1、细胞凋亡在个体发育和组织稳态的维持中具有重要的作用;如蝌蚪尾巴退化涉及细胞凋亡。2、细胞凋亡也与许多疾病的发生和防治密切相关;多种病毒感染可引起细胞凋亡,细胞凋亡可有效地阻止病毒繁殖,但大量细胞凋亡可使机体严重致病。3、通过细胞增殖与细胞凋亡共同调节成体的组织器官稳态的维持
细胞凋亡是指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。细胞凋亡与细胞坏死不同,细胞凋亡不是一件被动的过程,而是主动过程,它涉及一系列基因的激活、表达以及调控等的作用;它并不是病理条件下,自体损伤的一种现象,而是为更好地适应生存环境而主动争取的一种死亡过程。细胞发生凋亡时,就像树叶或花的自然凋落一样,对于这种生物学观察,借用希腊“Apoptosis”来表示,意思是像树叶或花的自然凋落,可译为细胞凋亡。 细胞凋亡与细胞程序性死亡(PCD) 从严格的词学意义上来说,细胞程序性死亡与细胞凋亡是有很大区别的。细胞程序性死亡的概念是1956 年提出的,PCD 是个功能性概念,描述在一个多细胞生物体中某些细胞死亡是个体发育中的一个预定的、并受到严格程序控制的正常组成部分。例如蝌蚪变成青蛙,其变态过程中尾部的消失伴随大量细胞死亡,高等哺乳类动物指间蹼的消失、颚融合、视网膜发育以及免疫系统的正常发育都必须有细胞死亡的参与。这些形形色色的在机体发育过程中出现的细胞死亡有一个共同特征:即散在的、逐个地从正常组织中死亡和消失,机体无炎症反应,而且对整个机体的发育是有利和必须的。因此认为动物发育过程中存在的细胞程序性死亡是一个发育学概念,而细胞凋亡则是一个形态学的概念,描述一件有着一整套形态学特征的与坏死完全不同的细胞死亡形式。但是一般认为凋亡和程序性死亡两个概念可以交互使用,具有同等意义。 细胞凋亡与坏死的区别 虽然凋亡与坏死的最终结果极为相似,但它们的过程与表现却有很大差别。 坏死(necrosis):坏死是细胞受到强烈理化或生物因素作用引起细胞无序变化的死亡过程。表现为细胞胀大,胞膜破裂,细胞内容物外溢,核变化较慢,DNA 降解不充分,引起局部严重的炎症反应。 凋亡是细胞对环境的生理性病理性刺激信号,环境条件的变化或缓和性损伤产生的应答有序变化的死亡过程。其细胞及组织的变化与坏死有明显的不同
提高新陈代谢能力、促进全球物质循环、保持循环系统的稳定。
(三)细胞凋亡的生理学及医学意义1.细胞凋亡在正常发育、自稳态的维持、免疫耐受的形成、肿瘤监控等过程中均发挥重要作用-确保正常发育、生长-维持内环境稳定-发挥积极的防御功能2.凋亡失调:不恰当激活或抑制:过度凋亡导致疾病-AIDS: HIV诱导淋巴细胞凋亡-自身免疫疾病:激活的淋巴细胞凋亡缺陷-癌症:凋亡缺陷-老年痴呆/中风:过多神经细胞凋亡
技术路线 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 四、参考文献 1.Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death 2.Molecular mechanisms of cell death in neurological diseases 3.Pyroptosis: mechanisms and diseases 4.Channelling inflammation: gasdermins in physiology and disease 细胞焦亡 个性化生信分析咨询
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
D-gal诱导复制细胞衰老模型将原代分离的大鼠PMVECs先传代,等 细胞贴壁后换用含10g/L D-gal的DMEM培养液培养. 细胞长成单层后,仍用含D-gal的培养液传代3次, 培养7 d后终止培养。对照组为不含D-gal的上述培养液培养传代3次并继续培养7 d的细胞
人类衰老之谜初见端倪--------------------------------------------------------------------------------作者: 发表时间:2003-2-27 摘自:中国科学院和中国工程院于2003年1月26日联合在北京宣布了由568位中国科学院和中国工程院院士参与评选的"2002年中国十大科技进展新闻"。 "北京大学医学部科学家初步揭开了人类衰老之谜"成为该十大新闻中唯一的一条医学方面的新闻。该成果还在2003年1月25日公布的"2002年公众关注的中国十大科技事件"评比中名列榜首。该项研究成果是在国家自然科学基金面上项目和重点项目及国家 "973"项目共同支持下,由北京大学医学部童坦君、张宗玉两位教授领导的科研小组,在多年潜心研究基础上取得的。该研究初步阐明了P16基因是人类细胞衰老的主导基因,是人类细胞衰老遗传控制程序的主要因素,揭示了P16基因在衰老过程中高表达是细胞衰老的主要原因。衰老是一种有机体的死亡危险随年龄增加而增大的现象。细胞衰老是生物衰老的基本单位、老年病的发病基础。近年来有关衰老的研究取得了一些进展如细胞凋亡与特殊基因的关系、端粒长度的控制等。童坦君、张宗玉教授领导的课题组密切关注国际前沿发展方向,他们将P16基因导入人成纤维细胞,结果衰老加快,而将其反义重组载体导入细胞则抑制P16使细胞较长时间维持年轻态,且使细胞增殖能力与DNA损伤修复能力加强。这些重要发现在国际著名杂志J Biol Chem 上以两篇文章发表。童坦君、张宗玉教授领导的课题组长期从事衰老及肿瘤形成的分子机理研究。主持和完成了5项相关课题的国家自然科学基金面上项目和重点项目,在国际、国内一流杂志发表多篇研究论文,并多次获省部级科技进步奖。他们的研究是对人类细胞衰老机理研究的原创性贡献,为进一步阐明人类细胞衰老问题提供了一条新途径。
王亚平. 细胞衰老的特征性变化及其分子机制. 杨恬 主编. 医学细胞生物学. 第3版,北京:人民卫生出版社,2014,p231-247.
主要应用于医学 药学经历了近两年的艰苦努力,《药学细胞生物学》一书终于完稿待印。在欣慰之余,编写组的 全体人员期待着借此书同读者进行学术的交流与沟通。 细胞生物学是最活跃的生物学科之一,其知识结构更新迅速,而药学版细胞生物学书籍国内 外尚无先例可借鉴。为适应学科发展的实际需要,改变国内药学院校细胞生物学课程一直只 能选用《细胞生物学》或《医学细胞生物学》教材而与药学专业有一定偏离的被动局面,我 们竭尽所能,编写了此书。 鉴于本书主要为药学本科专业的生物学基础教材,在编写过程中,既着重考虑了教材所要求 的基础性与系统性,又充分注意到将内容的新颖性与知识结构的合理性相结合。本书的主线 是根据当前细胞生物学与药学两门学科交叉发展的特点与趋势,从细胞、超微结构和分子水 平的不同层次,阐述细胞在生命活动中的规律和本质,特别强调细胞生物学与药学学科的紧 密联系,并提供了一定篇幅的药学示例,以有助于药学专业读者对细胞生物学学科的理解与 把握。本书力求使读者既掌握细胞生物学的基本理论与知识,又增强对药学知识的理解和应 用。 本书虽是应实际所需而编写,但毕竟是初次尝试,编者深感自己的知识水平与能力有限,在 取材范围和编写深度上难免有不当、疏漏甚至错误之处,恳请读者批评指正,以便再版时努 力完善与修正。 编者 2005年9月 作者简介:目录:第一章绪论(1) 内容提要(1) 第一节细胞生物学概述(1) 一、细胞生物学的研究内容(1) 二、细胞生物学发展简史(5) 三、细胞生物学与诺贝尔奖(9) 第二节细胞生物学与现代药学(11) 一、细胞生物学是现代药学的基础理论(11) 二、细胞生物学研究成果与技术在药学领域中的应用(12 ) 三、药学细胞生物学的涵义(19) 思考题(20) 参考文献(20) 第二章细胞概述(22) 内容提要(22) 第一节细胞的基本生物学意义(22) 一、细胞是生物有机体的基本结构单位(22) 二、细胞是生物有机体代谢与功能的基本单位(23) 三、细胞是生物有机体生长与发育的基本单位(23) 四、细胞是遗传的基本单位(23) 第二节细胞的化学组成(23) 第三节细胞的形态与大小(24) 一、细胞的形态(24) 二、细胞的大小(25) 三、细胞的计量单位(25) 第四节原核细胞与真核细胞(26) 一、原核细胞的结构特点(26) 二、真核细胞的结构特点(27) 三、原核细胞与真核细胞基本特征的比较(29 ) 第五节细胞与药物作用靶标(31) 一、药物作用靶标的概念(31) 二、细胞的药物作用靶标(31) 三、靶标药物在抗肿瘤研究中的应用现状(33) 参考文献(480)详细介绍: 《药学细胞生物学》为国内第一部将细胞生物学与药学学科有机结合,面向全国高等药学院 校各专业本科生的生物学基础教材。本书以细胞生物学理论、原理和技术为基础, 研究其在新药研发、药学研究以及药品生产等方面的应用。全书共12章,涵盖药学细胞生物 学所涉及的基本理论和一些研究热点,包括绪论、细胞概述、研究方法、细胞膜、细胞内膜 系统、线粒体、细胞核、核糖体、细胞骨架,细胞增殖、细胞分化、细胞衰老与凋亡,并在 各章中融入了相关的药学知识与应用。相信本书的出版将对读者有所启迪,使其更加易于理 解细胞生物学与药学学科的相关知识和技术。
经历了近两年的艰苦努力,《药学细胞生物学》一书终于完稿待印。在欣慰之余,编写组的 全体人员期待着借此书同读者进行学术的交流与沟通。 细胞生物学是最活跃的生物学科之一,其知识结构更新迅速,而药学版细胞生物学书籍国内 外尚无先例可借鉴。为适应学科发展的实际需要,改变国内药学院校细胞生物学课程一直只 能选用《细胞生物学》或《医学细胞生物学》教材而与药学专业有一定偏离的被动局面,我 们竭尽所能,编写了此书。 鉴于本书主要为药学本科专业的生物学基础教材,在编写过程中,既着重考虑了教材所要求 的基础性与系统性,又充分注意到将内容的新颖性与知识结构的合理性相结合。本书的主线 是根据当前细胞生物学与药学两门学科交叉发展的特点与趋势,从细胞、超微结构和分子水 平的不同层次,阐述细胞在生命活动中的规律和本质,特别强调细胞生物学与药学学科的紧 密联系,并提供了一定篇幅的药学示例,以有助于药学专业读者对细胞生物学学科的理解与 把握。本书力求使读者既掌握细胞生物学的基本理论与知识,又增强对药学知识的理解和应 用。 本书虽是应实际所需而编写,但毕竟是初次尝试,编者深感自己的知识水平与能力有限,在 取材范围和编写深度上难免有不当、疏漏甚至错误之处,恳请读者批评指正,以便再版时努 力完善与修正。 编者 2005年9月 作者简介:目录:第一章绪论(1) 内容提要(1) 第一节细胞生物学概述(1) 一、细胞生物学的研究内容(1) 二、细胞生物学发展简史(5) 三、细胞生物学与诺贝尔奖(9) 第二节细胞生物学与现代药学(11) 一、细胞生物学是现代药学的基础理论(11) 二、细胞生物学研究成果与技术在药学领域中的应用(12 ) 三、药学细胞生物学的涵义(19) 思考题(20) 参考文献(20) 第二章细胞概述(22) 内容提要(22) 第一节细胞的基本生物学意义(22) 一、细胞是生物有机体的基本结构单位(22) 二、细胞是生物有机体代谢与功能的基本单位(23) 三、细胞是生物有机体生长与发育的基本单位(23) 四、细胞是遗传的基本单位(23) 第二节细胞的化学组成(23) 第三节细胞的形态与大小(24) 一、细胞的形态(24) 二、细胞的大小(25) 三、细胞的计量单位(25) 第四节原核细胞与真核细胞(26) 一、原核细胞的结构特点(26) 二、真核细胞的结构特点(27) 三、原核细胞与真核细胞基本特征的比较(29 ) 第五节细胞与药物作用靶标(31) 一、药物作用靶标的概念(31) 二、细胞的药物作用靶标(31) 三、靶标药物在抗肿瘤研究中的应用现状(33) 思考题(33) 参考文献(33) 第三章细胞生物学研究方法与技术(35) 内容提要(35) 第一节细胞形态显微观察技术(35) 一、显微镜的发展简史(35) 二、显微镜的分类(37) 三、显微技术的基本概念与成像原理(38) 四、常用的光学显微镜(44) 五、电子显微镜(48) 六、显微技术在药学领域的应用(58) 第二节细胞化学技术(63) 一、酶细胞化学原理与方法(64) 二、免疫细胞化学原理与方法(65) 三、放射自显影术(67) 四、原位杂交技术(69) 五、问题与展望(69) 第三节细胞及其组分的分级分离与分析(70) 一、细胞的分离与纯化(70) 二、细胞组分的分级分离(73) 三、细胞分离与纯化技术的整合应用(77) 四、细胞组分的显色分析(78) 五、流式细胞计量术及其应用(79) 第四节细胞培养与细胞制药工程(85) 一、细胞培养概述(85) 二、动物细胞培养与Caco-2细胞模型(88) 三、细胞工程制药的主要技术与发展(93) 第五节功能基因组学及其重要研究技术(97) 一、功能基因组学的定义和内涵(97) 二、功能基因组的重要研究技术(98) 思考题(101) 参考文献(102) 第四章细胞膜(103) 内容提要(103) 第一节生物膜的化学组成与结构特征(104) 一、生物膜的化学组成(104) 二、细胞膜的分子结构模型(110) 三、细胞膜的基本特性(112) 第二节物质的跨膜运输(116) 一、小分子物质和离子的穿膜运输(117) 二、大分子物质的膜泡运输(124) 第三节膜表面受体与介导的主要信号转导(129 ) 一、离子通道受体(131) 二、G蛋白偶联受体与其介导的信号转导(134) 三、酶偶联受体(142) 四、受体理论与临床用药(147) 第四节细胞膜异常与疾病(148) 一、细胞膜转运系统异常(149) 二、细胞膜受体异常(149) 三、细胞膜与肿瘤(150) 四、细胞膜损伤(151) 第五节细胞膜在药学领域中的研究和应用(152 ) 一、药物与细胞膜的相互作用(152) 二、细胞膜研究热点内容(158) 三、细胞膜技术及其在药学研究中的应用(158 ) 思考题(164) 参考文献(164) 第五章细胞内膜系统(166) 内容提要(166) 第一节研究细胞内膜系统的方法学(167) 一、放射自显影术(168) 二、荧光蛋白技术(168) 三、亚细胞组分的生化分析(168) 四、无细胞系统(168) 五、遗传菌株突变技术(169) 第二节内质网(169) 一、内质网的基本结构特征(170) 二、内质网的化学组成(171) 三、内质网的类型(172) 四、内质网的功能(174) 五、内质网与疾病(183) 六、分子伴侣及其应用(185) 七、内质网研究展望(188) 第三节高尔基体(188) 一、高尔基体的基本特征(190) 二、高尔基体的功能(194) 三、高尔基体的病理状态(203) 四、高尔基体与药学研究的相互促进(204) 第四节溶酶体(205) 一、溶酶体的基本结构特征与分类(205) 二、溶酶体的功能(207) 三、溶酶体的形成(210) 四、溶酶体与疾病(212) 五、溶酶体的相关药学应用(213) 第五节微粒体与药物代谢(217) 一、微粒体与细胞色素P450酶系(218) 二、药物代谢研究的基本概念与方法(221) 三、重要的CYP氧化代谢酶举例(229) 思考题(234) 参考文献(235) 第六章线粒体(237) 内容提要(237) 第一节线粒体的生物学特征(237) 一、线粒体的形态与结构(238) 二、线粒体的化学组成与酶定位(240) 三、线粒体的增殖方式(242) 四、线粒体的半自主性(243) 第二节线粒体的主要功能(246) 一、真核细胞中的氧化作用(247) 二、氧化磷酸化是代谢能量转换的主要环节(249) 第三节线粒体与医药学(256) 一、病理过程中的线粒体变化及线粒体病的诊断(256 ) 二、药物与毒物对线粒体的影响(257) 三、线粒体靶标药物制剂技术(262) 四、线粒体与糖尿病(264) 五、线粒体与细胞凋亡(264) 思考题(265) 参考文献(265) 第七章细胞核(267) 内容提要(267) 第一节细胞核的超微结构与功能(268) 一、核被膜的超微结构与功能(268) 二、染色质的结构与染色体的构建(272) 三、核仁的超微结构与功能(284) 四、细胞核基质(核骨架)(288) 五、细胞核的功能(289) 第二节细胞核异常相关疾病及其治疗(291) 一、遗传性疾病(291) 二、恶性肿瘤(294) 思考题(294) 参考文献(295) 第八章核糖体(296) 内容提要(296) 第一节核糖体的形态结构与存在类型(297) 一、核糖体的形态结构(297) 二、核糖体的存在类型(297) 第二节核糖体的理化性质(298) 第三节核糖体的自组装(299) 第四节核糖体的功能(300) 一、合成蛋白质的类型(301) 二、蛋白质的生物合成(302) 第五节异常情况下核糖体的变化(308) 第六节影响蛋白质合成的药物(308) 一、血红素对血红蛋白合成的调节(309) 二、干扰素对蛋白质合成的调节(309) 三、抗生素对蛋白质生物合成的影响(309) 思考题(310) 参考文献(310) 第九章细胞骨架(311) 内容提要(311) 第一节细胞骨架概述(311) 一、细胞骨架的概念与主要功能(311) 二、细胞骨架的遗传学研究方法(313) 第二节微丝(314) 一、微丝的分子结构(314) 二、微丝结合蛋白(316) 三、肌肉收缩系统(319) 四、微丝的功能(322) 五、研究微丝的遗传学新方法(324) 第三节微管(324) 一、微管的分子结构(324) 二、微管结合蛋白(326) 三、微管组织中心(327) 四、微管的功能(329) 第四节中间纤维(332) 一、中间纤维的类型(332) 二、中间纤维的分子结构(334) 三、中间纤维结合蛋白(335) 四、中间纤维的功能(335) 五、三种细胞骨架的比较(336) 第五节细胞骨架蛋白与疾病及新药开发(336) 一、细胞骨架蛋白异常表达与疾病的举例(336 ) 二、微管抑制剂作为抗肿瘤药物的研究与开发(338) 三、功能基因组学为细胞骨架研究提供了新机遇 (347) 思考题(348) 参考文献(348) 第十章细胞增殖(350) 内容提要(350) 第一节细胞周期的基本概念(351) 一、什么是细胞周期(351) 二、细胞同步化(353) 第二节有丝分裂(354) 一、细胞分裂的类型(354) 二、有丝分裂的基本过程(354) 第三节减数分裂(363) 一、间期(365) 二、分裂期(365) 第四节细胞周期调控(369) 一、细胞周期调控的研究背景概述(369) 二、细胞周期的主要调控因子及其调控方式(374) 三、DNA复制的调控(381) 四、细胞周期关卡的调控(382) 五、生长因子的调控(384) 六、蛋白质合成对细胞增殖的影响(384) 第五节酵母细胞周期调控的功能基因组学研究实例(385 ) 一、寻找周期性表达的基因(385) 二、M和G1期转录水平达到峰值的基因(386) 三、S期和G2期转录水平达到峰值的基因(386) 四、周期性表达基因的转录调控(386) 五、细胞周期调控的基因表达的保守性(387) 第六节基于细胞周期相关机制的新药开发(389 ) 一、细胞周期研究在抗肿瘤新药开发中的应用(389) 二、细胞周期研究在抗病毒与抗真菌药物开发中的应用( 395) 三、利用细胞周期标记分子研究药物作用的机制与筛选新药(395) 思考题(396) 参考文献(397) 第十一章细胞分化(398) 内容提要(398) 第一节细胞分化的概念与胚胎发育过程中细胞分化的潜能变化(398) 一、细胞分化的概念与特点(399) 二、细胞分化的主要标志与研究方法(408) 三、胚胎发育过程中细胞分化的潜能变化(410 ) 第二节细胞分化的分子机制与基因表达的调控(414) 一、细胞分化的分子机制(414) 二、细胞分化基因表达的调控(415) 第三节影响细胞分化的因素(419) 一、细胞内部组分对细胞分化的影响(421) 二、位置信息对分化的影响(422) 三、外部信号等对细胞分化的诱导和抑制(423 ) 第四节细胞分化及其相关技术在肿瘤研究中的应用(426 ) 一、细胞分化与肿瘤(426) 二、干细胞研究的应用价值与肿瘤(433) 三、肿瘤与诱导分化(439) 四、应用蛋白质组学技术研究肿瘤诱导分化的药物靶标( 442) 思考题(445) 参考文献(445) 第十二章细胞凋亡与衰老(446) 内容提要(446) 第一节细胞凋亡的特征与分子机制(447) 一、细胞凋亡的形态学与生物化学特征(447) 二、细胞凋亡与坏死的区别(452) 三、细胞凋亡发生的四个阶段(453) 四、影响细胞凋亡的因素(459) 五、细胞凋亡检测技术(460) 第二节细胞凋亡在药物开发中的应用远景(463 ) 一、细胞凋亡异常与疾病(463) 二、细胞凋亡药物的应用远景(464) 第三节细胞衰老(470) 一、细胞衰老的机制(471) 二、抗衰老药物(476) 思考题(480) 参考文献(480)详细介绍: 《药学细胞生物学》为国内第一部将细胞生物学与药学学科有机结合,面向全国高等药学院 校各专业本科生的生物学基础教材。本书以细胞生物学理论、原理和技术为基础, 研究其在新药研发、药学研究以及药品生产等方面的应用。全书共12章,涵盖药学细胞生物 学所涉及的基本理论和一些研究热点,包括绪论、细胞概述、研究方法、细胞膜、细胞内膜 系统、线粒体、细胞核、核糖体、细胞骨架,细胞增殖、细胞分化、细胞衰老与凋亡,并在 各章中融入了相关的药学知识与应用。相信本书的出版将对读者有所启迪,使其更加易于理 解细胞生物学与药学学科的相关知识和技术。
主要应用于工业生产等!
细胞工程论文
细胞工程是生物工程的一个重要方面。总的来说,它是应用细胞生物学和分子生物学的理论和方法,按照人们的设计蓝图,进行在细胞水平上的遗传操作及进行大规模的细胞和组织培养。下面是我为大家整理的细胞工程论文,欢迎阅读。
【摘要】 目的制作去细胞肌肉组织工程支架,并检测其与人羊膜上皮细胞的生物相容性。方法 采用TNT和十二烷基磺酸钠结合的化学萃取方法制作去细胞肌肉组织工程支架,冰冻切片观察其结构。将人羊膜上皮细胞种入支架培养7 d后,用免疫组化检测羊膜上皮细胞的增殖活性、NT3及BDNF的表达,扫描电子显微镜观察其超微结构。结果 支架中细胞去除完全,其主要结构为平行排列的管状结构。细胞外基质的主要成分弹性纤维和胶原纤维保持完好。羊膜上皮细胞在支架里有增殖活性,并呈现NT3、BDNF免疫反应阳性。扫描电镜显示,羊膜上皮细胞在支架中分布均匀,生长良好。结论 成功的制作了去细胞肌肉组织工程支架,其与人羊膜上皮细胞有良好的相容性。
【关键词】 去细胞肌肉;人羊膜上皮细胞;生物相容性
近年来组织工程研究的重要进展之一就是采用自体或异体移植物制作天然生物降解材料的组织工程支架。其中去细胞移植物与机体有良好的生物相容性。去细胞肌肉支架可作为生物工程支架支持神经细胞轴突再生。Mligiliche等〔1〕把去细胞肌肉移植入大鼠坐骨神经缺损处,4 w后发现有大量神经轴突长入去细胞肌肉支架中。由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限,去细胞肌肉支架要发挥更大的作用往往需要向支架中植入种子细胞〔2,3〕。研究表明羊膜上皮细胞可分泌多种神经因子〔4,5〕,促进神经元轴突的生长,是一种良好的治疗神经系统疾病的种子细胞。本研究利用化学去细胞的方法制成去细胞肌肉支架,并把羊膜上皮细胞种入去细胞肌肉支架内,探究两者的相容性,为开展组织工程治疗神经系统方面的疾病提供新的途径。
1 材料与方法
1.1 材料
1.1.1 实验动物 Wistar 大鼠由吉林大学白求恩医学院实验动物中心提供。
1.1.2 试剂 IMDM培养基及小牛血清由Hyclone 公司提供。5′溴尿嘧啶核苷(BrdU) 及BrdU 单克隆抗体购自Neomarker公司;神经营养素(NT)3,脑源性神经营养因子(BDNF)兔抗人多克隆抗体购自武汉博士德公司,SABC免疫组化试剂盒购自福州迈新生物公司。人羊膜上皮细胞株为本实验室保存。
1.2 方法
1.2.1 去细胞肌肉支架的制备 参考 Brown等〔6〕去细胞膀胱的制作方法制备去细胞肌肉支架,简述如下:取Wistar大鼠腹锯肌,放入蒸馏水中,在摇床中以37℃、50 r/min摇48 h后,转入3%的TritonX100溶液,摇床中37℃、50 r/min摇48 h。然后放入蒸馏水中,摇床37℃、50 r/min摇48 h。换成1% SDS溶液,摇床37℃,50 r/min摇48 h。PBS洗24 h。PBS中4℃保存备用。
1.2.2 支架形态结构的观察及成分鉴定 肉眼观察去细胞肌肉的形态。去细胞肌肉用4%多聚甲醛PBS固定1 h,5%蔗糖90 min,15%蔗糖90 min,30%蔗糖过夜以梯度脱水,OCT包埋,冷丙酮速冻,之后放入-70℃冰箱保存。恒冷箱切片机切片,HE 染色,观察其内部结构。此外对切片进行Van Gienson(VG)染色和 Weigert染色(VG+ET染色)检测支架的细胞外基质成分。
1.2.3 人羊膜上皮细胞的培养 人羊膜上皮细胞在DMEM培养液中(含10%胎牛血清,100 U/ml青霉素,100 mg/ml链霉素,200 μg/ml的谷氨酰胺),37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,待单层培养细胞生长至80%汇合后,传代培养。
1.2.4 人羊膜上皮细胞与去细胞肌肉支架相容性的鉴定
1.2.4.1 取生长良好的人羊膜上皮细胞,80%细胞接近融合,弃去培养液,0.25%胰蛋白酶消化,当胞体回缩,细胞间隙变宽时,用血清终止消化,反复轻吹瓶壁细胞,制成单细胞悬液于离心管中,1 000 r/min,离心3 min。用DMEM重悬细胞。用1 ml注射器吸入细胞悬液,以2×106/ml 密度注入去细胞肌肉支架中分装至24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养,隔天换液,培养1 w。掺入Brdu(终浓度为10 mg/L),继续培养1 d后,恒冷箱切片机切片(方法同前)。切片经PBS 洗后,3% H2O2灭活内源性过氧化物酶10 min,血清封闭20 min;一抗用BrdU(1∶1 000稀释)单克隆抗体,BDNF和NT3多克隆抗体(1∶100稀释)4℃孵育过夜,PBS 洗后,二抗37℃孵育30 min,PBS 洗后,SABC37℃孵育30 min,DAB显色。光镜下观察。
1.2.4.2 扫描电子显微镜鉴定羊膜上皮细胞在去细胞肌肉支架上的生长情况 取生长良好的人羊膜上皮细胞,80%细胞接近融合时,用上述方法消化下来后,把羊膜上皮细胞种植到去细胞肌肉支架中,放在24孔板中,在37℃、5 % CO2及饱和湿度条件下的细胞培养箱中培养7 d后,用2%戊二醛固定后,梯度乙醇脱水,CO2临界点干燥,镀膜,采用扫描电子显微镜观察并拍照。
2 结 果
2.1 支架的组织结构与成分 去细胞肌肉外观呈乳白色,半透明,质地柔软。从大体上看,肌肉去细胞前后整体大小与形状无显著变化。支架纵切面的HE染色观察可见骨骼肌细胞成分消失,而纤维网架结构保持完整,支架内主要为平行管道。VG+ET染色证明支架成分主要为胶原纤维和弹力纤维等细胞外基质成分,胶原纤维为红色波浪状结构,弹性纤维为蓝色丝状结构,见图1。
2.2 羊膜上皮细胞与去细胞肌肉支架的兼容性 见图2,HE染色显示人羊膜上皮细胞在支架中生长良好,分布均匀(图
图1 去细胞肌肉支架大体与组织切片染色
图2 去细胞肌肉支架的病理图片2A)。免疫组化染色显示,BrdU阳性细胞数目多,提示支架中的人羊膜上皮细胞有增殖能力(图2B)。抗NT3和BDNF染色显示,支架中的人羊膜上皮细胞含有NT3、BDNF阳性颗粒,呈棕褐色分布在细胞质中(图2C,2D)。JSM5600LV扫描电子显微镜显示,在支架内部分布有大量细胞,细胞在支架中分布比较均匀,生长状态良好(图2E)。
3 讨 论
理想的支架材料应与细胞外基质类似,与活体细胞有良好的生物相容性〔7,8〕。去细胞肌肉作为治疗神经损伤的生物工程支架材料有如下优势:(1)去细胞肌肉的细胞外基质成分对组织细胞的'迁移、黏附、生长代谢都有重要作用,研究表明再生的轴突可以很好的黏附在去细胞肌肉支架上〔9〕。(2)去细胞肌肉的排列结构与神经膜管类似,仅在直径上略大于神经膜管〔10〕,它们提供了轴突可生长穿过的足够空间〔9〕,该结构对于诱导神经轴突再生是十分重要的。 Fansa等比较了接种施万细胞的不同去细胞生物材料(肌肉,静脉,神经外膜)桥接缺损的外周神经的结果,发现缺乏神经膜管样结构的去细胞肌肉支架(静脉和神经外膜支架)中的再生轴突是无序和排列混乱的,而有神经膜管样结构的去细胞肌肉支架中的再生轴突是有序排列的〔11〕。这种轴突再生的有序性对神经损伤的轴突再生同样也是十分重要的。(3)去细胞肌肉引起的免疫排斥反应较小〔9,12〕。这些优势都说明去细胞肌肉可作为治疗神经损伤的理想的材料。本研究采用的制作去细胞肌肉的方法主要用来减少异种移植材料的免疫排斥反应。该方法能有效的去除脂膜和膜相关抗原以及可溶性蛋白,并能有效的保留细胞外基质成分的原始空间结构。肌细胞正常呈平行分布,其细胞外基质成分也是平行分布的,从支架纵切面的结果看支架的纤维成分也是平行排布的,VG+ET染色结果显示细胞外基质的主要成分胶原纤维和弹性纤维保持完好。这些结果进一步证实此方法可成功制备去细胞肌肉支架。
由于单独应用去细胞肌肉支架治疗神经系统疾病的效果有限〔13〕,去细胞肌肉的生物相容性也有待验证。本研究用人羊膜上皮细胞作为种子细胞种入去细胞肌肉支架以探讨其相容性。研究表明,羊膜上皮细胞中含有多种生物活性因子,包括黏蛋白、转移生长因子、前列腺素E、表皮生长因子样物质,IL1,IL8 等因子,另外,还可分泌BDNF和NT3等重要的神经营养因子〔4〕。其中层黏蛋白、BDNF和NT3等生物活性因子对神经损伤的治疗具有十分重要的作用。羊膜上皮细胞可作为一种较理想的种子细胞,与去细胞肌肉支架结合可能成为治疗神经系统疾病的一个理想的组织工程材料。本实验观察到人羊膜上皮细胞在去细胞肌肉支架中分布均匀,抗BrdU、BDNF及NT3免疫组化显示去细胞肌肉支架中羊膜上皮细胞有良好的增殖能力,并能表达BDNF和NT3,说明羊膜上皮细胞在去细胞肌肉支架中保持了良好的生物学活性。以上结果一方面证明了本研究制作的去细胞肌肉支架有良好的生物相容性,另一方面为应用羊膜上皮细胞和去细胞肌肉支架结合治疗神经系统疾病提供了理论和实验基础。
总之 ,本研究成功制备了去细胞肌肉支架,并证实人羊膜上皮细胞在去细胞肌肉支架中能分泌重要的神经营养因子,人羊膜上皮细胞与去细胞肌肉支架桥接体为神经缺损再生提供了基底膜、神经营养因子等种种有利因素,构成了良好的神经再生微环境,有利于使神经缺损得到较好地修复,为进一步研究羊膜上皮细胞与去细胞肌肉支架桥接体治疗神经损伤奠定了一定的实验基础。
【参考文献】
1 Mligiliche N,Kitada M,Ide C.Grafting of detergentdenatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve〔J〕.Arch Histol Cytol,2001;64 (1):2936.
2 Fansa H,Keilhoff G,Forster G,et al.Acellular muscle with Schwanncell implantation:an alternative biologic nerve conduit〔J〕.J Reconstr Microsurg,1999;15(7):5317.
3 Gulati AK,Rai DR,Ali AM.The influence of cultured Schwann cells on regeneration through acellular basal lamina grafts〔J〕.Brain Res,1995;705(12):11824.
4 朱 梅,陈 东,盂晓婷,等.羊膜上皮细胞移植治疗帕金森病大鼠的实验研究〔J〕.中国老年学杂志,2006;26(2):2279.
5 Meng XT,Chen D,Dong ZY,et al.Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cells coculture〔J〕.Cell Biol Intern,2007;31:6918.
6 Brown AL,BrookAllred TT,Waddell JE,et al.Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscleurothelial cell interactions〔J〕.Biomaterials,2005;26:52943.
7 Suh JK,Matthew HW.Application of chitosanbased polysaccharide biomaterials in cartilage tissue engineering:A review〔J〕.Biomaterials,2000;21(24):258998.
8 Grande DA,Halberstadt C,Naughton G,et al.Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts〔J〕.J Biomed Mater Res,1997;34(2):21120.
9 Fansa H,Schneider W,Wolf G,et al.Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts〔J〕.Transplantation,2002;74(3):3817.
10 李培建,胥少汀.去细胞肌肉支架移植及神经生长因子对脊髓横断性损伤的修复作用〔J〕.中国脊柱脊髓杂志,2000;10(4):2203.
11 Fansa H,Keilhoff G.Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects〔J〕. Neurol Res,2004;26(2):16773.
12 Brown AL,Farhat W,Merguerian PA,et al.22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model〔J〕.Biomaterials,2002;23:217990.
13 李培建,李兵仓,胥少汀.肌基膜管移植修复脊髓缺损的实验研究〔J〕.中华创伤杂志,2001;17(9):5258.
自己看饮食营养与健康之道 □叶永铁 老祖宗曾有说教:“五谷为养,五果为助,五畜为益,五菜为充,气味合而服之,以补益精气”。以现在科学的说法称为蛋白质的“互补作用”,意即是要获得人体所必需的各种营养素,必须注意食品的合理搭配,切忌吃荤不吃素或吃素不吃荤。同时,合理的搭配亦能提高蛋白质的生理价值,因为各种蛋白质是由多种氨基酸组成的,甲蛋白质所缺乏的某种氨基酸恰为乙蛋白质所含有,乙蛋白质所缺乏的恰为甲蛋白质所含有。例如小麦、小米、黄豆、牛肉分别单独食用时,其生理价值分别为67、57、64、76,而混合食用时其生理价值可达89,大大提高了食物蛋白质的利用率,反之未被利用的蛋白质则排出体外,劳而无功,颇似小时曾念过的课文《一个豆瓣的旅行》。实际上,我国北方地区主食以杂粮为主(南方以大米为主)撇开气候、水土等因素,就其摄取的蛋白质看已接近或达到完全蛋白质的生理价值。因此,北方人普遍体格健壮魁梧,脸庞红润。近来随着生活的富足,都市中有相当部分的儿童出现肥胖症,其症结都在于对某类食物超常的食欲感。由于对某种营养素超常的吸收和利用能力,它与成年者出现的热能过剩、脂肪沉积出现肥胖有着本质的区别,应及时调整控制其膳食结构。 年轻时曾知晓一个人有怪癖,他常常吞食一些墙土,让人费解,其实从饮食营养学角度看,皆因其胃酸过多,无意中发现掺有石灰的墙土吞食之后人体感到舒服,达到酸碱中和的目的。而现在只要几片苏打片就可解决的问题,在当时缺医少药的情况下,人体自身的修补与对环境的适应性,令人叹为观止。而今环境条件越好,人类机体自我适应、自我完善的意识已逐渐褪化减弱,但并非消失。例如一个不会吃辣椒的人,长期在四川生活并经常吃一点辣,则就有可能会喜欢吃辣椒。一个长期吃较多肉的人,其体内消化蛋白质和脂肪的酶的活力会升高。一个长期吃素者,其消化液中的淀粉酶活性会升高,其蛋白质酶和脂肪酶活性则降低。因此,中枢神经在参与机体对营养素的摄取、消化、吸收和利用的过程中起着重要的作用。应避免进餐时精神忧郁、阅读书报或考虑其它问题。有条件可在进餐前听一段轻松愉快的音乐,在光线充足,空气流通,温度适中,布置优雅的餐厅就餐,则更为快事。 还有自己
关于营养与健康的论文:
学时代是学知识长身体的重要阶段,同时也是良好的饮食习惯形成的重要时期,这个阶段掌握一定的营养知识,形成良好的饮食习惯,对于促进生长发育保证身体健康有重要的意义。尤其对于当代大学生,时代赋予我们的使命要我们必须有健康的体魄,具备热血青年的朝气蓬勃,才能成为国家栋梁,那么,关注自我,关注饮食营养,关注健康就成为我们不可忽视的问题。
一、大学生营养状况
目前大学生因学费过高,其它开支增大,并伴有不良的饮食习惯,如不吃早餐、挑食、偏食、平时节约到星期天饱食一顿等,致使大学生普遍营养不良。
二、合理营养对促进大学生健康与学习的作用
合理的营养与人的生长发育、劳动能力、延长寿命及疾病的预防、治疗、康复有着密切的关系。
1、合理营养能促进身体发育
食物是大学生生长发育最主要的物质基础。有机体的生长发育、生命活动及脑力劳动和体力劳动的进行,都有赖于体内的物质代谢,体内在进行物质代谢的过程中必须不断地从外界摄取一定数量的食物,才能促进生长发育、增强体质、增加免疫功能、预防疾病、提高工作效率和运动能力等。
合理的营养意味着机体能够摄入保持身体健康所必须的所有营养成分,并且各种营养素的比例符合人体的要。营养素缺乏,或各种营养素摄入不均衡,膳食结构不合理等,不但会引起生长发育迟缓,而且会导致各种急、慢性营养不良和各种营养缺乏症。因此,合理营养与膳食平衡能够更好地促进大学生健康成长。
2、合理营养能改善记忆与提高学习效率
合理营养,能够提高人脑的活动能力,增强人的计算能力、记忆能力、判断能力、行动能力和视力等。脑是人体最活跃的器官,虽然其重量只有人体的2%左右,但脑消耗的能量却占全身总耗能量的20%。因此,合理营养对于大脑保健具有重要的作用。
三、大学生健康饮食原则
①食物多样、谷类为主;②多吃蔬菜、水果和薯类;③每天吃乳类、豆类或其制品;④经常吃适量鱼、禽、蛋、瘦肉,少吃肥肉和荤油;⑤食量与体力活动要平衡,保持适宜体重;⑥吃清淡少盐的膳食;⑦如饮酒应限量;⑧吃清洁卫生、不变质的食物。
四、对策和建议
1、在学校推广营养套餐
说到营养套餐,食堂是学生就餐的主要场所。在校的学生,我认为说到营养就应该大力推广营养套餐。主要原因是很多人还不知道或者是没有时间了解多少营养知识,所以要通过营养师对营养餐的配餐,起到潜移默化的作用。同时还要考虑口味和价格的需求,通过早餐的搭配组合可以减少交易的时间,方便携带,提高早餐的就餐率。
2、增加食堂饭菜的风味
食堂饭菜口味多样化,能够满足不同地区学生的口味,学生就乐于在食堂就餐,学生的营养状况也能够提升。
3、食物多样化,谷类为主,粗细搭配
谷类食物是中国传统膳食的主体,是人体能量的主要来源。谷类包括米、面、杂粮,主要提供碳水化合物、蛋白质、膳食纤维及B族维生素。坚持谷类为主是为了保持我国膳食的良好传统,避免高能量、高脂肪和低碳水化合物膳食的弊端。另外要注意粗细搭配,经常吃一些粗细,杂粮等。稻米,小麦不要碾磨太精,否则谷粒表层所含的维生素,矿物质等营养素和膳食纤维大部分流失到糠麸之中。
4、多吃水果,薯类和深色蔬菜,建议每日一个苹果
蔬菜与水果含有丰富的维生素,矿物质和膳食纤维。特别是薯类含有丰富的淀粉,膳食纤维,以及多种维生素和矿物质。含丰富蔬菜,水果和薯类的膳食,对保持心血管健康,增强抗病能力起着十分重要的作用。
5、常吃事宜的畜,鱼和瘦肉
鱼,禽,蛋,瘦肉等动物性食物是优质蛋白质,脂溶性维生素和矿物质的良好来源。动物性蛋白质的氨基酸组成更适合人体需要,且赖氨酸含量较高,有利于补充植物蛋白质中赖氨酸的中足。鸡,鱼,兔,牛肉等动物性食物含蛋白质较高,脂肪较低,产生的能量远低于猪肉。应大力提倡吃这些食物,适当减少猪肉的消费比例。
5、适当吃零食,少吃方便食品,不吃烧烤,限制宵夜
若晚上能量不足即出现饥饿感,应当补充易消化的食物如粥类,面包等,也可以补充少量水果和牛奶,少吃泡面。
五、结语
大学生作为优秀的青年群体,是祖国的未来,是民族的希望,他们素质水平的高低将直接影响到我们国家未来的发展。营养是高素质人才的物质基础,大学生具有健康的饮食行为与良好的营养状况,是适应未来社会竞争的必要前提和基础。因此,关注大学生营养与健康是一项重要责任!
2021年6月份发表在 Cell Death & Differentiation (IF=10.719 )上的综述Molecular mechanisms of cell death in neurological diseases。在这篇综述中,作者简要概述了程序性细胞死亡(PCD,Programmed Cell Death),包括细胞凋亡、坏死性凋亡、细胞焦亡、铁死亡以及与自噬和非程序性坏死相关的细胞死亡过程,以及它们在导致大脑神经退行性疾病或肿瘤发生中的作用。此外,作者还讨论了不同的细胞死亡信号级联和疾病发病机制之间的相互作用,并描述了针对已进展到临床试验的细胞死亡信号通路中的关键参与者的药物制剂。 背景 在多细胞生物组织稳态的正常发育和维持过程中,以及消除受损、感染或衰老的细胞过程中PCD是必需的,这些过程依赖于严密调控的PCD信号事件。自1972年细胞程序性自杀的超微结构特征被确定以来,以细胞凋亡(apoptosis)“代称”的PCD逐渐进入科学家的视野,这些超微结构特征包括:细胞质收缩、核浓缩和分裂以及在生理或某些病理条件下在各种组织中明显的凋亡小体的形成。已经有一些抗凋亡和促凋亡蛋白家族成员能够调节该途径,例如抗凋亡蛋白(BCL-2、BCL-XL、MCL-1、BCL-W和A1/BFL1)、细胞凋亡关键抑制蛋白(BAX和BAK)。 由大脑和脊髓组成的中枢神经系统也是由PCD塑造的,其中在时间和空间水平上严格调节的信号事件促进了神经结构的建立。在正常的神经胚胎和出生后发育中,细胞凋亡是PCD的主要形式。细胞凋亡会影响不同的细胞群,包括神经前体细胞、神经元和神经胶质细胞,确保只有大小和形状正确并与其轴突和神经突建立适当连接的细胞才能存活。虽然去除多余的神经元细胞对正常脑功能至关重要,但不同神经元细胞群的异常死亡是与神经退行性疾病相关的病理学标志,例如肌萎缩侧索硬化、阿尔茨海默病、帕金森病和亨廷顿病。相反,大脑中神经元细胞或其他细胞类型的PCD缺陷被认为会促进脑癌的发展,例如高度侵袭性的多形性胶质母细胞瘤。本文重点帮助大家梳理了所有的细胞死亡形式及分子水平的变化。 1.程序性细胞死亡的分类 细胞死亡途径包括细胞凋亡(Apoptosis)、坏死性凋亡(Necroptosis)、自噬(Autophagy)、铁死亡(Ferroptosis)、细胞焦亡(Pyroptosis)、坏死(Necrosis),它们具有不同的形态和生化特征相关(参见图1)。例如,细胞凋亡通常与细胞收缩有关,而坏死性凋亡则涉及细胞肿胀和细胞内容物泄漏,后面展开详细论述。 图1细胞死亡途径及相关的形态学和生化特征 2.细胞凋亡(Apoptosis) 细胞凋亡可以被两个不同的通路触发:内源性的线粒体途径(BCL-2途径)和外源性的死亡受体途径。(图2) 内在途径由 BCL-2 蛋白家族的促凋亡和抗凋亡成员调节。在健康细胞中,抗凋亡蛋白BCL-2、BCL-XL、MCL-1、BCL-W和A1/BFL1通过抑制BAX 和BAK的基本效应来保证细胞存活。当细胞处于应激状态(例如生长因子剥夺、DNA损伤、ER应激)时,BH3-only 蛋白(BIM、PUMA、BID、BMF、BAD、HRK、BIK、NOXA)作为细胞凋亡的关键启动子,会呈现出转录或转录后层面的上调,与抗凋亡BCL-2蛋白以高亲和力结合,释放BAX和BAK并形成寡聚体,导致线粒体外膜通透性增加,线粒体释放cytochrome c和Smac/DIABLO等凋亡因子,这些凋亡因子促进半胱天冬酶级联反应的激活,导致数百种蛋白质的裂解,最终导致细胞破坏。 死亡受体途径通过肿瘤坏死因子受体超家族成员的配体激活,这些家族成员具有细胞内死亡结构域,促进了细胞内死亡诱导信号复合物的形成,导致caspase-8和下游效应器半胱天冬酶(caspase-3和caspase-7)的激活。死亡受体途径可以通过caspase-8介导的促凋亡蛋白BID的蛋白水解过程激活从而与内源性凋亡通路连接到一起。 3.坏死性凋亡(Necroptosis) 坏死性凋亡是PCD的一种细胞裂解形式,并且可导致炎症。当caspase-8的活性被药物或病毒抑制剂阻断时,TNFR1、TLR等受体的刺激可诱导坏死性凋亡,涉及受体相互作用的丝氨酸/苏氨酸蛋白激酶1(RIPK1)的自磷酸化激活。RIPK1激活RIPK3,之后RIPK3磷酸化并激活下游MLKL,这是导致细胞膜裂解的坏死性凋亡的末端效应物。这促进了损伤相关的分子模式、病原体相关分子模式的释放,这些内源性分子的释放促进了炎症反应。 图2 细胞凋亡和坏死的分子途径 4.与自噬相关的细胞死亡(Cell death associated with autophagy) 自噬是大分子结构甚至整个细胞器降解过程中的高度保守的步骤,在细胞和组织稳态中起关键作用,对于调节蛋白质的细胞质周转和整个细胞器的很重要。营养缺乏、氧化应激和蛋白质聚集等许多刺激都可以启动细胞自噬。在这些情况下,自噬减少了细胞压力,并为细胞提供了用于修复、存活和生长的代谢物。根据细胞内底物进入溶酶体腔的方式不同,自噬可分为三大亚型:大自噬(macro-autophagy)、微自噬(micro-autophagy)和分子伴侣介导的自噬(chaperone-mediated autophagy)。这些自噬方式都集中在溶酶体上,用于细胞内容物降解和回收。尽管自噬通常用于促进细胞存活,但在某些情况下,例如果蝇发育过程中唾液腺的退化,自噬与细胞杀伤有关。 5.细胞铁死亡(Ferroptosis) 铁死亡在2012年首次被提出,是指铁依赖性坏死的一种PCD形式。铁死亡的最终结局是压倒性的脂质过氧化,导致细胞完全衰竭。尽管铁死亡表现出以前通常称为氧化应激诱导的细胞死亡的许多特征,但有许多方面足以将其区分为一种独特的细胞死亡形式,例如铁死亡在形态和功能上与一般氧化应激不同。ACSL4和LPCAT3等许多铁死亡相关的分子成分已经被确定,它们产生容易过氧化的膜脂,以及为细胞提供谷氨酸-胱氨酸逆向转运蛋白系统xCT来保证细胞所必需的半胱氨酸。铁死亡诱导剂包括GPX4抑制剂(RSL3、ML210、ML162、FIN56、FINO2)、谷胱甘肽合成中断剂(丁硫氨酸亚砜亚胺)、xCT系统抑制剂(埃斯汀、索拉非尼、柳氮磺吡啶、谷氨酸盐)、铁。铁死亡的内源性抑制剂包括谷胱甘肽、泛醌、维生素E和硒。 图3 铁死亡和细胞焦亡的分子途径 6.细胞焦亡(Pyroptosis) 细胞焦亡是PCD的一种炎症形式,涉及炎症小体对caspase-1的激活,caspase-1通过蛋白水解将pro-IL-1β和 pro-IL-18分别加工成成熟的炎性细胞因子IL-1β和IL-18。GSDMD是细胞焦亡的关键执行者,在被caspase-1切割后其N端片段组装成质膜孔,从而允许释放生物活性IL-1β、IL-18以及其他细胞内容物。细胞焦亡表现出表现出质膜起泡的形态,因此通常被认为是单核细胞特异性的细胞凋亡形式。然而,最近发现的GSDMD及其成孔活性已将细胞焦亡重新定义为细胞死亡的一种坏死形式。许多神经退行性疾病,包括AD、PD、ALS、HD、多发性硬化、中风和创伤性脑损伤,都有细胞焦亡(伴有炎性小体激活和IL-1β和IL-18升高)的证据报道。在多发性硬化的动物模型中,发现了小胶质细胞和少突胶质细胞的炎性小体激活和焦亡,其中病理通过抑制caspase-1减弱 7.坏死(Necrosis) 坏死通常被认为是一种非程序化的、不受调节的细胞死亡过程,其特征是细胞肿胀、生物膜完整性丧失、细胞内容物溢出和离子梯度的消散,从而引发炎症反应。缺氧、冷冻或灼烧、病原体刺激、物理化学应激、缺血再灌注和钙超载等来自细胞外部的过度刺激,可能会诱导细胞发生坏死。坏死的早期事件包括细胞内钙离子增加、活性氧浓度增加,最终导致不可逆的细胞损伤。然而,与坏死性凋亡不同,坏死缺乏明确的核心细胞信号转导机制,但最近Ninj1被确定为对质膜破裂至关重要,此外Ninj1对于在坏死性凋亡、细胞焦亡和继发性坏死期间发生的质膜破裂也同样至关重要。 8.治疗前景 不同细胞死亡途径的调节器和效应器仍然是有吸引力的治疗靶点,它们可能构成转化医学的基础,有望改善患有这些疾病的患者的临床治疗。鉴于复杂的神经系统疾病的病因,其中多种细胞死亡机制通常与其他细胞过程相结合从而共同驱动病理进展,有效的疗法似乎可能包括一种以上细胞死亡程序的抑制剂和其他细胞过程的抑制剂。图4显示了已进入临床试验的细胞死亡途径中的一些关键靶标。 图4神经疾病中针对细胞死亡途径的候选药物 结论 细胞焦亡在神经退行性疾病发病机制中扮演着重要角色。除此之外,已有研究发现以炎症小体形成、caspase-1激活以及GSDMD N和C末端分离为特征的细胞焦亡可能与炎症性肠病(IBD) 发病机制有关,NEK7与NLRP3 相互作用以调节 NLRP3 炎性体激活,从而调节 MODE-K 细胞中的细胞焦亡和 DSS 诱导的小鼠慢性结肠炎。心血管疾病(CVD),尤其是动脉粥样硬化和心肌梗塞,通常伴随着细胞死亡和急性/慢性炎症反应。半胱天冬酶依赖性细胞焦亡的特征是激活导致 NOD 样受体激活的通路,尤其是 NLRP3 炎性体及其下游效应炎症因子白细胞介素 (IL)-1β和IL-18。过去十年中的许多研究都调查了细胞焦亡在 CVD 中的作用。这些研究的结果导致了基于焦亡调节的治疗方法的发展,其中一些方法正在临床试验中。不仅如此,细胞焦亡在川崎病、帕金森等疾病中,同样被报道发挥着重要的作用。这些研究都为探索疾病与细胞焦亡提供了强有力的理论基础。因此,生信人推出了非肿瘤疾病细胞焦亡思路 (见副推) ,感兴趣又苦于没有思路的,赶紧安排上!
中国居民膳食指南的理解前言:俗话说:“民以食为天”,可见日常生活中的饮食对我们身体健康影响至关重要,而生活中的我们往往忙碌于工作、学习,而对于正确的膳食指南了解甚少,往往不了解食物的营养,不注重食物的搭配吃用,造成食物的营养流失,吃得不健康,甚至吃出病。因此我们每个人都应该对平常的膳食多加关心,多作充分的了解,让我们可以吃得健康,活得快乐。首先食物要多样、谷类为主。人类的食物是多种多样的,各种食物所含的营养成分不完全相同。平衡膳食,必须由多种食物组成,才能满足人体各种营养素的需要,达到合理营养、促进健康的目的。因而要提倡人们广泛食用多种食物。谷类食物是中国传统膳食的主体。随着经济发展,生活改善,人们倾向于食用更多的动物性食物。根据1992年全国营养调查的结果,在一些比较富裕的家庭中动物性食物的消费量已超过了谷类的消费量。这种“西方化”或“富裕型”的膳食提供的能量和脂肪过高,而膳食纤维过低,对一些慢性病的预防不利。提出谷物为主是为了提醒人们保持我国膳食的良好的传统,防止发达国家膳食的弊端。另外,要注意粗细搭配,经常吃一些粗粮、杂粮等。稻米、小麦不要碾磨太精,否则,谷粒表层所含的维生素、矿物质等营养素和膳食纤维大部流失到糠麸之中。除此以外每天该吃奶类、豆类或其制品。奶类除含有丰富的优质蛋白质和维生素外,含钙量较高,且利用率也很高,是天然钙质的极好来源。我国居民膳食提供的钙普遍偏低,平均只达到推荐供给量的一半左右。我国婴幼儿佝偻病的患者也较多,这和膳食钙不足可能有一定的联系。大量的研究表明,给儿童、青少年补钙可以提高其骨密度,从而延缓其发生骨质疏松的年龄;给老年人补钙也可能减缓其骨质丢失的速度。因此,应大力发展奶类的生产和消费。豆类是我国的传统食品,含有丰富的优质蛋白质、不饱和脂肪酸、钙及维生素B1、维生素B2、烟酸等。为提高农村人口蛋白质摄入量及防止城市中过多消费肉类带来的不利影响,应大力提倡豆类,特别是大豆及其制品的生产和消费。还要多吃蔬菜、水果和薯类。蔬菜与水果含有丰富的维生素、矿物质和膳食纤维。蔬菜的种类繁多,包括植物的叶、茎、花苔、茄果、鲜豆、食用蕈藻等,不同品种所含营养成分不尽相同,甚至悬殊很大。红、黄、绿等深色蔬菜中维生素含量超过浅色蔬菜和一般水果,他们是胡萝卜素、维生素B2、维生素C和叶酸、矿物质(钙、磷、钾、镁、铁)、膳食纤维和天然抗氧化物的主要或重要来源。薯类含有丰富的淀粉、膳食纤维以及多种维生素和矿物质。我国居民近十年来吃薯类较少,应当鼓励多吃些薯类。有丰富蔬菜、水果和薯类的膳食,对保护心血管健康、增强抗病能力、减少儿童发生干眼病的危险及预防某些癌症等有着十分重要的作用。经常吃适量的鱼、禽、蛋、瘦肉,少吃肥肉和荤油。鱼、禽、蛋、瘦肉等动物性食物是优质蛋白质、脂溶性维生素和矿物质的良好来源。动物性蛋白质的氨基酸组成更适合人体需要,且赖氨酸含量较高,有利于补充植物性蛋白质中赖氨酸的不足。肉类中的铁易被身体吸收利用,鱼类特别是海产鱼所含不饱和脂肪酸有降低血脂和防止血栓形成的作用。动物肝脏含维生素A极为丰富,还富含维生素B12、叶酸等。但有些脏器如脑、肾等所含胆固醇相当高,对预防心血管系统疾病不利。我国相当一部分城市和绝大多数农村居民平均摄入动物性食物的量还不够,应适当增加摄入量。但部分大城市居民食用动物性食物过多,吃谷类和蔬菜不足,对健康不利。肥肉和荤油为高能量和高脂肪食物,摄入过多往往会引起肥胖,并是某些慢性病的危险因素,应当少吃。目前猪肉仍为我国人民的主要肉食,猪肉脂肪含量高,应发展瘦肉型猪。鸡、鱼、兔、牛肉等动物性食物含蛋白质较高,脂肪较低,产生的能量远低于猪肉,应大力提倡吃这些食物,适当减少猪肉的消费比例。食量与体力活动要平衡,保持适宜体重。进食量与体力活动是控制体重的两个主要因素。食物提供人体能量,体力活动消耗能量。如果进食量过大而活动量不足,多余的能量就会在体内以脂肪的形式积存即增加体重,久之便发胖;相反,若食量不足,劳动或运动量过大,可由于能量不足引起消瘦,造成劳动能力下降。所以人们需要保持食量与能量消耗之间的平衡。对于脑力劳动者和活动量较少的人应加强锻炼,开展适宜的运动,如快走、慢跑、游泳等。对消瘦的儿童应增加食量和油脂的摄入,以维持正常生长发育和适宜体重。体重过高或过低都是不健康的表现,可造成抵抗力下降,易患某些疾病,如老年人的慢性病或儿童的传染病等。经常运动会增强心血管和呼吸系统的功能,保持良好的生理状态、提高工作效率、调节食欲、强壮骨骼、预防骨质疏松。一日三餐的能量摄入分配要合理。一般早、中、晚餐的能量分别占总能量的30%、40%、30%为宜。吃清淡少盐的膳食。吃清淡少盐的膳食有利于健康,即不要吃太油腻太咸的食物,不要吃过多的动物性食物和油炸、烟熏食物。目前,城市居民的油脂摄入量越来越高,这样不利于健康。我国居民食盐摄入量过多,平均值是世界卫生组织建议值的2倍以上。流行病学调查表明,钠的摄入量与高血压的发病呈正相关,因而食盐不宜过多。世界卫生组织建议每人每天食盐用量不超过6克为宜。膳食钠的来源除食盐外还包括酱油、咸菜、味精等高钠食品及含钠的加工食品等。应从幼年就养成吃少盐膳食的习惯。饮酒应限量。在节假日、喜庆和交际场合,人们往往饮酒。高度酒含能量高,不含其他营养素。无节制地饮酒,会使食欲下降,食物摄入减少,以致发生多种营养素缺乏,严重时还会造成酒精性肝硬化。过量饮酒会增加患高血压、中风等危险,并可导致事故及暴力的增加,对个人健康和社会安定都是有害的。应严禁酗酒,若饮酒可少量饮用低度酒,青少年不应饮酒。吃清洁卫生、不变质的食物,在选购食物时应当选择外观好,没有污染、杂质,没有变色、变味,并符合卫生标准的食物,严格把住病从口入关。进餐要注意卫生条件,包括进餐环境、餐具和供餐者的健康卫生状况。集体用餐要提倡分餐制,减少疾病传染的机会。结语:因此我们要养成良好膳食习惯,形成良好的膳食观念,在日常生活中注重膳食,在饮食中获得营养并且吃得健康,热爱生命的朋友们,让我们为拥有长久健康的体质而努力吧!参考文献:1、《中国居民膳食指南》2、1997年的《中国居民平衡膳食宝塔》3、薛建平主编《食物营养与健康》,中国科学技术大学出版社2004年2月出版152页4、贾冬英姚开主编《饮食营养与食疗》.四川大学出版社2004年4月第一版139页