高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域,另外,(材料科学)里面的资料,让你找找自己的灵感
参考下(物理化学进展)、(自然科学)等等这类的资料
真的不会写的话,我提供资料,论文题目应该是对研究对象的精确具体的描述,这种描述一般要在一定程度上体现研究结论,因此,我们的论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。
化学是研究物质的性质、组成、结构、变化和应用的科学。自有人类以来就开始了对化学的探索,因为有了人类就有了对化学的需求。它与我们的生活息息相关,在我们的日常生活中无处不在。我国著名滑雪前辈杨石先生说:“农、轻、重、吃、穿、用,样样都离不开化学。”没有化学创造的物质文明,就没有人类的现代生活。人是社会的人,社会是人的社会,因此可以从人与化学的关系去探讨化学对社会发展的重要性。化学作为一门庞大的知识体系,能用来解决人类面临的问题,满足社的需要,对人类社会做出贡献。它的成就已成为社会文明的标志,深刻的影响着人类社会的发展。社会的发展离不开人类的发展,人类的发展离不开人的生存,而人的生存离不开化学。社会的一切发展,生命是基础。一切生命的起源离不开化学变化,一切生命的延续同样离不开化学变化。恩格斯说:“生命的起源必然是通过化学的途径实现的。”没有化学的变化,就没有地球上的生命,也就更不会有人类。是化学创造了人类,创造了美丽的地球。就化学对人类的日常生活的影响来说,化学在我们的日常生活中无处不在。首先,我们的衣、食、住、行无一不用到化学制品。“民以食为天”,我们吃的粮食离不开化肥、农药这些化学制品。1909年哈伯发明的合成氨技术使世界粮食翻倍,如果没有他发明的这个化学技术,那么世界上就有一半的人得不到温饱,那么世界上就多了一半的人的生命面临危机了。加工制造色香味俱佳的食品就更离不开各种食品添加剂,如甜味剂、防腐剂、香料、味精、色素等等,多是用化学合成方法或化学分离方法制成的。如果没有合成纤维的化学技术,那世界上大多数人就要挨冻了,因为有限的天然纤维根本就不够用。我国1995年的化学纤维产量为330万吨,其中90%是合成纤维。 何况纯棉纯毛等天然纤维也是棉花、羊毛经化学处理制成的。再有就是合成橡胶,少了合成橡胶,世界上60亿人口又有多少亿人要穿草鞋过冬啊?合成染料更使世界多了一道多彩缤纷的亮丽风景线。所谓“丰衣足食”,是生命得以延续的保证。没有了化学,就没了保证。再看我们住的房子,石灰、水泥、钢筋,窗户上的铝合金、玻璃、塑料等材料,哪件不是化学制品?离得了铝合金的木制的窗户,也离不开化学制品油漆;就算不用玻璃吧,像一些贫穷人家用的尼龙布甚或用的报纸,不是化学制品又是什么?还有我们的日常生活用品,如牙刷、牙膏、香皂、化妆品、清洁用品等等无一不跟化学沾边,都是化学制剂。出了门,我们踏在水泥铺成的街道上,看到的是钢筋水泥做的高楼大厦,用以代步的是各种塑料、橡胶、玻璃以及各种合金做的交通工具。这些交通工具还离不开汽油、柴油,各种汽油添加剂、防冻剂和各种润滑油。如此种种,都是化学制品。现代人类根本无法离开人造化学品,我们每天24小时都被人造化学品所包围着。其次,我们的健康长寿也与化学息息相关。体内某些化学元素平衡失调时,就会导致某些危害人类健康的疾病。1953年,美国化学家Miller S L 实验模拟原始地球上大气的成分,用H,CH4,NH3和水蒸气等,通过加热和火花放电,合成了氨基酸。1965年和1981年,我国在世界上首次合成了牛胰岛素和酵母丙氨酸转移核糖核酸。蛋白质和核糖的形成是无生命到有生命的转折点。自此我们人类对自身的了解有了新的突破,为我们人类对生命和健康的研究打下了基础。正是有了合成各种抗生素和大量新药物的技术,人类才能控制传染病,才能缓解心脑血管病,使人类的寿命延长25年。人类的健康成长离不开各种营养品和药品。如果没有这些化学药品,世上不知有多少人要受病魔的折磨,不知有多少人会被病魔夺去生命。生命体中支撑着生命的是无数的有机化合物,重要的有糖类、蛋白质、氨基酸、肽键、酶、核酸等。糖是自然界存在的一大类具有生物功能的有机化合物。它主要是由绿色植物通过光合作用形成的。它由C、H、O所组成,化学式为Cn(H2O)n,又叫碳水化合物。糖类包括单糖、多糖、淀粉、糖原、纤维素。生物界对能量的需要和利用均离不开糖类。糖类物质的主要生物功能就是通过生物氧化而提供能量,以满足生命活动的能量需要。生物界对太阳能的利用归根到底始于植物的光合作用和CO2的固定,与这两种现象密切相关的都是糖类的合成。光合作用是自然界将光能转化变为化学能的主要途径。糖类不仅是生物体的能量来源,而且在生物体内发挥其它作用,它对各类生物体的结构也起着支持和保护的作用,有时还起到解毒的作用等。总之,糖类是生命体维持生命所不可或缺的。蛋白质亦然。1839年德国化学家Mnlder G T给它起名叫做蛋白质(Protein),意思是“头等重要”,可见其重要性。所有蛋白质都含C,N,O,H元素,大多含S或P,有的还含其它元素。蛋白质是氨基酸聚合物,水解时产生的单体叫氨基酸。蛋白质种类繁多,功能各异。它的广泛而多变的功能决定了它们在生理上的重要性。有的蛋白质起运输作用,有
你这个问题太大了。氨的合成,首先必须制备合格的氢、氮原料气。氮气可直接取自空气或将空气液化分离而得;或使空气通过燃料层燃烧,将生成的CO和CO2除去而制得。氢气一般常用含有烃类的各种燃料,如焦炭、无烟煤、天然气、重油等为原料与水蒸气作用的方法来制取。合成氨的生成过程基本上可分为 3 个步骤:原料气的制备;原料气的净化;氨的合成。利用固体燃料(焦炭或煤)的燃烧将水蒸气分解,将空气中的氧与焦炭或煤反应而制得氮气、氢气、一氧化碳、二氧化碳等的气体混合物。气化过程中的主要反应有: C + H2O(g) = CO +H2 ΔH = 131.39 kJ/mol C + 2H2O(g) = CO2 +2H2 ΔH = 90.20 kJ/mol将净化后的氢、氮混合气经压缩后,在铁催化剂与高温条件下合成氨,反应式为 3H2 + 2N 2 = NH3尿素合成过程包括:在过量氨存在下,用氨和二氧化碳作初始原料合成尿素;由此生成的尿素合成液,在高压下,使用二氧化碳或氨作汽提剂,进行汽提,并且在比上述高压低的压力下,使得到的尿素合成液至少经一步分解和分离未转化物的操作,目的是为了分离过量氨和由氨基甲酸铵分解产生的氨和二氧化碳,该氨基甲酸铵没有从合成液中转化成尿素;以上生成的氨和二氧化碳气体混合物用溶剂吸水或冷凝;然后将所得到的溶液或冷凝液再循环用于尿素合成工序,
在200MPa的高压和500℃的高温和催化剂作用下,N2+3H2====2NH3,经过压缩冷凝后,将余料在送回反应器进行反应,合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。 合成氨主要用作化肥、冷冻剂和化工原料。生产方法 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途 氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。 贮运 商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运合成氨是以碳氨为主要原料, 我司可承包的 合成氨生成成套项目, 规模有 4×104 吨/年, 6×104 吨/年, 10×104 吨/年, 30×104 吨/年, 其产品质量符合中国国家标准. 1. 工艺路线:以无烟煤为原料生成合成氨常见过程是:造气 -> 半水煤气脱硫 -> 压缩机1,2工段 -> 变换 -> 变换气脱硫 ->压缩机3段 -> 脱硫 ->压缩机4,5工段 -> 铜洗 -> 压缩机6段 -> 氨合成 -> 产品NH3 采用甲烷化法脱硫除原料气中CO. CO2 时, 合成氨工艺流程图如下:造气 ->半水煤气脱硫 ->压缩机1,2段 ->变换 -> 变换气脱硫 -> 压缩机3段 ->脱碳 -> 精脱硫 ->甲烷化 ->压缩机4,5,6段 ->氨合成 ->产品NH3 2. 技术指标:(1) 原料煤: 无烟煤: 粒度15-25mm 或25-100mm固定75%蒸汽: 压力0.4MPa, 1-3MPa(2) 产品: 合成氨:氨含量(99.8%) 残留物含量(0.2%)3. 消耗定额: ( 以4×104 吨/年计算)(1) 无烟煤( 入炉) : 1,300kg(2) 电: 1,000KWH( 碳化流程), 1,300KWH( 脱碳流程)(3) 循环水: 100M3(4) 占地: 29,000M24. 主要设备:(1) 造气炉(2) 压缩机(3) 铜洗(4) 合成塔
弗里茨·哈伯(Fritz Haber,1868年12月9日-1934年1月29日),德国化学家,出生在德国西里西亚布雷斯劳(现为波兰的弗罗茨瓦夫)的一个犹太人家庭。从小就对化学工业有极浓厚的兴趣。高中毕业后,哈伯先后到柏林、海德堡、苏黎世上大学。上学期间,他还在几个工厂中实习,得到了许多实践的经验。他喜爱德国农业化学之父李比希的伟大职业——化学工业。读大学期间,哈伯在柏林大学霍夫曼教授的指导下,写了一篇关于有机化学的论文,并因此获得博士学位。1904年,哈伯在两位企业家答应给予大力支持开始研究合成氨的工业化生产,并于1909年获得成功,成为第一个从空气中制造出氨的科学家。使人类从此摆脱了依靠天然氮肥的被动局面,加速了世界农业的发展。哈伯也从此成了世界闻名的大科学家。为表彰哈伯的这一贡献,瑞典皇家科学院把1918年的诺贝尔化学奖颁给了哈伯。由于在第一次世界大战中,哈伯担任化学兵工厂厂长时负责研制、生产氯气、芥子气等毒气,并使用于战争之中,造成近百万人伤亡。虽然按照他自己的说法,这是“为了尽早结束战争”,但哈伯这一行径,仍然遭到了美、英、法、中等国科学家们的谴责,哈伯的妻子伊美娃也以自杀的方式以示抗议。一战结束后,哈伯又做了从海水中提取黄金的试验,但最后宣告失败。1934年初被派遣去巴勒斯坦德理化学研究所任职。1934年1月29日哈伯因突发心脏病逝世于瑞士的巴塞尔。
化学是研究物质的性质、组成、结构、变化和应用的科学。自有人类以来就开始了对化学的探索,因为有了人类就有了对化学的需求。它与我们的生活息息相关,在我们的日常生活中无处不在。我国著名滑雪前辈杨石先生说:“农、轻、重、吃、穿、用,样样都离不开化学。”没有化学创造的物质文明,就没有人类的现代生活。人是社会的人,社会是人的社会,因此可以从人与化学的关系去探讨化学对社会发展的重要性。化学作为一门庞大的知识体系,能用来解决人类面临的问题,满足社的需要,对人类社会做出贡献。它的成就已成为社会文明的标志,深刻的影响着人类社会的发展。社会的发展离不开人类的发展,人类的发展离不开人的生存,而人的生存离不开化学。社会的一切发展,生命是基础。一切生命的起源离不开化学变化,一切生命的延续同样离不开化学变化。恩格斯说:“生命的起源必然是通过化学的途径实现的。”没有化学的变化,就没有地球上的生命,也就更不会有人类。是化学创造了人类,创造了美丽的地球。就化学对人类的日常生活的影响来说,化学在我们的日常生活中无处不在。首先,我们的衣、食、住、行无一不用到化学制品。“民以食为天”,我们吃的粮食离不开化肥、农药这些化学制品。1909年哈伯发明的合成氨技术使世界粮食翻倍,如果没有他发明的这个化学技术,那么世界上就有一半的人得不到温饱,那么世界上就多了一半的人的生命面临危机了。加工制造色香味俱佳的食品就更离不开各种食品添加剂,如甜味剂、防腐剂、香料、味精、色素等等,多是用化学合成方法或化学分离方法制成的。如果没有合成纤维的化学技术,那世界上大多数人就要挨冻了,因为有限的天然纤维根本就不够用。我国1995年的化学纤维产量为330万吨,其中90%是合成纤维。 何况纯棉纯毛等天然纤维也是棉花、羊毛经化学处理制成的。再有就是合成橡胶,少了合成橡胶,世界上60亿人口又有多少亿人要穿草鞋过冬啊?合成染料更使世界多了一道多彩缤纷的亮丽风景线。所谓“丰衣足食”,是生命得以延续的保证。没有了化学,就没了保证。再看我们住的房子,石灰、水泥、钢筋,窗户上的铝合金、玻璃、塑料等材料,哪件不是化学制品?离得了铝合金的木制的窗户,也离不开化学制品油漆;就算不用玻璃吧,像一些贫穷人家用的尼龙布甚或用的报纸,不是化学制品又是什么?还有我们的日常生活用品,如牙刷、牙膏、香皂、化妆品、清洁用品等等无一不跟化学沾边,都是化学制剂。出了门,我们踏在水泥铺成的街道上,看到的是钢筋水泥做的高楼大厦,用以代步的是各种塑料、橡胶、玻璃以及各种合金做的交通工具。这些交通工具还离不开汽油、柴油,各种汽油添加剂、防冻剂和各种润滑油。如此种种,都是化学制品。现代人类根本无法离开人造化学品,我们每天24小时都被人造化学品所包围着。其次,我们的健康长寿也与化学息息相关。体内某些化学元素平衡失调时,就会导致某些危害人类健康的疾病。1953年,美国化学家Miller S L 实验模拟原始地球上大气的成分,用H,CH4,NH3和水蒸气等,通过加热和火花放电,合成了氨基酸。1965年和1981年,我国在世界上首次合成了牛胰岛素和酵母丙氨酸转移核糖核酸。蛋白质和核糖的形成是无生命到有生命的转折点。自此我们人类对自身的了解有了新的突破,为我们人类对生命和健康的研究打下了基础。正是有了合成各种抗生素和大量新药物的技术,人类才能控制传染病,才能缓解心脑血管病,使人类的寿命延长25年。人类的健康成长离不开各种营养品和药品。如果没有这些化学药品,世上不知有多少人要受病魔的折磨,不知有多少人会被病魔夺去生命。生命体中支撑着生命的是无数的有机化合物,重要的有糖类、蛋白质、氨基酸、肽键、酶、核酸等。糖是自然界存在的一大类具有生物功能的有机化合物。它主要是由绿色植物通过光合作用形成的。它由C、H、O所组成,化学式为Cn(H2O)n,又叫碳水化合物。糖类包括单糖、多糖、淀粉、糖原、纤维素。生物界对能量的需要和利用均离不开糖类。糖类物质的主要生物功能就是通过生物氧化而提供能量,以满足生命活动的能量需要。生物界对太阳能的利用归根到底始于植物的光合作用和CO2的固定,与这两种现象密切相关的都是糖类的合成。光合作用是自然界将光能转化变为化学能的主要途径。糖类不仅是生物体的能量来源,而且在生物体内发挥其它作用,它对各类生物体的结构也起着支持和保护的作用,有时还起到解毒的作用等。总之,糖类是生命体维持生命所不可或缺的。蛋白质亦然。1839年德国化学家Mnlder G T给它起名叫做蛋白质(Protein),意思是“头等重要”,可见其重要性。所有蛋白质都含C,N,O,H元素,大多含S或P,有的还含其它元素。蛋白质是氨基酸聚合物,水解时产生的单体叫氨基酸。蛋白质种类繁多,功能各异。它的广泛而多变的功能决定了它们在生理上的重要性。有的蛋白质起运输作用,有
联合制碱法(侯氏制碱法) 根据NH4Cl在常温时的溶解度比NaCl大,而在低温下却比NaCl溶解度小的原理,在278K~283K(5℃~10℃)时,向母液中加入食盐细粉,而使NH4Cl单独结晶析出供做氮肥。 此法优点:保留了氨碱法的优点,消除了它的缺点,使食盐的利用率提高到96%;NH4Cl可做氮肥;可与合成氨厂联合,使合成氨的原料气CO转化成CO2,革除了CaCO3制CO2这一工序。 回答者:orgsky - 同进士出身 七级 6-11 21:16 CO转化成CO2,革除了CaCO3制CO2这一工序。 回答者:zjywly - 魔法学徒 一级 6-11 21:17 :(1)NH3+H2O+CO2=NH4HCO3(2)NH4HCO3+NaCl=NH4Cl+NaHCO3↓ 不好意思,脚标不方便打字,只能这样了,不知你能否明白? 氨气与水和二氧化碳反应生成一分子的碳酸氢铵,这是第一步。第二步是:碳酸氢铵与卤化钠反应生成一分子的卤化铵和碳酸氢钠沉淀,碳酸氢钠之所以沉淀是因为他的溶解度很小。 根据 NH4Cl 在常温时的溶解度比 NaCl 大,而在低温下却比 NaCl 溶解度小的原理,在 278K ~ 283K(5 ℃~ 10 ℃ ) 时,向母液中加入食盐细粉,而使 NH4Cl 单独结晶析出供做氮肥。 此法优点:保留了氨碱法的优点,消除了它的缺点,使食盐的利用率提高到 96 %; NH4Cl 可做氮肥;可与合成氨厂联合,使合成氨的原料气 CO 转化成 CO2 ,革除了 CaCO3 制 CO2 这一工序。 回答者:woshippmma - 秀才 二级 6-11 21:35 许多工业部门,尤其是纺织、肥皂、造纸。玻璃、火药等行业都需要大量用碱。古代那种从草木灰中提取碱液,从盐湖水中取得天然碱的方法是远远不能满足需求的。为此, 1775年法国科学院用10万法郎的悬赏征求可工业化的制碱方法。1788年,勒布兰提出了以氯化钠为原料的制碱法,经过4年的努力,得到了一套完整的生产流程。勒布兰制碱流程虽然在推广应用中不断地被完善,但是因为这方法主要是利用固相反应,又是高温操作,存在许多缺陷,生产不能连续,劳动强度大,煤耗量大,产品质量不高。面对这些问题,许多人有意改革它。到了1862年,比利时化学家索尔维实现了氨碱法的工业化。由于这种新方法能连续生产,产量大,质量高,省劳动力。废物容易处理,成本低廉,它很快取代了勒布兰法。 掌握索尔维制碱法的资本家为了独享此项技术成果,他们采取了严密的保密措施,使外人对此新技术一无所知。一些技术专家想探索此项技术秘密,大都以失败告终。不料这一秘密竞被一个中国人运用智慧摸索出来了。这个人就是侯德榜。 披露索尔维制碱法的秘密 侯德榜, 1890年8月9日生于福建闽侯农村。少年时他学习1分刻苦,就是伏在水车上双脚不停地车水时,仍能捧着书本认真读书。后来在姑母的资助下,他单身来到福州英华书院和闽皖路矿学堂读书。毕业后曾在津浦铁路符离集车站做过工程练习生。在工作之余,他抓紧时间学习,1911年考人清华留美预备学校。经过3年的努力,他以10门功课1000分的优异成绩被保送到美国留学。8年中,他先后在麻省理工学院、柏拉图学院、哥伦比亚大学攻读化学工程,1921年取得博士学位。 在国外留学时,他时刻怀念祖国,惦记着处于水深火热中的苦难同胞。这时候,在纽约他遇到了赴美考察的陈调甫先生。陈受爱国实业家范旭东委托,为在中国兴办碱业特地到美国来物色人才。当陈先生介绍帝国主义国家不仅对我国采取技术封锁,而且利用我国缺碱而卡我国民族工业的脖子的情况时,具有强烈爱国心的侯德榜马上表示,“可以放弃在美国的舒适生活,立即返回祖国,用自己的知识报效祖国。” 1921年10月侯德榜回国后,出任范旭东创办的永利碱业公司的技师长(即总工程师)。他深刻地体会到创业之艰难。要创业首先需要实干的精神。他脱下了白领西服,换上了蓝布工作服和胶鞋,身先士卒,同工人们一起操作。哪里出现问题,他就出现在哪里,经常于得浑身汗臭,衣服中散发出酸味、氨味。他这种埋头苦干的作风赢得了工人们、甚至外国技师的赞赏和钦佩。在他的带领下,技师、工人们团结一心,为建成中国自己的碱厂而奋战。 虽然索尔维制碱法的原理很简单:先把氨气通入食盐水,然后向氨盐水中通二氧化碳,生产溶解度较小的碳酸氢钠。再将碳酸氢钠过滤出来,经焙烧得到纯净洁白的碳酸钠。但是具体的生产工艺却为外国公司所垄断,所以侯德榜要掌握此法制碱,得完全靠自己进行摸索,困难是很多的。且不说工艺设计、材料选择、设备的挑选和安装等经过了一个又一个难关,仅从试生产的过程也可略见一斑。例如干燥锅结疤了,浑圆的铁锅在高温下停止了转动,时间长了后果是很严重的。技师们都急得团团转,这时候侯德榜果敢地拿起玉米棒子粗的大铁杆往下捅,操起10一15公斤重的铁杆上下捅可不比举重运动员举杠铃轻松,累得他双眼直冒金星,汗水湿透了工装。不久他觉得单靠力气难于解决这一技术问题,经过大家商量,他们采用加干碱的办法终于使锅底上的碱疤脱水掉下来,总算克服了困难。 侯德榜奋不顾身地把全部身心都扑到了生产上,从调换碳酸化塔的水管,另行设计分解炉,到多次加强冷却设备,改造过滤机以及处理不断发生的生产故障,他都以探索者的勇气、生产者的细心和科学家的严谨来对待。经过紧张而又辛苦的几个寒暑的奋战,侯德榜终于掌握了索尔维制碱法的各项技术要领。1924年8月13日,永利碱厂正式投产。正当大家兴高彩烈地等待雪白的纯碱从烘烧干燥炉中出来时,出现在眼前的却是暗红色的纯碱。怎么回事?这无形给大家泼了一盆冰水。作为总工程师的侯德榜冷静地去寻找事故的原因。经过分析他很快就发现纯碱变成暗红色是由于铁锈污染所致。随后他们以少量硫化钠和铁塔接触,致使铁塔内表面结成一层硫化铁保护膜。再生产时纯碱变成纯白色了。日产180吨纯碱的永利碱厂终于矗立在中国大地上。1926年,永利碱厂生产的“红三角”牌纯减在美国费城举办的万国博览会上荣获了金质奖章。这一袋袋的纯碱是中华民族的骄做,它象征着中国人民的志气和智慧。 摸索到素尔维制碱法的奥秘,本可以高价出售其专利而大发其财,但是和范旭东一样,侯德榜主张把这一奥秘公布于众,让世界各国人民共享这一科技成果。为此侯德榜继续努力工作,把制碱法的全部技术和自己的实践经验写成专著《制碱》于1932年在美国以英文出版。一个有骨气的中国人就是这样披露了素尔维制碱法的奥秘。 拼命为之的中国化学工业 三酸二碱是化学工业的基本原料,仅能生产纯碱显然是不行的。在永利碱厂投入正常运行后,永利公司计划筹建永利硫酸铵厂。这个厂可以同时生产氨、硫酸、硝酸和硫酸铵。建厂的重担自然又落在侯德榜的肩上。 建造硫酸铵厂与当年永利碱厂的开创不一样,不存在技术保密的问题,面临的问题关键是怎么引进国外技术、选购设备,争取投资少而见效快。为此侯德榜不辞辛苦对整个计划作了周密的调查研究。 铵厂的设计,应该自成系统,完整合理,引进技术要完全立足于国情,而不是照搬外国的成套设备。在采购设备中,侯德榜精打细算。凡是国内能够保证质量的,就自己动手在国内解决。进口外国设备时,他巧妙地利用了各国厂商之间的竞争,选择适用又价廉的设备,对若干关键设备;更是力主择优。在与外商谈判和选购设备时,侯德榜相当机智,例如制硫酸的全套设备是从美国买的,在买下这套设备的同时,侯德榜顺便索要了硫酸铵的生产工艺图纸。掉过头来,他又从另一家工厂以废钢铁的价格买下一套硫酸铵生产设备(时至今日还在运转)。这种精明能干连美国的许多经理都佩服。 硫酸铵厂的设备来自英、美、德、瑞士等国的许多厂家,还有些是本国造的,最后竟能全部成龙配套,这是很不容易的。它充分显示了侯德榜的学识才干和昔心经营,表现出他高度的事业J乙和可贵的献身精神。侯德榜能这样出色地指挥完成这项巨大工程,还在于他精通业务、知识广博。正如他自己说的:“要当一员称职的化学工程师,至少对机电、建筑要内行。”这也是他的座右铭。在他给友人伪一封信中他曾写道:这些事,“无一不令人烦闷,设非隐忍顺应,将一切办好,万一功亏一簧,使国人从此不敢再谈化学工程,则吾等成为中国之罪人。吾人今日只有前进,赴汤蹈火,亦所弗顾,其实目前一切困难,在事前早已见及,故向来未抱丝毫乐观,只知责任所在,拼命为之而已。“这就是侯德榜事业心的生动写照。 1937年之丹,在侯德榜、范旭东及全厂员工的努力下,硫酸铵厂首次试车成功。侯德榜“拼命为之”的又一事业成功了。 侯氏联合制碱法的发明 1937年。日本侵华的战火伸向上海、南京。位于南京的硫酸铵厂作为亚洲第一流的化工厂,令日本侵略者垂涎三尺,日本侵略者看到永利公司的军事价值,年产一万吨硝酸,可以制造几万吨烈性炸药。他们派人企图收买范旭东和侯德榜。范、侯明确地表示:“宁肯给工厂开追悼会,也决不与侵略者合作”侵略者加大压力。甚至派飞机对碱厂进行狂轰滥炸。在战火逼近的情况下,侯德榜当机立断,布置技术骨干和老工人转移,组织重要机件设备拆运西迁。 1938年,侯德榜率西迁的全部员工在四川岷江岸边的五通桥建设永利川西化工厂。新厂采取什么工艺是首先要考虑的。制碱的主要原料食盐,在川西只能来源于深井中的盐卤浓缩。盐卤浓度低,所以食盐的成本很高。加上索尔维法的食盐转化率不高(只有70%),这就进一步提高了制碱的成本。固此继续采用索尔维制碱法,生产就难以维持。 侯德榜经过调查,决定改进索尔维法开创制碱新路,他总结了索尔维法的优缺点,认为这方法的主要缺点在于,两种原料组分只利用了一半,即食盐(NaC1)中的钠和石灰(CaCO3)中的碳酸根结合成纯碱(NaCO3)另一半组分食盐中的氯和石灰中的钙结合成了CaCl2,却没有用途。 针对以上生产中不可克服的种种缺陷,侯德榜创造性地设计了联合制碱新工艺。这个新工艺是把氨厂和碱厂建在一起,联合生产。由氨厂提供碱厂需要的氨和二氧化碳。母液里的氯化铵用加入食盐的办法使它结晶出来,作为化工产品或化肥。食盐溶液又可以循环使用。 为了实现这一设计,在1941一1943年抗日战争的艰苦环境中,在侯德榜的严格指导下,经过了500多次循环试验,分析了2000多个样品后,才把具体工艺流程定下来,这个新工艺使食盐利用率从70%一下子提高到96%,也使原来无用的氯化钙转化成化肥氯化铵,解决了氯化钙占地毁田、污染环境的难题。这方法把世界制碱技术水平推向了一个新高度,赢得了国际化工界的极高评价。1943年,中国化学工程师学会一致同意将这一新的联合制碱法命名为“侯氏联合制碱法”。 新中国即将成立的1949年初,侯德榜还在印度指导工作,当他得到友人转来的周恩来给他的信后,他立即克服了种种阻挠,于1949年7月回到了气象更新的祖国,作为科学家的代表参加了全国政治协商会议。从此他开始投入恢复、发展新中国化学工业的崭新工作。为了祖国的化工事业,他走遍大江南北、长城内外。1960年前后,为适应我国农业生产的需要,侯德榜不顾自己已是70高龄,和技术人员一道共同设计了碳化法制造碳酸氢铵的新工艺,为我国的化肥工业发展作出了巨大贡献。 侯德榜先生对科学的态度一贯是严肃认真的。在研究联合制碱的过程中,他要求每个试验都得做30多遍才行。开始时有些人不理解,以为这是浪费时间和耗费精力,多此一举。后来的事实证明,多数试验在进行了20多次以后,数据才稳定下来,这样得到的数据资料才是可靠的,人们这才真正认识到侯德榜这种细致周密、一丝不苟的的科学态度是多么难能可贵。 侯德榜一生谦虚谨慎,平易近人。在创造永利碱厂时是这样,在以后的长期工作中也是这样。他和技术人员、工人及晚辈们在一起,从来不把自己放在权威或高人一等的位置,讨论问题,他总是认真地听取别人的意见,善于从大家的智慧中吸取积极的因素来充实、完善自己的设想。大家都觉得跟他一起工作,心情特别舒畅,能从他身上学到不少东西。 侯德榜先生象一名辛勤的园了,为我国化学工业的发展培养了一批又一批的技术骨干。这些骨干现在大都仍活跃在中国化工领域的各个部门,相当多的骨干已成为厂长、总工程师。他们以侯先生作为自己的榜样,为发展我国的化工事业鞠躬尽瘁。 1974年8月26日,侯德榜先生因病与世长辞,享年84岁。 回答者:Tanworld - 举人 五级 6-12 07:34
电石炉气在循环经济的综合利用论文
[摘要] 本文简述了电石炉气的特性和利用价值,从电石炉气成分主要为CO和H2(约90%)可以看出,电石炉气可以作为燃料及化工原料来利用。然而简单地将电石炉气作为燃料使用并没有使其价值最大化,而以其为原料发展高附加值的化工产品则更有意义。因此,本文重点介绍了利用密闭电石炉尾气生产碳一化工产品的工艺,并与煤化工中煤造气工艺进行对比,发现以电石炉气为原料的工艺不仅可以全部利用电石炉气中的有效气体成分,还减少了碳的排放量,减轻了对环境的污染,同时可以有效降低碳一化工产品的生产成本和建设投资。
[关键词] 电石炉气;循环经济;碳一
电石是有机化工的基础原料,由它制得的乙炔可生产醋酸、醋酸乙烯、聚氯乙烯、聚乙烯醇、乙炔炭黑等一系列数千种有机产品。在国内电石行业,无论是全密闭式电石炉、内燃式半密闭电石炉还是开放式电石炉,其尾气一直以来没有得到很好的利用,有的甚至直接放空烧掉,造成了资源的极大浪费。
1电石炉气特性及利用价值
1.1电石炉气特性
使用密闭炉生产电石,每吨电石副产炉气量约400Nm3[1-2],其典型组成及物理性质如表1所示。从表1可以看出,炉气中含尘量大,具有黏、轻、细、不易捕集等特点;炉气内含微量焦油,它在温度大于225℃时呈气态,在温度小于225℃时容易析出,会使除尘布袋黏结堵塞;炉气本身温度很高,同时含有难以除净的大量粉尘,治理难度比较大,在利用前需要对炉气进行充分的净化处理。
1.2电石炉气利用价值
从电石炉气成分可以看出,炉气中含有大量的CO和H2,是很好的燃料和化工原料,利用好这部分气体可以产生巨大的经济效益和社会效益。以我国2017年电石产量2500万吨计算,副产的电石炉气总量达到100亿Nm3左右,如能全部回收,可得到约75亿Nm3CO和7.5亿Nm3H2。因此,炉气净化利用对实现能源回收利用、降低生产成本、提高经济效益,都具有重要的意义。
2电石炉气在化工中的利用及经济性分析
目前,部分企业的电石炉气只是经过简单处理后,作为燃料烧石灰、烧锅炉等使用,并没有将炉气价值最大化利用。电石炉气的主要成分是CO和H2,在经过深度净化处理后,可利用CO和H2发展后续高附加值化工产品,可用于生产合成氨、甲醇、乙二醇、二甲醚、甲酸钠等较高附加值的化工产品[4],目前国内已成功建成生产甲酸钠、合成氨、乙二醇的装置,详见表2。
2.1合成氨和甲醇
[3]根据原料气分析以及物料平衡计算,电石尾气中氮气的体积分数约为5%,如单产甲醇,5%的氮气将作为无效气被放空,增加了压缩机的无效功;如单产合成氨,需要向系统中补充氮气,新增制氮装置,增加投资。综合考虑,如果采用以醇-氨联产工艺,即甲醇生产中串入合成氨生产,将炉气中的N2与H2合成氨,避免了合成甲醇过程中排放惰性气体而造成大量有效气体损失。醇-氨联产工艺不仅最大限度地利用了电石炉气,减少了排放量,又创造了经济效益。醇-氨联产工艺的流程示意图1所示。以电石炉气为原料,醇-氨联产工艺有以下几个优点:(1)充分利用了电石炉气中的气体成分,炉气的利用率更高;(2)利用甲醇合成后的尾气副产液氨,既最大限度利用了电石炉气,又创造了经济效益;(3)能耗低,与国内煤头制甲醇工艺相比能耗明显降低;(4)成本低,与国内煤头制甲醇工艺相比成本明显降低。
2.2乙二醇
乙二醇合成气为高纯度的H2(99.9%,vol)和CO(99%,vol),且H2和CO的体积比约为1.95。若以电石炉气作为乙二醇合成气,与以煤为原料相比,省去了煤制气的过程,消耗低,原料成本大幅下降,无疑是一种优于单纯以煤为原料的生产乙二醇的原料路线。以电石炉气为原料合成乙二醇的工艺流程见图2。2中可以看出,电石炉气只需要经过适当的变换及分离制氢后即可作为乙二醇的原料,不需要煤造气过程,可以节省大量的投资,具有良好的经济效益和社会效益。从国内电石炉气的在化工产品上的利用情况来看,新疆天业集团已经取得了成功。新疆天业以电石炉气为原料,采用煤制乙二醇技术,于2011年7月在新疆石河子开工建设了25万吨/年煤制乙二醇项目一期工程,规模为年产5万吨乙二醇。一期工程在2013年1月份建成并成功产出优等品乙二醇,产品纯度均超过国标优等品标准。在一期获得成功的基础上,二期工程20万吨/年乙二醇于2013年5月开工建设,并于2015年9月建成投产。
2.3聚氯乙烯
[4]除了在碳一化工中利用外,在烧碱-PVC生产路线中,电石法PVC有两个重要的化学反应过程:(1)氢气和氯气反应合成氯化氢;(2)氯化氢和乙炔反应合成氯乙烯。在合成氯化氢过程中,为了避免氯化氢中的游离氯含量过高遇乙炔发生爆炸,参加反应的氢气一般过量10%左右。但电解氯化钠时,产生的氯气和氢气量是相同的,这样就需要过量的氢资源。而氯碱企业一般靠生产液氯来平衡氢气的不足,或者采用如水电解制氢或天然气制氢来补充氢气,这样都会带来投资增加和生产成本上升的问题。而从电石炉气成分可知,炉气中除含有体积分数80%左右的CO外,还有体积分数5%~10%的H2,这样可将炉气回收后经过等温变换、变压吸附等工艺分离出H2,用于合成氯化氢,剩余的CO可以继续作为碳一化工的原料来利用。炉气回收利用工艺流程如图3所示。在氯碱行业利润普遍不高的情况下,炉气回收利用不仅降低了电石生产成本,而且为PVC生产提供了氢气,具有显著的经济效益。
2.4炉气回收利用的`经济性分析
采用煤与电石炉气为原料生产乙二醇合成气,主要的成本差异体现在合成气的原料气制备上,因此主要比较煤制合成气成本与电石炉气做为合成气处理成本。2.4.1比较前提(1)生产相同规格和相同量的合成气(H2+CO);(2)煤制气按水煤浆气化工艺考虑;(3)电石炉气按项目外供给,按0.3元/Nm3计价;(4)比较范围截至合成气的原料气,即不考虑后续变换、分离等。2.4.2消耗比较基于2.4.1的比较前提,对煤制气和电石炉气生产合成气的过程进行计算和分析,得到两种工艺过程原材料消耗和公用工程消耗情况,如表3所示。从表3中明显可以看出,采用电石炉气为原料,原料气直接由电石厂供应,消耗已计入电石生产中,因此对于化工装置来说原料气是已经制备好的;而采用煤气化,在造气环节要增加公用工程消耗和原料煤消耗,对项目所在地的煤资源保证有要求,同时还需要为煤气化配套建设公用工程。2.4.3成本比较根据表3的消耗情况可知,电石炉气为原料气只需要计算原料电石炉气的成本,实际上电石炉气是电石生产副产品,因而其成本可认为是0。本比较考虑电石炉气从项目外电石厂外购,需按购买价计入原料气成本。成本比较结果见表4。从表4的比较结果来看,采用电石炉气为原料,每1000Nm3合成气成本可降低200元以上,折每吨乙二醇成本下降500元左右,成本降低非常显著。如果电石炉气能够实现内部供给的话,则电石炉气成本可以忽略,合成气成本下降更为可观。2.4.4投资比较因合成气来源不同,投资差异会比较大。对煤制气与电石炉气两种原料过程进行了投资差异上的比较估算,其比较结果见表5。从表5可以看出,若煤制气投资基准值为0,以93750Nm3/h(可满足30万吨/年乙二醇生产)合成气规模计算,则采用电石炉气为原料一次性投资可减少约9.5亿。
2.5电石规模的影响
虽然电石炉气作为合成气原料,无论从投资上还是运行成本都较煤制气路线要低很多,但要利用好电石炉气还要看电石装置规模的大小。例如,利用电石炉气生产甲酸钠,10万吨/年电石可配套7万吨/年甲酸钠装置;而利用电石炉气生产合成氨、甲醇、乙二醇等高附加值的化工产品,10万吨/年电石仅能配套3.6万吨/年甲醇或合成氨装置。如此小的化工装置很难产生经济效益,相当于利用了电石炉气的资源,但在配套建设的化工装置上多消耗了能源,使电石炉气回收利用的社会、经济、环保、节能效益大打折扣。因此,利用电石炉气必须要考虑电石装置规模。目前从新疆、内蒙等地电石企业来看,规模一般都在60万吨/年以上,如新疆天业电石产能已达到200万吨/年以上,这样的规模可以为化工生产提供足够的原料气。所以,若新建碳一化工项目无充足的电石炉气,可考虑与周边大型电石企业合作,由电石企业向化工企业提供电石炉气,从而实现资源互补,循环利用。
3结论
综合以上分析,利用电石炉气来生产化工产品,无论从一次性投资还是产品成本上都优势明显。电石炉气的开发利用已经引起了越来越多的关注,尤其是在化工领域已经取得了重大突破。电石炉气在碳一化工产品中的应用,目前行业内已经获得了成功,如果逐步推广到更多的化工产品中将会大大降低相关产品成本和投资,节能减排,提高经济效益,是循环经济发展的一大亮点。此外,除了生产电石外,冶金行业中生产铁合金、工业硅、黄磷、刚玉等过程都会产生一氧化碳为主的炉气,且其炉气排放量大约是电石炉气的两倍。如果将电石炉气在化工产品上应用成功的范例,推广到整个冶金行业,将对整个国民经济能源节约、资源利用、环境保护有着重大贡献。
高中化学教学论文:化学教学中进行唯物观教育的建议化学学科是一门自然科学,但在化学教材中渗透着辩物主义的观点,教师在化学教学中充分利用教材对学生进行辩证唯物主义教育,能使学生对化学知识的学习领悟得更深刻,掌握得更牢固,更灵活,而且能培养学生用正确的思想方法和学习方法去进行学习。那么,怎样利用教材中辩证唯物观点对学生进行唯物观教育呢?建议:一、在化学教学中进行世界是物质的,物质世界是运动着的观点教育。在初中化学中进行原子分子论教学和在高中化学中进行原子结构和核外电子运动状态的教学时,教师可指出,从客观方面看,在无边无际的茫茫宇宙中,有着气象万千的无数天体,人类居住的地球只是太阳系的一个成员,太阳系只是银河系家庭中的一员,银河系以外还是河外星系,这些星系构成为总星系,这些都是宇宙空间中客观存在着的事物,而且都在不断地运动变化。从微观讲,我们周围的各种实物都是由分子构成,比分子更小的微粒是原子,一个氧分子由两个氧原子构成,一个水分子由两个氢原子和一氧原子构成等等,这些构成微观世界的各种成分,尽管微乎其微,也都是客观存在的,而且这些基本粒子,没有一个是不运动的。二、在化学教学中让学生树立世界上任何事物都是绝对运动和相对静止的辩证统一的观点。在初中化学中进行溶解平衡等教学,在高中化学中进行平衡、电离平衡等教学时,指出这些平衡都是动态平衡,从表面看,在溶解过程中溶质不再溶解,也不再结晶;在可逆反应中反应混合物中各种成份的百分含量不再变化,在弱电解质电离过程中,自由离子浓度不再变化,好象各种变化都停止了,但实际上这些变化的两种相反过程都从未停止过,只是溶解和结晶的速度,正反应和逆反应的速度,弱电解质分子电离成离子和离子重新结俣成分子的速度相等罢了,在这一定条件下保持平衡,若条件改变,平衡破坏,将重新建立新的平衡,这说明任何事物的运动是绝对的,静止是相对的,有条件的。三、在化学教学中进行矛盾的对立统一观点的教育。任何矛盾的双方既是相互对立、又是相互依存的,任何一方都不能孤立地存在,而且矛盾的双方又互相渗透,在一定条件下可相互转化。例如,金属原子有失电子的还原性和氧化性,是相互对立的矛盾双方,但它们又互相依存,没有还原性,何谈氧化性。当金属原子失去电子成为阳离子后,就具有氧化性,非金属原子得电子成为阴离子后,就具有还原性。这说明氧化、还原这对矛盾在一定条件下可以相互转化,它们既对立又相互统一在同一个微粒中。四、在化学教学中进行意识的能动作用的教育。例如,人们在认识了元素周期律,元素的性质随核电荷数的变化而递变的规律后,可指导科学工作者去预测周期表中未填满的第七周期中未发现的元素的性质,对发现新元素的指导作用。又如,在合成氨工业生产中,当人们认识了化学反应速度和化学平衡移动的规律后,就可选择出在我国现有条件下的合成氨的适宜条件,从而可提高合成氨的产量。
方法一 点边上的小三角,下拉菜单里选择其他编号 然后 然后点自定义 然后自己按照要求编辑就OK啦 方法2 把“第1章”删了,打上“第一章”然后把要设为一级标题的字全选,点鼠标右键选择段落设置 在大纲级别选成一级标题 然后把1.1删了改成“(一)”,然后把要设为二级标题的字全选,点右键按如上方法设置成二级标题 或者
详细提纲,是把论文的主要论点和展开部分较为详细地列出来。如果在写作之前准备了详细提纲,那么,执笔时就能更顺利。下面仍以《关于培育和完善建筑劳动力市场的思考》为例,介绍详细提纲的写法:上面所说的简单提纲和详细提纲都是论文的骨架和要点,选择哪一种,要根据作者的需要。如果考虑周到,调查详细,用简单提纲问题不是很大;但如果考虑粗疏,调查不周,则必须用详细提纲,否则,很难写出合格的毕业论文。总之,在动手撰写毕业论文之前拟好提纲,写起来就会方便得多。
高中生写论文难度很高,可以根据一节课、一个知识点、或者一个实验来来谈谈自己学习的见解,最主要学生写论文不要大篇幅模仿教师的论文形式,要以学生的观点,介绍自己的学习领会要点。
你这个问题太大了。氨的合成,首先必须制备合格的氢、氮原料气。氮气可直接取自空气或将空气液化分离而得;或使空气通过燃料层燃烧,将生成的CO和CO2除去而制得。氢气一般常用含有烃类的各种燃料,如焦炭、无烟煤、天然气、重油等为原料与水蒸气作用的方法来制取。合成氨的生成过程基本上可分为 3 个步骤:原料气的制备;原料气的净化;氨的合成。利用固体燃料(焦炭或煤)的燃烧将水蒸气分解,将空气中的氧与焦炭或煤反应而制得氮气、氢气、一氧化碳、二氧化碳等的气体混合物。气化过程中的主要反应有: C + H2O(g) = CO +H2 ΔH = 131.39 kJ/mol C + 2H2O(g) = CO2 +2H2 ΔH = 90.20 kJ/mol将净化后的氢、氮混合气经压缩后,在铁催化剂与高温条件下合成氨,反应式为 3H2 + 2N 2 = NH3尿素合成过程包括:在过量氨存在下,用氨和二氧化碳作初始原料合成尿素;由此生成的尿素合成液,在高压下,使用二氧化碳或氨作汽提剂,进行汽提,并且在比上述高压低的压力下,使得到的尿素合成液至少经一步分解和分离未转化物的操作,目的是为了分离过量氨和由氨基甲酸铵分解产生的氨和二氧化碳,该氨基甲酸铵没有从合成液中转化成尿素;以上生成的氨和二氧化碳气体混合物用溶剂吸水或冷凝;然后将所得到的溶液或冷凝液再循环用于尿素合成工序,
巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析1.1煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。1.1.1龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度<1.5 mm薄层时的温度。1.1.2彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价2.1巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》2003.5可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在86.02%~86.51%之间,氢含量在5.41%~5.44%之间,C/H比值<16。⑦灰熔点上高下低。2.2成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。2.2.1成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。2.2.2流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。2.2.3实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。2.3原料煤的应用2.3.1适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。2.3.2用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。2.3.3用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤9.0%的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。2.3.4远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。
煤的工业分析也称煤的实用分析、近似分析或技术分析,包括煤的外在水分、内在水分、全水分、分析煤样水分、灰分、挥发分、固定碳、全硫和各种硫及发热量等项目。作为校正挥发分、发热量和元素成分碳含量等需用的,碳酸盐中二氧化碳含量也属工业分析范围。一般把煤的水分、灰分、挥发分和固定碳称作煤的半工业分析,如包括硫分和发热量等分析项目,就称作煤的全工业分析。煤的工业分析是煤质分析中最基本的也是最重要的分析项目,因此凡是以煤为原料或燃料的工业部门都需要进行煤的工业分析。煤质分析化验分为两类,一类是测定煤所固有的成分如碳、氢、氧、氮等,称为元素分析,其测定结果是作为对煤进行科学分类的主要依据,在生产上,是计算发热量、热平衡、物料平衡的依据;另一类是在人为规定的条件下,(鹤壁市华诺电子科技有限公司)根据技术需要测定煤经转化生成的物质或呈现的性质如灰分、挥发分等,称作技术分, 根据水分、灰分、挥发分和固定碳含量四项基本测定结果,对煤中有机质、无机质的含量、性质等有了初步了解,并可初步判断煤的种类、加工利用效果及工业用途等。煤的工业分析是煤质分析中最基本的也是最重要的分析项目。