设需要冰乙酸为x克,则,x=1*0.5*60.05=30.025克。给出的条件中缺少一个冰乙酸的密度。如果按密度1.049计算,体积=30.025/1.049≈28.62毫升。如果密度按1计算,那体积就是30.025毫升。
纯醋酸 密度为1.05g/cm3 1mol/L 的乙酸 500ml需要的乙酸摩尔数是:
1mol*500ml/1000ml=0.5mol ;
需要的乙酸体积是:
(0.5mol*60.05g/mol)/(1.05g/ml)=30.025ml/1.05=28.5952ml。
乙酸的酸性
乙酸的羧基氢原子能够部分电离变为氢离子(质子)而释放出来,导致羧酸的酸性。乙酸在水溶液中是一元弱酸,酸度系数为4.8,pKa=4.75(25℃),浓度为1mol/L的醋酸溶液(类似于家用醋的浓度)的pH为2.4,也就是说仅有0.4%的醋酸分子是解离的。
乙酸能发生普通羧酸的典型化学反应,同时可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。
以上内容参考:百度百科-乙酸
乙酸的制备可以通过人工合成和细菌发酵两种方法。生物合成法,即利用细菌发酵,仅占整个世界产量的10%,但是仍然是生产乙酸,尤其是醋的最重要的方法,因为很多国家的食品安全法规规定食物中的醋必须是通过生物法制备,而发酵法又分为有氧发酵法和无氧发酵法。 在氧气充足的情况下,醋杆菌属细菌能够从含有酒精的食物中生产出乙酸。通常使用的是苹果酒或葡萄酒混合谷物、麦芽、米或马铃薯捣碎后发酵。由这些细菌发酵反应的化学方程式为:C₂H5OH + O₂ →CH₃COOH + H₂O具体做法是将醋菌属的细菌接种于稀释后的酒精溶液并保持一定温度,放置于一个通风的位置,在几个月内就能够经过发酵,最后生成醋。工业生产醋的方法通过提供充足的氧气使得反应过程加快,此方法已经被商业化生产采用,也被称为“快速方法”或“德国方法”,因为首次在德国1823年应用成功而因此得名。此方法中,发酵是在一个塞满了木屑或木炭的塔中进行。含有酒精的原料从塔的上方滴入,新鲜空气从下方自然进入或强制对流。强化的空气量使得此过程能够在几个星期内完成,大大缩短了制醋的时间。Otto Hromatka和Heinrich Ebner在1949年首次提通过液态的细菌培养基制备醋。在此方法中,酒精在持续的搅拌中发酵为乙酸,空气通过气泡的形式被充入溶液。通过这个方法,含乙酸15%的醋能够在两至三天制备完成。 部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:C6H12O6==3 CH3COOH此外,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。2 CO2 + 4 H2 →CH3COOH + 2 H2O2 CO + 2 H2 →CH3COOH梭菌属因为有能够反应糖类的能力,减少了成本,这意味着这些细菌有比醋菌属细菌的乙醇氧化法生产乙酸更有效率的潜力。然而,梭菌属细菌的耐酸性不及醋菌属细菌。耐酸性最大的梭菌属细菌也只能生产不到10%的乙酸,而有的醋酸菌能够生产20%的乙酸。使用醋酸属细菌制醋仍然比使用梭菌属细菌制备后浓缩更经济。所以,尽管梭菌属的细菌早在1940年就已经被发现,但它的工业应用范围较窄。除了上述生物法外,工业用乙酸多采用如下方法合成: 大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下CH3OH + CO →CH3COOH这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要多金属成分的催化剂(第二步中)⑴ CH₃OH + HI →CH₃I + H₂O⑵ CH₃I + CO →CH₃COI⑶ CH₃COI + H₂O →CH₃COOH + HI通过控制反应条件,也可以通过同样的反应生成乙酸酐。因为一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以来备受青睐。早在1925年,英国塞拉尼斯公司就开发出第一个甲基羰基化制乙酸的试点装置。然而,由于缺少能耐高压(200atm或更高)和耐腐蚀的容器,此方法的应用一直受到限制。1963年,德国巴斯夫化学公司用钴作催化剂,开发出第一个适合工业生产乙酸的工艺。1968年,铑催化剂的大大降低了反应难度。采用铑的羰基化合物和碘化物组成的催化剂体系,使甲醇和一氧化碳在水-乙酸的介质中在175℃和低于3兆帕的压力条件下反应,即可得到乙酸产品。因为催化剂的活性和选择性都比较高,所以反应的副产物很少。甲醇低压羰基化法制乙酸,具有原料价廉,操作条件缓和,乙酸产率高,产品质量好和工艺流程简单等优势,但反应介质有严重的腐蚀性,需要使用耐腐蚀的特殊材质。1970年,美国孟山都公司建造了采用此工艺的装置,因此铑催化甲基羰基化制乙酸逐渐成为支配性的孟山都法。90年代后期,英国石油成功的将Cativa催化法商业化,此方法采用钌催化剂,使用([Ir(CO)₂I₂]),它比孟山都法更加绿色也有更高的效率。 在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法,反应方程式如下:2CH₃CHO+O₂→2CH₃COOH乙醛可以通过氧化丁烷或轻石脑油制得,也可以通过乙烯水合后生成。 采用正丁烷为原料,以乙酸为溶剂,在170℃-180℃,5.5兆帕和乙酸钴催化剂存在下,用空气为氧化剂进行氧化。同时此方法也可采用液化石油气或轻质油为原料。此方法原料成本低,但工艺流程较长,腐蚀严重,乙酸收率不高,仅限于廉价异丁烷或液化石油气原料来源易得的地区采用。2 C₄H₁₀ + 5 O₂ →4 CH₃COOH + 2 H₂O此反应可以在能使丁烷保持液态的最高温度和压力下进行,副产物包括丁酮,乙酸乙酯,甲酸和丙酸。因为部分副产物也有经济价值,所以可以调整反应条件使得副产物更多的生成,不过分离乙酸和副产物使得反应的成本增加。在类似条件下,使用上述催化剂,乙醛能被空气中的氧气氧化生成乙酸:2 CH₃CHO + O₂ →2 CH₃COOH也能被 氢氧化铜悬浊液氧化:2Cu(OH)₂+CH₃CHO→CH₃COOH+Cu₂O↓+2H₂O使用新式催化剂,此反应能获得95%以上的乙酸产率。主要的副产物为乙酸乙酯,甲酸和甲醛。因为副产物的沸点都比乙酸低,所以很容易通过蒸馏除去。 塞拉尼斯公司也是世界上最大的醋酸生产商之一。1978年,赫斯特-塞拉尼斯公司(现塞拉尼斯公司)在美国得州克莱尔湖工业化投运了孟山都法醋酸装置。1980年,塞拉尼斯公司推出AOPlus法(酸优化法)技术专利,大大改进了孟山都工艺。AOPlus工艺通过加入高浓度无机碘(主要是碘化锂)以提高铑催化剂的稳定性,加入碘化锂和碘甲烷后,反应器中水浓度降低至4%~5%,但羰基化反应速率仍保持很高水平,从而极大地降低了装置的分离费用。催化剂组成的改变使反应器在低水浓度(4%~5%)下运行,提高了羰基化反应产率和分离提纯能力。 乙酸是大宗化工产品,是最重要的有机酸之一。主要可用于生产乙酸乙烯、乙酐、乙酸酯和乙酸纤维素等。聚乙酸乙烯酯可用来制备薄膜和粘合剂,也是合成纤维维纶的原料。乙酸纤维苏可制造人造丝和电影胶片。乙酸酯是优良的溶剂,广泛用于尤其工业。乙酸还可用来合成乙酐、丙二酸二乙酯、乙酰乙酸乙酯、卤代乙酸等,也可制造药物如阿司匹林、还可以用于生产乙酸盐等。在农药、医药和染料、照相药品制造、织物印染和橡胶工业中都有广泛应用。在食品工业中,乙酸用作酸化剂,增香剂和香料。制造食醋时,用水将乙酸稀释至4~5%浓度,添加各种调味剂而得食用醋。作为酸味剂,使用时适当稀释,可用于调饮料、罐头等,如制作蕃茄、芦笋、婴儿食品、沙丁鱼、鱿鱼等罐头,可制作软饮料,冷饮、糖果、焙烤食品、布丁类、胶媒糖、调味品等。乙酸具有防腐剂的作用。1.5%就有明显的抑菌作作用。在3%范围以内,可避免霉斑引起的肉色变绿变黑。
1、有氧发酵法 C₂H5OH + O₂ →CH₃COOH + H₂O2、无氧发酵法部分厌氧细菌,包括梭菌属的部分成员,能够将糖类直接转化为乙酸而不需要乙醇作为中间体。总体反应方程式如下:C6H12O6==3 CH3COOH此外,许多细菌能够从仅含单碳的化合物中生产乙酸,例如甲醇,一氧化碳或二氧化碳与氢气的混和物。2 CO2 + 4 H2 →CH3COOH + 2 H2O2 CO + 2 H2 →CH3COOH3、甲醇羰基化法大部分乙酸是通过甲基羰基化合成的。此反应中,甲醇和一氧化碳反应生成乙酸,方程式如下CH3OH + CO →CH3COOH这个过程是以碘代甲烷为中间体,分三个步骤完成,并且需要多金属成分的催化剂(第二步中)⑴ CH₃OH + HI →CH₃I + H₂O⑵ CH₃I + CO →CH₃COI⑶ CH₃COI + H₂O →CH₃COOH + HI4、乙醛氧化法在孟山都法商业生产之前,大部分的乙酸是由乙醛氧化制得。尽管不能与甲基羰基化相比,此法仍然是第二种工业制乙酸的方法,反应方程式如下:2CH₃CHO+O₂→2CH₃COOH5、乙烯氧化法由乙烯在催化剂(所用催化剂为氯化钯:PdCl₂、氯化铜:CuCl₂和乙酸锰:(CH₃COO)₂Mn)存在的条件下,与氧气发生反应生成。此反应可以看作先将乙烯氧化成乙醛,再通过乙醛氧化法制得。
乙酸乙酯的制取:先加乙醇,再加浓硫酸(加入碎瓷片以防暴沸),最后加乙酸, 然后加热(可以控制实验)1:酯化反应是一个可逆反应。为了提高酯的产量,必须尽量使反应向有利于生成酯的方向进行。一般是使反应物酸和醇中的一种过量。在工业生产中,究竟使哪种过量为好,一般视原料是否易得、价格是否便宜以及是否容易回收等具体情况而定。在实验室里一般采用乙醇过量的办法。乙醇的质量分数要高,如能用无水乙醇代替质量分数为95%的乙醇效果会更好。催化作用使用的浓硫酸量很少,一般只要使硫酸的质量达到乙醇质量的3%就可完成催化作用,但为了能除去反应中生成的水,应使浓硫酸的用量再稍多一些。 2:制备乙酸乙酯时反应温度不宜过高,要保持在60 ℃~70 ℃左右,温度过高时会产生乙醚和亚硫酸或乙烯等杂质。液体加热至沸腾后,应改用小火加热。事先可在试管中加入几片碎瓷片,以防止液体暴沸。 3导气管不要伸到Na2CO3溶液中去,防止由于加热不均匀,造成Na2CO3溶液倒吸入加热反应物的试管中。 3.1:浓硫酸既作催化剂,又做吸水剂,还能做脱水剂。 3.2:Na2CO3溶液的作用是: (1)饱和碳酸钠溶液的作用是冷凝酯蒸气,减小酯在水中的溶解度(利于分层),除出混合在乙酸乙酯中的乙酸,溶解混合在乙酸乙酯中的乙醇。 (2)Na2CO3能跟挥发出的乙酸反应,生成没有气味的乙酸钠,便于闻到乙酸乙酯的香味。 3.3:为有利于乙酸乙酯的生成,可采取以下措施: (1)制备乙酸乙酯时,反应温度不宜过高,保持在60 ℃~70 ℃。不能使液体沸腾。 (2)最好使用冰醋酸和无水乙醇。同时采用乙醇过量的办法。 (3)起催化作用的浓硫酸的用量很小,但为了除去反应中生成的水,浓硫酸的用量要稍多于乙醇的用量。 (4)使用无机盐Na2CO3溶液吸收挥发出的乙酸。 3.4:用Na2CO3不能用碱(NaOH)的原因。 虽然也能吸收乙酸和乙醇,但是碱会催化乙酸乙酯彻底水解,导致实验失败。向左转|向右转
将蜜糖浆加入乙醇发酵釜发酵,转化生成乙醇,含乙醇量约为9.5%。利用其它原料,如木薯,谷物等原料也是可行的。预澄清后,通过过滤薄膜将乙醇和水从含醇原料中分离出来。在乙醇水溶液中,加入葡萄糖和水,然后加入醋酸发酵罐,通入空气将乙醇氧化成醋酸,发酵醋酸液含醋酸大于7 %,经分离后加入萃取塔,用有机溶剂将醋酸从水相中分离出来。有机相蒸馏分离出醋酸和溶剂。最终产品醋酸符合通用的国际质量标准,纯度达到99.7 %。
连续氧化:醇-->醛--->酸2CH3CH2OH+O2----Cu、加热---->2CH3CHO+2H2O2CH3CHO+O2------催化剂、加热--->2CH3COOH
不清楚。,。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
我也继续,,哪位大哥好心人,,发一下,,,到我邮箱里面呀,,,,765768101@qq.com......小弟( ⊙ o ⊙ )啊!小弟感激不尽
可以朝同实验室的师兄、师姐询问参考,或是去中国知网(有中文文献)或者Web of Science(有英文文献)上寻找一些与你的课题有关的参考文献。
·日处理35000m3水质净化厂工艺设计 (字数:21427,页数:57) ·年产1500吨O,O—二乙氧基硫代磷酰氯车间设计 (字数:12242,页数:34) ·苯乙酸的车间工艺设计 (字数:15973,页数:42) ·6000t/a聚氯乙烯乙炔工段初步工艺设计 (字数:26743,页数:61) ·年产50万吨焦炉鼓冷工段工艺设计 (字数:33226,页数:49) ·年产1000吨山梨酸生产工艺设计 (字数:15110,页数:47) ·年产600吨山梨酸生产工艺设计 (字数:15911,页数:47) ·针对高酸原油选择适合的破乳剂 (字数:19936,页数:44) ·氢溴酸法合成 1-溴代正辛烷 (字数:16894,页数:46) ·固体碱MgOLa2O3制备及应用 (字数:19796,页数:46) ·长链烯烃羰基合成的热力学网络计算 (字数:16576,页数:47) ·PTA装置溶剂脱水塔软测量建模及灵敏度分析 (字数:19945,页数:40) ·聚丙烯高支化聚乙烯合金的制备与性能 (字数:19170,页数:36) ·水热合成法丙烷选择氧化催化剂的研究 (字数:10815,页数:30) ·用半连续反应器和RAFT技术合成可控梯度聚合物 (字数:11056,页数:31) ·溶胶凝胶制备纳米光催化剂及其应用的研究 (字数:15784,页数:33) ·含二催化中心手性氨基醇配体的合成及其纯化 (字数:12407,页数:27) ·高维数据降维与建模在过程中的应用 (字数:20751,页数:55) ·水性聚氨酯皮革涂饰剂的合成及耐溶剂性能研究 (字数:8865,页数:22 ) ·聚合物载药缓释微球药物释放动力学模拟 (字数:10465,页数:24) ·响应面法优化菜籽油甾醇提取 (字数:12991,页数:30) ·高维数据降维方法及化工应用 (字数:12219,页数:30) ·气相色谱质谱法检测食品中多氯联苯的研究 (字数:10726,页数:31) ·污泥制取活性炭 (字数:10615,页数:25) ·年产400吨亚氨基二苄甲酰氯的工艺设计 (字数:12729,页数:40) ·山药多糖提取工艺正交优化 (字数:11265,页数:23) ·化物吸收耦合生物还原去除烟气中氮氧化物:电子穿梭体强化Fe(III)EDTA还.. (字数:7180,页数:20 ) ·耐溶剂型水性聚氨酯的合成及其性能研究 (字数:9592,页数:25 ) ·亚硫酸化蓖麻油的制备及其皮革加脂性能研究 (字数:11946,页数:28) ·基于判别分析的化工过程故障诊断方法及应用示例 (字数:12586,页数:27) ·三氟乙酰乙酸乙酯的制备 (字数:12288,页数:26) ·微波催化酯化反应SVM模型的优化 (字数:10847,页数:24) ·有机硅阳离子乳液的制备及优化研究 (字数:10447,页数:20) ·固相微萃取吸附水中有机污染物的研究 (字数:8831,页数:22 ) ·羟乙膦酸钠合成工艺的研究 (字数:8890,页数:20 ) ·二步法合成聚羧酸盐高效减水剂的研究 (字数:11802,页数:25) ·西他列汀中间体的合成工艺研究 (字数:10460,页数:25) ·油酸聚乙二醇加脂剂的制备工艺研究 (字数:8328,页数:23 ) ·梳形混凝土超塑化剂的合成 (字数:12805,页数:24) ·活性蓝染料脱色研究 (字数:19508,页数:37) ·茯苓多糖的氨基和羧甲基化研究 (字数:10994,页数:23) ·二步法合成梳形混凝土超塑化剂的研究 (字数:12322,页数:24) ·含三催化中心手性配体的合成 (字数:11985,页数:24) ·婴幼儿谷基配方米粉酶法水解工艺研究 (字数:5401,页数:16 ) ·活性染料印花用增稠剂的研究 (字数:11097,页数:23)
没有的,所有的论文都是存档的,属于不外泄文件,除了学生本人愿意共享,几乎不可能有,你可以去找你的导师要模板,一般导师都要给的
乙酸乙酯的制备 一实验目的 1.学习从有机酸合成脂的一般原理及方法 2.巩固蒸馏,洗涤,干燥等基本操作 二.实验原理 乙醇过量 浓H2SO4除催化作用外,还能吸取反应生成的水,有利于脂化反应的进行. 因乙酸乙酯容易挥发和在水中溶解度较大等因素,精制过程中不可能避免的损失,产率一般不会超过70% 三.实验药品及理论产量 9.5ml无水C2H5OH;6mlCH3COOH; 2.5ml浓H2SO4 四.物理常数 M mp bp d S(100mlH2O) 乙酸 60 16.6 117.9 1.0492 任意混溶 乙醇 46 - 78.5 0.7893 - 乙酸乙酯 88 - 77.1 0.9003 8.5 乙酸乙酯,乙醇,水能形成多种恒沸混合物,其恒沸物的 组成及沸点如下: 沸点 乙酸乙酯 乙醇 水 70.2 82.6 8.4 9.0 70.4 91.9 - 8.1 71.8 69 31 - 五.实验装置 回流装置,蒸馏装置. 六.实验步骤流程图 七.实验步骤 1.取料 9.5ml C2H5OH + 6mlCH3COOH +2.5 mlH2SO4 2.回流 保持缓慢回流1/2 h 3.蒸馏 得粗品(含H2O,C2H5OH,CH3COOH,(C2H5)2O等杂质)(约一半体积) 4.洗涤 (1)中和 用饱和Na2CO3洗,除CH3COOH(至pH 6--7) (2)用饱和NaCl洗 除CO32- (3)用5ml饱和CaCl2洗 除C2H5OH (4)干燥 用无水硫酸镁,除H2O (5)蒸馏 精制产品,除乙酸,收集纯产品. 八.注意事项 1.回流温度要适宜,回流时间不宜太短. 2.用CaCl2溶液洗之前,一定要先用饱和NaCl溶液洗,否则会产生沉淀,给分液带来困难. 九.思考题 1.酯化反应有什么特点?在实验中如何创造条件促使酯化反应尽量向生成物方向进行? 2.本实验若采用醋酸过量的做法是否合适?为什么? 3.蒸出的粗乙酸乙酯中主要有哪些杂质?如何除去? 4.本实验能否用氢氧化钠代替饱和碳酸钠溶液洗
化学工程与工艺专业论文范文
在平平淡淡的日常中,大家都经常接触到论文吧,通过论文写作可以培养我们独立思考和创新的能力。还是对论文一筹莫展吗?以下是我精心整理的化学工程与工艺专业论文,希望能够帮助到大家。
一、化学综合实验教学的思考和改革。
1、实验方法绿色化。
结合我院的实际情况,我们对化学综合实验内容进行了合理的选择。首先,在溶剂、原料及产品的选择方面,尽量使用无毒或低毒试剂、少用或不用剧毒的有机物,如不选用苯、甲苯、二氯甲烷作为溶剂或原料进行实验,不选用高锰酸钾、重铬酸钾、氯酸盐作为氧化剂,不选用硝基苯或苯胺作为产品的实验等,并努力实现半微量或微量反应。
其次,在化学反应方面,积极探索无溶剂反应和超声波、微波催化等新型实验,如使用微波催化合成乙酸乙酯不仅可以降低乙酸、乙醇及催化剂浓硫酸的用量,缩短反应时间,而且收率可达90%以上。最后,在实验“三废”处理方面,主要实行“统一回收、循环使用、综合处理”的原则,最终实现“三废”无害排放。
2、实验内容现实化。
在化学综合实验过程中应增加与日常生活相关,以及对化学、社会发展的紧密联系的内容,以提高学生自我钻研、创新的意识和兴趣。膏霜类化妆品已经完全渗透人们的生活,其配制实验也是学生极为感兴趣的综合性实验之一。化妆品原料种类繁多,性能特点各异,在配方中所起的作用不同,一般而言:油脂和蜡及其衍生物为基础组分;为使形成稳定乳化体,需加乳化剂,如司盘类、吐温类;为保证外观和流变性,应加水溶性高分子聚合物;此外,还应根据实际情况加入保湿剂、营养添加剂、防腐剂、色素、香精及祛痘、美白等其他功能性原料。
完成一个具有优良性质的膏霜类化妆品的设计,需要掌握原料的性质特点、性质影响因素及相互影响;实验方案的设计、改良和优化;产品性质评价等多方面的内容。膏霜类化妆品设计方案与学生日常生活密切相关,学习兴趣浓,在实验过程中可以体味到科研实践的价值,很好地调动了学生的科研积极性。学生在实验完成后,积极主动地对实验进行总结和分析,对比不同方案优化实验方案,受到多方面的锻炼,实验思路、动手能力得到了有效的培养。
3、实验学科交叉化。
化学综合实验应综合体现有关知识:理论知识和实验知识;单元实验方法和实验操作技能;基础实验知识和科研创新能力训练;实验室实验能力和工业化生产能力训练等。化学合成属无机化学和有机化学的内容,是验证、巩固和加强理论知识,培养学生正确选择化合物的合成方法、条件优化以及一般的分离和鉴定方法,如重结晶、熔点测定等,应该注重合成方法的适用范围、实际条件、应用领域等。
化合物分析包括分析化学和仪器分析,培养学生的基本分析方法和原理、化合物结构解析的基本知识、分析方法的有关计算,应该注重分析方法的合理选择和初步具备对数据的评价能力。化学工程与工艺专业的学生除了掌握化合物合成和分析等自然科学领域的有关知识外,还应具备工程技术科学领域的有关知识和技能。在化学综合实验过程中渗入化工原理实验,回答过程和设备的问题,使学生熟悉工艺流程和操作设备,掌握单元操作的过程规律和典型设备,学会利用理论知识分析操作变量对过程的影响,调整操作参数以完成指定工艺要求,还应启发学生积极思考过程实验装置和操作规范所蕴含的科学依据,为工业化生产奠定基础。如在合成分析纯乙酸乙酯的实验中,使用的化工原料是什么?反应原理是什么?影响因素有哪些?工业上如何除去反应过程中生成的水?产品如何进行纯化,使用何种设备?设备的设计应该满足什么条件?产品纯度如何检测?在回答所有问题时,学生必需掌握合成、设备、分析等有关学科内容,实现学科交叉,对分析纯乙酸乙酯的从合成到工业化产品就有了非常深刻的认识。通过化学综合实验使学生初步具备查阅文献、选择合成方法、拟定实验方案、建立产品分析方法和基本工程操作能力,培养观察、分析和解决问题的能力,为研究性实验和创新性实验打下基础。为了满足实验需要,还应补充其他教学内容,如文献检索、波谱解析、试验设计方法等。
4、实验项目科研化。
化学综合实验除承接基础实验的提升外,还应为科研创新性实验的开展奠定基础,因此必然需要在综合实验中渗透科研的方法和技能。化学综合实验一般在第三学期,开设时间为两周,对一个实验项目不能进行特别深入的研究,因此选题就显得尤为重要,应该注意选题的难度控制和选题的意义。根据我院情况,题目来源主要有:教师科研项目中可分割的、难度适宜的试验部分;教研组开发的综合实验;学生提出可实行的实验项目等。科研实验对于本阶段的学生来说有一定难度,因此教师要从文献的查阅、实验方案的确定、实验条件优化、实验仪器操作、数据采集和处理分析等各个环节对学生进行指导,提高学生的动手能力,培养其实践和创新的能力,有利于提高其综合素质,培养其交流协作能力和团队精神。
二、结语。
化学综合实验教学的目的是夯实学生基本理论,培养学生掌握实验技能,提高学生动手能力,使学生具有较强的独立解决问题的能力和良好的专业素质,还要重视对学生实事求是的工作作风,严谨的科学态度和具有创新性的科学思维方法的培养。因此,我们必须不断精选和更新实验内容,重视和加强实验教学研究工作,探索新的实验方法,增加现代的实验技术和手段,努力提高学生的综合素质,以期为社会培养出合格的应用型人才。
一、精心选择教材和教学内容。
我校化学工程与工艺专业英语课程的参考教材是华东理工大学胡明、刘霞编写的《化学工程与工艺专业英语》。笔者选取该教材里具有代表性的五个单元作为基础部分,让学生掌握化学化工常见专业词汇,了解专业英语构词规律,掌握专业英语中常见句式和翻译技巧。同时,从ACS、ScienceDirect、RSC、JohnWiley等数据库出版的化学化工方向的专业杂志中,精选近三年的文献作为学生的参考教材,进行大胆的尝试。常见的化学化工英文文献有三种:全文、快报和综述。这三种文献的写作风格和各组成部分(题目、摘要、关键词、引言、各级标题、结果与讨论、结论、参考文献等)都有各自的特色。在第一次讲述一篇美国人发表在JournaloftheAmericanChemicalSociety上面的文献时,同学们都很好奇,课堂气氛顿时变得活跃起来。
很多学生反映,这是他们首次接触到英文文献。好奇之余,也暴露了一些问题。比如,在短短的三页文献上有太多不认识的英文专业词汇、较多的长难句和定语后置等,给阅读带来了极大的不便,论文的写作风格与教材上面的单元有较大差别,同学们一时间难以适应等。随着教学时数的增长,同学们逐渐适应了英文科技文献写作的风格和格式。比如,美国人写的科技文章(美式英语)和英国人写的科技文献(英式英语)的写作风格就有较大的差别。
二、激发学生学习的兴趣,营造宽松、愉悦的课堂氛围。
兴趣是最好的老师,是学业成功最重要的心理动力。因此,要让学生充分认识到学习专业英语的重要性和必要性。在第一次上课时,笔者就试图从以下几个方面培养学生学好专业英语课程的兴趣和紧迫感:
(1)让学生了解中国化学工业和世界化学工业的状况。中国化学工业在深化改革中取得重大的发展,但是与世界发达国家相比还有一定的差距,在技术方面还远远落后于发达国家,这就需要同学们发扬“师夷长技以制夷”的爱国主义精神。
(2)让学生了解中国化学工业日益成为世界化学工业发展中一支充满生机和活力的重要力量。许多跨国公司把中国作为投资和贸易合作的对象,如:巴斯夫、陶氏、联合利华、杜邦等。毕业生要想在这些公司谋得一席之地,就必须具有良好的语言能力和丰富的专业知识。
(3)让学生认识到专业英语在本科最后两年学习中的重要性。专业英语知识掌握的好坏,将直接影响着我校化工专业学生学习化工热力学(双语和英语)的效果。此外,本科生毕业论文(设计)的环节要求学生翻译一篇和毕业论文相关的英文文献(译文字数不少于3000字),撰写毕业论文的英文摘要,熟悉本专业的几种主要外文期刊。
最后,在研究生面试时,很多高校和研究所都要求翻译一篇或者几段英文文献。尝试将课堂交给学生,营造宽松、愉悦的教学氛围。不论什么课,如果只是老师一味地讲解,学生没有参与到其中,那么课堂气氛一定很沉闷。有些老师希望通过提问的方式促进师生之间的互动,但又发现,中国的学生,尤其是大学高年级的本科生,很少有学生在课堂上愿意主动回答问题。笔者采取的做法如下:明确地告诉学生,本课程的平时成绩占35%,每个同学至少在课堂上回答一次问题才能得到平时成绩,回答问题次数越多,平时成绩越高。这样一来,就使得本来很沉闷的教学课堂,气氛一下子变得非常活跃,甚至出现多个学生争抢回答一个问题的现象。
三、以公平为原则,改革单一的考核模式。
专业英语考试的重点应放在考察学生综合利用专业英语知识从英文资料中获取信息的能力。其关键在于学生能否理解英文文献资料。笔者认为,能够用自己的语言,将一篇文献中的工作描述出来,并且能让同学们听懂,就可以称之为“理解”。基于这种观点,笔者采取了全新的考核方式。在第一次课的时候,就将同学们分成不同的小组(5人一组),老师给出几十篇英文文献,要求每个小组从中选择一篇,并以之为基础,制作PPT。当本学期课程快结束时,由其中一个学生上台讲解他们制作的幻灯片(时间约6min)。
讲解完毕后,该小组的其他成员和其他小组的学生均可补充,并回答同学们和老师提出的问题。最后,根据学生在报告中所体现的对文献的理解程度和回答问题的情况给出考核成绩。这种模拟学术报告及问答的过程,不仅对学生专业英语的应用能力进行了考察,还锻炼了他们制作幻灯片和现场演讲的能力。通过这种考核方式,学生不仅学到了知识,而且也锻炼了人际交往和团队协作的能力,为以后的应聘求职奠定了良好的基础。
四、结语。
所谓“授人以鱼,不如授之以渔”,在有限的化工专业英语教学课时内,笔者采用这样的教学方法对我校化工专业连续三届学生进行教学,取得了良好的教学效果。学生不但掌握了基本的化学化工类专业词汇,还掌握了较为完整的专业英语知识、扩大了学生的适应面,为学生日后的应聘求职和研究生生涯奠定了一定的基础。
自1994年我校开设化学工程与工艺专业以来,十多年间,我校化工专业蓬勃发展,培养了千余名合格的毕业生。我校化工专业分两个专业方向培养,分别是煤化工专业方向和高分子化工方向,大三第二学期由同学们自愿选报专业方向。据统计,报高分子化工专业方向的学生不足11%,为了了解同学们的想法,我们对学生进行了一次问卷调查,调查结果显示,同学们选择专业方向的主要依据是考虑到就业的便利。近年来我国,尤其是西部,陕西、山西、宁夏等地煤化工行业较热,结合我院生学来源,超过一半的学生在考虑就业时倾向回原籍工作,于是参照往届同学的经验,大多选择了煤化工方向,无暇顾及到自身的兴趣。
不少同学对这两个方向都不甚了解,对我国化工行业了解甚少,选报哪个方向都无所谓。还有相当一部分学生反映对专业的培养计划不了解,培养计划在实施过程中课程的设置和安排不尽合理,课程安排有前松后紧的现象。这些不解和困惑都在很大程度上影响到同学们的学习热情,从侧面反映出我校化学工程与工艺专业建设上亟待解决一些问题。
基于以上分析,我认为我校要培养满足市场需求的化工专业人才应该从下面几点来开展工作。
1、调整培养计划,进行培养规范的整体设计
专业规范对提高高等教育质量具有重要的现实意义,它是高等学校以专业人才培养模式改革研究为基础,在改革实践过程中对有关专业的课程体系、知识体系、实践教学体系和相应的参考指标进行整体设计,专业规范对专业人才设定培养规格,拟定培养目标。在高等院校进行教育教学改革过程中,对人才培养规范进行整体设计,是开展专业建设与深化改革的重要入手点[1]。
应对当前的就业形势,制定化工专业的专业规范非常有必要。自1999年以来,高校外延发展迅速,新增高校、新增专业多了,人才培养难度更大,要求更高。另外,高等教育大众化阶段教育质量呈多元化,亟需制定专业规范,一般高校工科专业人才培养规格的定位决定了人才培养模式的基本框架。
2、加速进行我校化学工程与工艺专业的认证工作
化学工业是国民经济的支柱性行业,为了让高校能更好的为社会服务,高等院校为化工行业提供主要人力资源,教育部自2006年启动了化工专业认证试点工作,目前已有6个专业点进行了试点工作[2]。化工行业对人才的评价标准和要求,主要体现在以下几个方面:
(1)有良好的职业道德,了解本行业的相关法律法规,体现出较好的人文素养。
(2)数学、自然科学基础较好,工程基础知识扎实,掌握一定的经济管理知识;掌握化学工程、化学工艺学科的基本理论、基本知识,了解本专业的前沿发展现状和趋势;具备运用现代信息技术获取专业信息的能力。
(3)具备化学与化工实验技能,有工程实践经历,具备计算机应用能力,接受过科学研究与工程设计方法的基本训练,能够运用所学知识和技术手段分析并解决工程问题。
(4)具有较强的组织管理能力,表达流利,人际交往能力突出,有较强的团队协作精神。
(5)具有终身学习能力和国际视野。与以上标准相对照,我校在培养化工人才方面还存在着明显的缺陷和不足。还有很多工作要做。
结合行业要求分析,我校化工专业目前存在的问题主要有:
(1)教师队伍中普遍经历单一,缺乏工程师经历。
(2)实践教学环节不完善,学生工程实践能力较弱,创新创业能力不足,学校与工业界联系不够紧密。
(3)缺乏对学生的团队精神的系统训练。
(4)毕业生的调查与跟踪机制不够完善等。除此之外,缺乏科学的学生考评机制,缺乏毕业生跟踪与反馈体系。因此要针对这些问题,以专业认证为契机,有目的的开展工作。
3、灵活设定培养方向
专业方向的设置是高校人才培养的基础,开设什么样的专业方向,关系到培养什么样的专业人才,培养出来的人才是否符合社会的需求,这个问题关系到一个专业的前途命运。在充分利用我校资源的同时,在专业方向设置上体现差异,强化特色,做到以质量求生存,以特色求发展。在开设专业方向的问题上,要避免与周围同区域、同等水平的院校趋同,以减少资源的浪费,避免在人才培养上出现重复和过度竞争,充分体现差异[3]。
4、优化各级结构,提高培养质量
当前,大学生毕业后难就业已经成为社会主要关注的问题,也是每所高校所面临的最为严峻的挑战。要解决这个问题除了国家宏观上的'一些制度和政策的支持外,高校还应该根据市场所需人才,有针对性的提高培养质量。提高培养质量,既要从宏观上把握高等教育的结构,明确学校、院系和学科的定位,满足地方经济社会的发展对高等教育的要求,另外,要从微观上、从学校本身把握高等教育的内部结构,理顺专业结构、学科结构与理论结构,使我们培养的人才和社会需求相一致[4]。
我国的高等教育逐渐从精英教育转向大众化教育阶段,大学之间的功能也由以前的趋同转向为逐渐分化,这就使得学校的专业定位显得尤为重要。我校化工专业应根据主要生源地的用人需求,将培养的方向和层次准确定位,针对培养什么样规格的人才,满足哪些领域的社会需求等这些问题开展广泛的研究,谨慎决定。此外,认真处理好专业建设中适应与对口的关系,在一般的学校,学生是直接面对市场就业的,应该将专业设置得窄一点,对口性更强一点[4]。
通过以上论述可以看出,要想扩大我校化工专业在西部地区的办学影响力,还需要我们多了解学生的思想动态,提升认识水平,根据市场的需求,提高培养质量,能够很好的在地方经济建设中发挥主要作用,扎扎实实做好专业建设工作。相信在不远的将来,我校化学工程与工艺专业一定会成为西部最具影响力的王牌专业,为我国化工行业培养出更优秀的人才。
1、化学工程与工艺专业的煤化工特色专业建设原则
1.1以市场为导向
随着能源需求量不断增大,我国对开发能源的技术人才也有了更高的要求。我国教育部在1996年将“煤化工”等专业列为化学工程与工艺专业,促进我国煤化这一特色专业发展。加强煤化工特色建设,可以扩大煤化工产业,推广清洁能源,这也是市场经济的必然需求。煤化工特色建设,要以市场为导向,将学生的就业与市场相结合,从而保证学生在面对社会选择的时候,有足够的自信,具备扎实的专业基础和技术水平,提高就业机会。
1.2发扬创新精神
只有发扬创新精神,才能够彰显特色。特色专业是经过改革后被确定的内容,它本身就具有探索和创新,但煤化工专业发展中,以往的教学经验仍然会对创新有所阻碍,因此在建设有特色的煤化工专业时,要用发展的眼光看问题,创新教育观念和人才培养机制,促进煤化工特色建设。
1.3稳定发展原则
化学工程与工艺专业的煤化工特色建设,始终坚持煤化工人才培养方向,也有着自身的特色,毕业后学生主要面对钢铁冶金系统,能源方向,因此在建设特色专业是,也要立足根本,找准发现,坚持稳定发展的原则。煤化工建设要以市场为导向,在发展中会面临内部和外部的变化,因此稳定发展,才能适应不确定的变化,适应社会和市场的要求。
2、建设煤化工特色的对策
2.1创新教育观念
专业建设是高校办学理念的表现形式,其特色建设的发展方向、过程等都离不开一定的理念指导[1]。煤化工特色专业的发展与市场分不开,煤化工专业与能源安全与供应、钢铁冶金行业发展与节能减排实现有着很大的关系。随着能源问题出现,可持续发展的理念不断摄入,煤化工专业发展也要将观念进行创新,以便适应社会的要求。可以通过实现教育活动,将教育观点和教学理念进行谈论和创新,在实际工作中,如果出现了教学理念偏差,要及时用正确的思想观念给予指导。创新教育观念是培养煤化工人才的必然要求,通过定期考核,加强教育工作者的思想意识,将这种观念融入教育,这也是促进我国煤化工产业的重要措施。
2.2创新课程体系
煤化工特色专业要突出特色,因此要有明确的教学目标,以便在基础教学中突出特色,从而培养有特色的专业性人才。化学工程与工艺专业的课程体系要突出煤化工特色,根据高校制定人才培养目标,科学设定课程体系,使本专业的教学能够有序进行。课程体系是特色专业实施的基础和关键,因此要保证其合理性、科学性和可持续发展。煤化工专业是一门传统的学科,但特色建设赋予了它新的生命力,因此这门学科的课程体系要与国内外最新的教育理念相吻合,从而能够在以往的经验中,发挥教学成果的理念,整合课程资源,促进特色专业发展。煤化工特色建设课程体系要反应时代的特征,但也要与学校的特色向结合,建设出使用社会发展的化学工程与工艺专业的课程体系。煤化工课程体系要突出特色,例如开展“焦化特色课程”、“清洁能源课程”等,充分发挥本专业的特色。将基础必修课和辅修课程想结合,促进煤化工特色专业发展。
2.3理论与实践相结合
化学工程与艺术是实践性较强的专业,在建设特色煤化工专业时,要将理论与实践向结合,培养学生的综合能力[2]。教师在教学时,可以结合计算机开展辅助教学,将最前沿的煤化工专业知识传授给学生,让学生形成较强的专业意识。高校还应加强与企业的合作,为学生提供更多的实践机会,让学生参与到企业生产实践中,培养学生的动手能力,在实践中,学生能够更好地解决问题。将理论与实践向结合,才能够促进煤化工特色专业建设,学生在实践中,专业能力得到锻炼,整体的素质也会不断提高。
2.4建立健全质量保障体系
完善的质量体系建设是有特色的化学工程与工艺专业的保障,在科学的监督机制中,促进煤化工专业发展。高校要保证特色专业有效进行,就要对其投入更多的科研、资金及教学条件,这些物质保障是实施特色专业的前提。化学工程与工艺专业的煤化工特色建设中,会面临很多问题,如课程实施不佳,教师专业能力不强等,这些因素都会阻碍课程目标的实现。做好特色专业,离不开完善的质量保障体系。为了保证教学质量,因此要制定质量责任制,包括学生评价、教学反馈、教务系统质量检测等,确保教学目标的实现。
3、结语
化学工程与工艺专业的煤化工是高校的特色专业,因此要坚持以市场为导向和创新性原则,在稳定发展的基础上,促进本专业特色发展。煤化工特色建设要创新教育观念,将理论与实践相结合,健全教学质量监督机制,突出特色,促进教学目标的实现,为社会培养更多的煤化工专业人才。
“格氏试剂、氢氰酸、羟醛缩合、环氧乙烷、co2与格氏试剂、等等 减少的有 霍夫曼降解、卤仿反应等等”已经够详细的了,这里已经没有比你高的高手了,我教过两年有机,差不多了。
我想你知道这几个应该就够了,不过,本人在课堂小论文中写了一篇稿件,可能对你有点用处。有机化学中常见的人名反应作者简介:姓名:童星辉班级:湖南科技学院 生命科学与化学工程系 化学0601班学号:200607001055内容简介:人名反应在化学中特别是有机化学中是很常见的,我们为了纪念一些在化学史上作出了贡献的科学家,我们将其所发现的反应就按其名字命名,所以,就出现了人名反应一词。人名反应非常重要,同时又特别很难掌握,本人将自己所看到的很常见的15个人名反应归纳并总结了一下。不对之处尽请大家赐教,本人不胜感激。参考文献: 高等教育出版社出版的《有机化学 第四版》特别鸣谢 陈娟同志的友情支持。关键词: 有机化学 人名反应正文:一、列佛尔曼斯基反应 a-卤代酸酯在锌粉的作用下与醛、酮反应,产物水解后即得到b-羧基酸酯。这个反应称为列佛尔曼斯基反应,是制备b-羧基酸酯的最好方法,b-羧基酸酯水解就可以得到b-羧基酸。二、克莱森缩合 乙酸乙酯在乙醇钠或金属钠的作用下,发生酯缩合反应,生成乙酰乙酸乙酯。 三、狄克曼反应 酯缩合反应也可以在分子内进行,形成环酯,这种环化酯缩合反应又称为狄克曼反应,是合成五元、六元碳环的一个重要方法。 注:并不是所有的二元酸酯都能发生环缩合,一般局限于生成稳定的五碳环和六碳环。产物在酸性溶液中水解,最初生成b-湍基酸,由于b-湍基酸不稳定,容易脱羧,最后得到的是环酮。四、霍夫曼降级反应 酰胺与次氯酸钠或次溴酸钠的碱性溶液作用时候,脱去湍基生成胺,这是霍夫曼所发现制胺的一个方法,在反应中减少了一个碳原子,所以称霍夫曼降级反应。 五、科普消除反应 胺极易氧化,胺的氧化一般分为“加入氧”、“脱去氢”,具有b-氢的氧化胺,加热时发生消除反应,产生烯烃。 这一反应称为科普消除反应,由于反应过程形成平面的五元环,氧化胺的氧作为进攻b-氢的碱,所以是同侧消除,是立体专一性的顺式消除。六、加布里埃尔合成法 加布里埃尔合成法是制造纯净的一级胺的好方法。反应的第一步是将邻苯二甲酰亚胺在碱性溶液中与卤代烷发生SN2反应,生成N-烷基邻苯二甲酰亚胺,第二步是N-烷基邻苯二甲酰亚胺水解得到一级胺。 七、瓦格类尔—麦尔外因重排 瓦格类尔—麦尔外因重排最早是在双环浈类的反应中发现的,例如,a-蒎烯与氯化氢发生反应生成2—氯茨。 反应中虽然是叔碳正离子重排为仲碳正离子,但是由四元环扩张到五元环后,张力减少了,所以发生了重排。瓦格类尔—麦尔外因重排是典型的碳正离子重排反应,其范围很广,最常见的是醇在酸性溶液条件下发生的重排。同时,贝克曼重排、霍夫曼重排以及贝耶尔—维林格重排等都是重排反应的重点,都应该留意,并归纳总结。八、麦尔外因—庞多夫—维尔莱(Meerwein-Ponndorf-Verley)还原法 在异丙醇铝和异丙醇存在下,使醛或酮还原成醇: 它的逆反应一般称为奥本奥尔(Oppenauer)氧化反应九、吉日聂耳-沃尔夫-黄鸣龙法 醛、酮和肼反应生成的腙在氢氧化钾或乙醇钠作用下能分解释放出氮而成烃:实例 十、克莱门森法 醛或酮和锌汞齐、浓盐酸一起加热,羰基即被还原为亚甲基,称为克莱门森法。例如:十一、贝耶尔-维林格反应 酮被过氧酸氧化生成酯,其碳架不受影响,因而有合成价值。例如: 十二、康尼查罗反应 没有a-氢的醛与强碱共热时,则其一个分子作为氢的受体,另一分子作为氢的供体,前者被还原,后者被氧化,发生了分子间的氧化还原反应而生成等物质的量的酸和醇。例如: 傅-克酰化法 其通式是: 十三、维路斯玫尔反应 通常是指应用N,N-二取代甲酰胺和 使芳环甲酰化的反应。比如下例反应: 十四、狄尔斯—阿尔德反应 狄尔斯—阿尔德反应是最重要的一类环加成反应,是制备六元环的一种方法,值得注意的是,这个反应在加热条件下进行,但在光照条件下,这个反应是不能发生的。 十五、齐齐巴宾反应 吡啶环是由于电子云密度低,易进行亲核取代,一般发生在吡啶的a—位。将吡啶与氨基钠在N,N—二甲基苯胺溶液中加热到110C,吡啶环上的a—位的氢负离子被亲核性极强的氨基负离子取代,同时有氢气放出,称为齐齐巴宾反应。
基本信息:中文名称三氟乙酰乙酸乙酯中文别名4,4,4-三氟乙酰乙酸乙酯;4,4,4-三氟乙酰;英文名称Ethyl4,4,4-trifluoroacetoacetate英文别名ETFAA;Ethyl3-oxo-4,4,4-trifluorobutyrate;Ethyl4,4,4-trifluoro-3-oxobutanoate;ethyl3-trifluoromethyl-3-oxopropanoate;Ethyl4,4,-Trifluoroacetoacetate;ETHYLTRIFLUOROACETOACETATE;4,4,4-trifluoro-3-oxobutanoicacidethylester;ethyl3-trifluoromethyl-3-oxopropionate;ethyl4,4,4-trifluoro-3-ketobutyrate;Ethyl4,4,4-trifluor;ethyl4,4,4-trifluoro-3-oxobutanoate;ethyl4,4,4-trifluoro-acetoacetate;4,4,4-TrifluoroacetoaceticAcidEthylEster;ETHYL4,4,4-TRIFLUOROACETOACTATE;CAS号372-31-6合成路线:1.通过三氟乙酸乙酯和乙酸乙酯合成三氟乙酰乙酸乙酯,收率约85%;2.通过膦酰乙酸三乙酯和三甲基三氟乙酸合成三氟乙酰乙酸乙酯,收率约53%;更多路线和参考文献可参考
楼主大大是什么学习阶段的呢?