环路的两个稳定性判据,就是通过波特图判定小信号下开关电源控制环路的相位裕度和通过负载跃变瞬态响应波形判定大信号下开关电源控制环路的稳定性。下面介绍四种控制环路稳定性的设计方法。4.1 分析法 根据闭环系统的理论、数学及电路模型进行分析(计算机仿真)。实际上进行总体分析时,要求所有的参数要精确地等于规定值是不大可能的,尤其是电感值,在整个电流变化范围内,电感值不可能保持常数。同样,能改变系统线性工作的较大 瞬态响应也是很难预料到的。4.2 试探法 首先测量好脉宽调整器和功率变换器部分的传递特性,然后用“差分技术”来确定补偿控制放大器所必须具有的特性。 要想使实际的放大器完全满足最优特性是不大可能的,主要的目标是实现尽可能地接近。具体步骤如下: (1)找到开环曲线中极点过零处所对应的频率,在补偿网络中相应的频率周围处引入零点,那么在直到等于穿越频率的范围内相移小于315°(相位裕度至少为45°); (2)找到开环曲线中EsR零点对应的频率,在补偿网络中相应的频率周围处引入极点(否则这些零点将使增益特性变平,且不能按照期望下降); (3)如果低频增益太低,无法得到期望的直流校正那么可以引入一对零极点以提高低频下的增益。 大多数情况下,需要进行“微调”,最好的办法是采用瞬态负载测量法。4. 3 经验法 采用这种方法,是控制环路采用具有低频主导极点的过补偿控制放大器组成闭环来获得初始稳定性。然后采用瞬时脉冲负载方法来补偿网络进行动态优化,这种方法快而有效。其缺点是无法确定性能的最优。4.4 计算和测量结合方法 综合以上三点,主要取决于设计人员的技能和经验。 对于用上述方法设计完成的电源可以用下列方法测量闭环开关电源系统的波特图,测量步骤如下。 如图4所示为测量闭环电源系统波特图的增益和相位时采用的一个常用方法,此方法的特点是无需改动原线路。<<<<这里有图>>>>如图4所示,振荡器通过变压器T1引入一个很小的串联型电压V3至环路。流入控制放大器的有效交流电压由电压表V1测量,输出端的交流电压则由电压表V2测量(电容器C1和C2起隔直流电流的作用)。V2/V1(以分贝形式)为系统的电压增益。相位差就是整个环路的相移(在考虑到固定的180°负反馈反相位之后)。 输入信号电平必须足够小,以使全部控制环路都在其正常的线性范围内工作。4.5 测量设备 波特图的测量设备如下: (1)一个可调频率的振荡器V3,频率范围从10Hz(或更低)到50kHz(或更高); (2)两个窄带且可选择显示峰值或有效值的电压表V1和V2,其适用频率与振荡器频率范围相同; (3)专业的增益及相位测量仪表。 测试点的选择:理论上讲,可以在环路的任意点上进行伯特图测量,但是,为了获得好的测量度,信号注入节点的选择时必须兼顾两点:电源阻抗较低且下一级的输入阻抗较高。而且,必须有一个单一的信号通道。实践中,一般可把测量变压器接入到图4或图5控制环路中接入测量变压器的位置。 图4中T1的位置满足了上述的标准。电源阻抗(在信号注入的方向上)是电源部分的低输出阻抗,而下一级的输入阻抗是控制放大器A1的高输入阻抗。图5中信号注入的第二个位置也同样满足这一标准,它位于图5中低输出的放大器A1和高输入阻抗的脉宽调制器之间。<<<<<这里有图>>>>5 最佳拓扑结构 无论是国外还是国内DC/DC电源线路的设计,就隔离方式来讲都可归结为两种最基本的形式:前置启动+前置PWM控制和后置隔离启动+后置PWM控制。具体结构框图如图6和图7所示。<<<<这里有图>>>>国内外DC/DC电源设计大多采用前置启动+前置PWM控制方式,后级以开关形式将采样比较的误差信号通过光电耦合器件隔离传输到前级PWM电路进行脉冲宽度的调节,进而实现整体DC/DC电源稳压控制。如图6所示,前置启动+前置PWM控制方式框图所示,输出电压的稳定过程是:输出误差采样→比较→放大→光隔离传输→PWM电路误差比较→PWM调宽→输出稳压。Interpoint公司的MHF+系列、SMHF系列、MSA系列、MHV系列等等产品都属于此种控制方式。此类拓扑结构电源产品就环路稳定性补偿设计主要集中在如下各部分: (1)以集成电路U2为核心的采样、比较电路的环路补偿设计; (2)以前置PWM集成电路内部电压比较器为核心的环路补偿设计; (3)输出滤波器设计主要考虑输出电压/电流特性,在隔离式电源环路稳定性补偿设计时仅供参考; (4)其它部分如功率管驱动,主功率变压器等,在隔离式电源环路稳定性补偿设计时可以不必考虑。 而如图7所示,后置隔离启动+后置PWM控制方式框图,输出电压的稳定过程是:输出误差采样→PWM电路误差比较→PWM调宽→隔离驱动→输出稳压。此类拓扑结构电源产品就环路稳定性补偿设计主要集中在如下各部分: (1)以后置PWM集成电路内部电压比较器为核心的环路补偿设计; (2)输出滤波器设计主要考虑输出电压/电流特性,在隔离式电源环路稳定性补偿设计时仅供参考。 (3)其它部分如隔离启动、主功率变压器等,在隔离式电源环路稳定性补偿设计时可以不必考虑。 比较图6和图7控制方式和环路稳定性补偿设计可知,图7后置隔离启动+后置PWM控制方式的优点如下:(1)减少了后级采样、比较、放大和光电耦合,控制环路简捷; (2)只需对后置PWM集成电路内部电压比较器进行环路补偿设计,控制环路的响应频率较宽; (3)相位裕度大; (4)负载瞬态特性好; (5)输入瞬态特性好; (6)抗辐照能力强。实验证明光电耦合器件即使进行了抗辐照加固其抗辐照总剂量也不会大于2x104Rad(Si),不适合航天电源高可靠、长寿命的应用要求。6 结语 开关电源设计重点有两点:一是磁路设计,重点解决的是从输入到输出的电压及功率变换问题。二是稳定性设计,重点解决的是输出电压的品质问题。开关电源稳定性设计的好坏直接决定着开关电源启动特性、输入电压跃变响应特性、负载跃变响应特性、高低温稳定性、生产和调试难易度。将上述开关电源稳定性设计方法和结论应用到开关电源的研发工作中去,定能事半功倍。具体的参数自己改下.我就不改了.这里有全文的图片参考资料:
这个我做过,不错的。好了要加分
再加一千分我会给你更详细的
第1章基本拓扑1.1引言——线性调整器和Buck、Boost及反相开关型调整器1.2线性调整器——耗能型调整器1.2.1基本工作原理1.2.2线性调整器的缺点1.2.3串接晶体管的功率损耗1.2.4线性调整器的效率与输出电压的关系1.2.5串接PNP型晶体管的低功耗线性调整器1.3开关型调整器拓扑1.3.1Buck开关型调整器1.3.2Buck调整器的主要电流波形1.3.3Buck调整器的效率1.3.4Buck调整器的效率(考虑交流开关损耗)1.3.5理想开关频率的选择1.3.6设计例子1.3.7输出电容1.3.8有直流隔离调整输出的Buck调整器的电压调节1.4Boost开关调整器拓扑1.4.1基本原理1.4.2Boost调整器的不连续工作模式1.4.3Boost调整器的连续工作模式1.4.4不连续工作模式的Boost调整器的设计1.4.5Boost调整器与反激变换器的关系1.5反极性Boost调整器1.5.1基本工作原理1.5.2反极性调整器设计关系参考文献第2章推挽和正激变换器拓扑2.1引言2.2推挽拓扑2.2.1基本原理(主/辅输出结构)2.2.2辅输出的输入—负载调整率2.2.3辅输出电压偏差2.2.4主输出电感的最小电流限制2.2.5推挽拓扑中的磁通不平衡(偏磁饱和现象)2.2.6磁通不平衡的表现2.2.7磁通不平衡的测试2.2.8磁通不平衡的解决方法2.2.9功率变压器设计2.2.10初/次级绕组的峰值电流及有效值电流2.2.11开关管的电压应力及漏感尖峰2.2.12功率开关管损耗2.2.13推挽拓扑输出功率及输入电压的限制2.2.14输出滤波器的设计2.3正激变换器拓扑2.3.1基本工作原理2.3.2输出/输入电压与导通时间和匝数比的设计关系2.3.3辅输出电压2.3.4次级负载、续流二极管及电感的电流2.3.5初级电流、输出功率及输入电压之间的关系2.3.6功率开关管最大关断电压应力2.3.7实际输入电压和输出功率限制2.3.8功率和复位绕组匝数不相等的正激变换器2.3.9正激变换器电磁理论2.3.10功率变压器的设计2.3.11输出滤波器的设计2.4双端正激变换器拓扑2.4.1基本原理2.4.2设计原则及变压器的设计2.5交错正激变换器拓扑2.5.1基本工作原理、优缺点和输出功率限制2.5.2变压器的设计2.5.3输出滤波器的设计参考文献第3章半桥和全桥变换器拓扑3.1引言3.2半桥变换器拓扑3.2.1工作原理3.2.2半桥变换器磁设计3.2.3输出滤波器的设计3.2.4防止磁通不平衡的隔直电容的选择3.2.5半桥变换器的漏感问题3.2.6半桥变换器与双端正激变换器的比较3.2.7半桥变换器实际输出功率的限制3.3全桥变换器拓扑3.3.1基本工作原理3.3.2全桥变换器磁设计3.3.3输出滤波器的计算3.3.4变压器初级隔直电容的选择第4章反激变换器4.1引言4.2反激变换器基本工作原理4.3反激变换器工作模式4.4断续工作模式4.4.1输入电压、输出电压及导通时间与输出负载的关系4.4.2断续模式向连续模式的过渡4.4.3反激变换器连续模式的基本工作原理4.5设计原则和设计步骤4.5.1步骤1:确定初/次级匝数比4.5.2步骤2:保证磁心不饱和且电路始终工作于DCM模式4.5.3步骤3:根据最小输出电阻及直流输入电压调整初级电感4.5.4步骤4:计算开关管的最大电压应力和峰值电流4.5.5步骤5:计算初级电流有效值和导线尺寸4.5.6步骤6:次级电流有效值和导线尺寸4.6断续模式下的反激变换器的设计实例4.6.1反激拓扑的电磁原理4.6.2铁氧体磁心加气隙防止饱和4.6.3采用MPP磁心防止饱和4.6.4反激变换器的缺点4.7120V/220V交流输入反激变换器4.8连续模式反激变换器的设计原则4.8.1输出电压和导通时间的关系4.8.2输入、输出电流与功率的关系4.8.3最小直流输入时连续模式下的电流斜坡幅值4.8.4断续与连续模式反激变换器的设计实例4.9交错反激变换器4.9.1交错反激变换器次级电流的叠加4.10双端(两开关管)断续模式反激变换器4.10.1应用场合4.10.2基本工作原理4.10.3双端反激变换器的漏感效应参考文献第5章电流模式和电流馈电拓扑5.1简介5.1.1电流模式控制5.1.2电流馈电拓扑5.2电流模式控制5.2.1电流模式控制的优点5.3电流模式和电压模式控制电路的比较5.3.1电压模式控制电路5.3.2电流模式控制电路5.4电流模式优点详解5.4.1输入网压的调整5.4.2防止偏磁5.4.3在小信号分析中可省去输出电感简化反馈环设计5.4.4负载电流调整原理5.5电流模式的缺点和存在的问题5.5.1恒定峰值电流与平均输出电流的比例问题5.5.2对输出电感电流扰动的响应5.5.3电流模式的斜率补偿5.5.4用正斜率电压的斜率补偿5.5.5斜率补偿的实现5.6电压馈电和电流馈电拓扑的特性比较5.6.1引言及定义5.6.2电压馈电PWM全桥变换器的缺点5.6.3Buck电压馈电全桥拓扑基本工作原理5.6.4Buck电压馈电全桥拓扑的优点5.6.5Buck电压馈电PWM全桥电路的缺点5.6.6Buck电流馈电全桥拓扑——基本工作原理5.6.7反激电流馈电推挽拓扑(Weinberg电路)参考文献第6章其他拓扑6.1SCR谐振拓扑概述6.2SCR和ASCR的基本工作原理6.3利用谐振正弦阳极电流关断SCR的单端谐振逆变器拓扑6.4SCR谐振桥式拓扑概述6.4.1串联负载SCR半桥谐振变换器的基本工作原理6.4.2串联负载SCR半桥谐振变换器的设计计算6.4.3串联负载SCR半桥谐振变换器的设计实例6.4.4并联负载SCR半桥谐振变换器6.4.5单端SCR谐振变换器拓扑的设计6.5Cuk变换器拓扑概述6.5.1Cuk变换器的基本工作原理6.5.2输出/输入电压比与开关管Q1导通时间的关系6.5.3L1和L2的电流变化率6.5.4消除输入电流纹波的措施6.5.5Cuk变换器的隔离输出6.6小功率辅助电源拓扑概述6.6.1辅助电源的接地问题6.6.2可供选择的辅助电源6.6.3辅助电源的典型电路6.6.4Royer振荡器辅助电源的基本工作原理6.6.5作为辅助电源的简单反激变换器6.6.6作为辅助电源的Buck调节器(输出带直流隔离)参考文献第7章变压器及磁性元件设计7.1引言7.2变压器磁心材料与几何结构、峰值磁通密度的选择7.2.1几种常用铁氧体材料的磁心损耗与频率和磁通密度的关系7.2.2铁氧体磁心的几何尺寸7.2.3峰值磁通密度的选择7.3磁心最大输出功率、峰值磁通密度、磁心和骨架面积及线圈电流密度的选择7.3.1变换器拓扑输出功率公式的推导7.3.2推挽变换器输出功率公式的推导7.3.3半桥拓扑输出功率公式的推导7.3.4全桥拓扑输出功率公式的推导7.3.5以查表的方式确定磁心和工作频率7.4变压器温升的计算7.5变压器中的铜损7.5.1引言7.5.2集肤效应7.5.3集肤效应——定量分析7.5.4不同规格的线径在不同频率下的交/直流阻抗比7.5.5矩形波电流的集肤效应[14 ]7.5.6邻近效应7.6引言:利用面积乘积(AP)法进行电感及磁性元件设计7.6.1AP法的优点7.6.2电感器设计7.6.3信号级小功率电感7.6.4输入滤波电感7.6.5设计举例:60Hz共模输入滤波电感7.6.6差模输入滤波电感7.7磁学:扼流线圈简介——直流偏置电流很大的电感7.7.1公式、单位和图表7.7.2有磁化直流偏置的磁化曲线特征7.7.3磁场强度Hdc7.7.4增加扼流圈电感或者额定直流偏置量的方法7.7.5磁通密度ΔB7.7.6气隙的作用7.7.7温升7.8磁设计——扼流圈磁心材料简介7.8.1适用于低交流应力场合的扼流圈材料7.8.2适用于高交流应力场合的扼流圈材料7.8.3适用于中等范围的扼流圈材料7.8.4磁心材料饱和特性7.8.5磁心材料损耗特性7.8.6材料饱和特性7.8.7材料磁导率参数7.8.8材料成本7.8.9确定最佳的磁心尺寸和形状7.8.10磁心材料选择总结7.9磁学:扼流圈设计例子7.9.1扼流圈设计例子:加了气隙的铁氧体磁心7.9.2步骤一:确定20%纹波电流需要的电感量7.9.3步骤二:确定面积乘积(AP)7.9.4步骤三:计算最小匝数7.9.5步骤四:计算磁心气隙7.9.6步骤五:确定最佳线径7.9.7步骤六:计算最佳线径7.9.8步骤七:计算绕组电阻7.9.9步骤八:确定功率损耗7.9.10步骤九:预测温升——面积乘积法7.9.11步骤十:核查磁心损耗7.10磁学:用粉芯磁心材料设计扼流圈——简介7.10.1影响铁粉芯磁心材料选择的因素7.10.2粉芯材料的饱和特性7.10.3粉芯材料的损耗特性7.10.4铜耗——低交流应力时限制扼流圈设计的因素7.10.5磁心损耗——高交流应力时限制扼流圈设计的因素7.10.6中等交流应力时的扼流圈设计7.10.7磁心材料饱和特性7.10.8磁心的几何结构7.10.9材料成本7.11扼流圈设计例子:用环形Kool Mμ材料设计受铜耗限制的扼流圈7.11.1引言7.11.2根据所储存能量和面积乘积法选择磁心尺寸7.11.3受铜耗限制的扼流圈设计例子7.12用各种E形粉芯设计扼流圈的例子7.12.1引言7.12.2第一个例子:用#40E形铁粉芯材料设计扼流圈7.12.3第二个例子:用#8E形铁粉芯磁心设计扼流圈7.12.4第三个例子:用#60 E形Kool Mμ磁心设计扼流圈7.13变感扼流圈设计例子:用E形Kool Mμ磁芯设计受铜耗限制的扼流圈7.13.1变感扼流圈7.13.2变感扼流圈设计例子参考文献第8章双极型大功率晶体管的基极驱动电路8.1引言8.2双极型晶体管的理想基极驱动电路的主要目标8.2.1导通期间足够大的电流8.2.2导通瞬间基极过驱动峰值输入电流Ib18.2.3关断瞬间反向基极电流尖峰Ib28.2.4关断瞬间基射极间的-1~-5V反向电压尖峰8.2.5贝克(Baker)钳位电路(能同时满足高、低β值的晶体管工作要求的电路)8.2.6对驱动效率的改善8.3变压器耦合的贝克(Baker)钳位电路8.3.1Baker钳位的工作原理8.3.2使用变压器耦合的Baker钳位电路8.3.3结合集成变压器的Baker钳位8.3.4达林顿管(Darlington)内部的Baker钳位电路8.3.5比例基极驱动8.3.6其他类型的基极驱动电路参考文献第9章MOSFET和IGBT及其驱动电路9.1MOSFET概述9.1.1IGBT概述9.1.2电源工业的变化9.1.3对新电路设计的影响9.2MOSFET管的基本工作原理9.2.1MOSFET管的输出特性(Id-Vds)9.2.2MOSFET管的通态阻抗rds(on)9.2.3MOSFET管的输入阻抗米勒效应和栅极电流9.2.4计算栅极电压的上升和下降时间已获得理想的漏极电流上升和下降时间9.2.5MOSFET管栅极驱动电路9.2.6MOSFET管rds温度特性和安全工作区9.2.7MOSFET管栅极阈值电压及其温度特性9.2.8MOSFET管开关速度及其温度特性9.2.9MOSFET管的额定电流9.2.10MOSFET管并联工作9.2.11推挽拓扑中的MOSFET管9.2.12MOSFET管的最大栅极电压9.2.13MOSFET管源漏极间的体二极管9.3绝缘栅双极型晶体管(IGBT)概述9.3.1选择合适的IGBT9.3.2IGBT构造概述9.3.3IGBT工作特性9.3.4IGBT并联使用9.3.5技术参数和最大额定值9.3.6静态电学特性9.3.7动态特性9.3.8温度和机械特性参考文献第10章磁放大器后级调节器10.1引言10.2线性调整器和Buck后级调整器10.3磁放大器概述10.3.1用作快速开关的方形磁滞回线磁心10.3.2磁放大器中的关断和导通时间10.3.3磁放大器磁心复位及稳压10.3.4利用磁放大器关断辅输出10.3.5方形磁滞回线磁心特性和几种常用磁心10.3.6磁心损耗和温升的计算10.3.7设计实例——磁放大器后级整流10.3.8磁放大器的增益10.3.9推挽电路的磁放大器输出10.4磁放大器脉宽调制器和误差放大器10.4.1磁放大器脉宽调制及误差放大器电路参考文献第11章开关损耗分析与负载线整形缓冲电路设计11.1引言11.2无缓冲电路的晶体管的关断损耗11.3RCD关断缓冲电路11.4RCD缓冲电路中电容的选择11.5设计范例——RCD缓冲电路11.5.1接电源正极的RCD缓冲电路11.6无损缓冲电路11.7负载线整形(减少尖峰电压以防止晶体管二次击穿的缓冲器)11.8变压器无损缓冲电路参考文献第12章反馈环路的稳定12.1引言12.2系统振荡原理12.2.1电路稳定的增益准则12.2.2电路稳定的增益斜率准则12.2.3输出LC滤波器的增益特性(输出电容含/不含ESR)12.2.4脉宽调制器的增益12.2.5LC输出滤波器加调制器和采样网络的总增益12.3误差放大器幅频特性曲线的设计12.4误差放大器的传递函数、极点和零点12.5零点、极点频率引起的增益斜率变化规则12.6只含单零点和单极点的误差放大器传递函数的推导12.7根据2型误差放大器的零点、极点位置计算相移12.8考虑ESR时LC滤波器的相移12.9设计实例——含有2型误差放大器的正激变换器反馈环路的稳定性12.103型误差放大器的应用及其传递函数12.113型误差放大器零点、极点位置引起的相位滞后12.123型误差放大器的原理图、传递函数及零点、极点位置12.13设计实例——通过3型误差放大器反馈环路稳定正激变换器12.143型误差放大器元件的选择12.15反馈系统的条件稳定12.16不连续模式下反激变换器的稳定12.16.1从误差放大器端到输出电压节点的直流增益12.16.2不连续模式下反激变换器的误差放大器输出端到输出电压节点的传递函数12.17不连续模式下反激变换器误差放大器的传递函数12.18设计实例——不连续模式下反激变换器的稳定12.19跨导误差放大器参考文献第13章谐振变换器13.1引言13.2谐振变换器13.3谐振正激变换器13.3.1某谐振正激变换器的实测波形13.4谐振变换器的工作模式13.4.1不连续模式和连续模式;过谐振模式和欠谐振模式13.5连续模式下的谐振半桥变换器13.5.1并联谐振变换器(PRC)和串联谐振变换器(SRC)13.5.2连续模式下串联负载和并联负载谐振半桥变换器的交流等效电路和增益曲线13.5.3连续模式(CCM)下串联负载谐振半桥变换器的调节13.5.4连续模式下并联负载谐振半桥变换器的调节13.5.5连续模式下串联/并联谐振变换器13.5.6连续模式下零电压开关准谐振变换器13.6谐振电源小结参考文献第14章开关电源的典型波形14.1引言14.2正激变换器波形14.2.180%额定负载下测得的Vds和Id的波形14.2.240%额定负载下的Vdc和Ids的波形14.2.3导通/关断过程中漏源极间电压和漏极电流的重叠14.2.4漏极电流、漏源极间的电压和栅源极间的电压波形的相位关系14.2.5变压器的次级电压、输出电感电流的上升和下降时间与功率晶体管漏源电压波形14.2.6图14.1中的正激变换器的PWM驱动芯片(UC3525A)的关键点波形14.3推挽拓扑波形概述14.3.1最大、额定及最小电源电压下,负载电流最大时变压器中心抽头处的电流和开关管漏源极间的电压14.3.2两开关管Vds的波形及死区期间磁心的磁通密度14.3.3栅源极间电压、漏源极间电压和漏极电流的波形14.3.4漏极处的电流探头与变压器中心抽头处的电流探头各自测量得到的漏极电流波形的比较14.3.5输出纹波电压和整流器阴极电压14.3.6开关管导通时整流器阴极电压的振荡现象14.3.7开关管关断时下降的漏极电流和上升的漏源极间电压重叠产生的交流开关损耗14.3.820%最大输出功率下漏源极间电压和在变压器中心抽头处测得的漏极电流的波形14.3.920%最大输出功率下的漏极电流和漏极电压的波形14.3.1020%最大输出功率下两开关管漏源极间电压的波形14.3.11输出电感电流和整流器阴极电压的波形14.3.12输出电流大于最小输出电流时输出整流器阴极电压的波形14.3.13栅源极间电压和漏极电流波形的相位关系14.3.14整流二极管(变压器次级)的电流波形14.3.15由于励磁电流过大或直流输出电流较小造成的每半周期两次“导通”的现象14.3.16功率高于额定最大输出功率15%时的漏极电流和漏极电压的波形14.3.17开关管死区期间的漏极电压振荡14.4反激拓扑波形14.4.1引言14.4.290%满载情况下,输入电压为其最小值、最大值及额定值时漏极电流和漏源极间电压的波形14.4.3输出整流器输入端的电压和电流波形14.4.4开关管关断瞬间缓冲器电容的电流波形参考文献第15章功率因数及功率因数校正15.1功率因数15.2开关电源的功率因数校正15.3校正功率因数的基本电路15.3.1用于功率因数校正的连续和不连续工作模式Boost电路对比15.3.2连续工作模式下Boost变换器对输入网压变化的调整15.3.3连续工作模式下Boost变换器对负载电流变化的调整15.4用于功率因数校正的集成电路芯片15.4.1功率因数校正芯片Unitrode UC385415.4.2用UC3854实现输入电网电流的正弦化15.4.3使用UC3854保持输出电压恒定15.4.4采用UC3854芯片控制电源的输出功率15.4.5采用UC3854芯片的Boost电路开关频率的选择15.4.6Boost输出电感L1的选择15.4.7Boost输出电容的选择15.4.8UC3854的峰值电流限制15.4.9设计稳定的UC3854反馈环15.5Motorola MC34261功率因数校正芯片15.5.1Motorola MC34261的详细说明(图15.11)15.5.2MC34261的内部逻辑及结构(图15.11和图15.12)15.5.3开关频率和L1电感量的计算15.5.4MC34261电流检测电阻(R9)和乘法器输入电阻网络(R3和R7)的选择参考文献第16章电子镇流器——应用于荧光灯的高频电源16.1引言:电磁镇流器16.2荧光灯的物理特性和类型16.3电弧特性16.3.1在直流电压下的电弧特性16.3.2交流驱动的荧光灯16.3.3带电子镇流器荧光灯的伏安特性16.4电子镇流器电路16.5DC/AC逆变器的一般特性16.6DC/AC逆变器拓扑16.6.1电流馈电式推挽拓扑16.6.2电流馈电式推挽拓扑的电压和电流16.6.3电流馈电拓扑中的“电流馈电”电感的幅值16.6.4电流馈电电感中具体磁心的选择16.6.5电流馈电电感线圈的设计16.6.6电流馈电拓扑中的铁氧体磁心变压器16.6.7电流馈电拓扑的环形磁心变压器16.7电压馈电推挽拓扑16.8电流馈电并联谐振半桥拓扑16.9电压馈电串联谐振半桥拓扑16.10电子镇流器的封装参考文献第17章用于笔记本电脑和便携式电子设备的低输入电压变换器17.1引言17.2低输入电压芯片变换器供应商17.3凌特(Linear Technology)公司的Boost和Buck变换器17.3.1凌特LT1170 Boost变换器17.3.2LT1170 Boost变换器的主要波形17.3.3IC变换器的热效应17.3.4LT1170 Boost变换器的其他应用17.3.5LTC其他类型高功率Boost变换器17.3.6Boost变换器的元件选择17.3.7凌特Buck变换器系列17.3.8LT1074 Buck变换器的其他应用17.3.9LTC高效率、大功率Buck变换器17.3.10凌特大功率Buck变换器小结17.3.11凌特低功率变换器17.3.12反馈环的稳定性17.4Maxim公司的变换器芯片17.5由芯片产品构成的分布式电源系统