数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。
4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。
Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。
5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。
7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。
8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。
9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。
10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。
数学建模全国优秀论文相关 文章 :
★ 数学建模全国优秀论文范文
★ 2017年全国数学建模大赛获奖优秀论文
★ 数学建模竞赛获奖论文范文
★ 小学数学建模的优秀论文范文
★ 初中数学建模论文范文
★ 学习数学建模心得体会3篇
★ 数学建模论文优秀范文
★ 大学生数学建模论文范文(2)
★ 数学建模获奖论文模板范文
★ 大学生数学建模论文范文
数学小论文---生活中的数学 前几天时,我去了三个地方,大型商场,路边文具小店和天意批发市场。而我发现,这三个地方在同一样商品上价格差很多。因此我做了一个关于超艺 GP-8106梦&彩 0.8mm 6色这种笔的调查。 在大型商场,价格约是5~10元/支。在路边小店,价格约是2~3元/支。在批发市场,价格约是1~1.5元/支。由此可见,价格上,大型商场,路边小店都不如批发市场便宜。而在质量上,我在三种地方各买了一支笔,大型商场,小店,批发市场的质量都差不了多少。但是批发市场人多而杂乱,容易被偷钱,而大型商场又太贵了,所以综合起来,在路边小店买可能是一种很不错的选择。 生活中处处有数学,数学也是所有学科的基础,在生活中,我们应当多使用数学的方法思考问题,这样我们的思路就会更加的清晰,对自身的将来有莫大的好处。不用谢我,我六年级,我本来也要做的,只不过顺便发上来而已。
在现实的学习、工作中,大家或多或少都会接触过论文吧,论文是探讨问题进行学术研究的一种手段。那么,怎么去写论文呢?以下是我帮大家整理的我们生活中的数学-初三-议论文,欢迎阅读,希望大家能够喜欢。 从小我就非常喜欢数学,我认为数学是一门很有趣的科学。学好数学可以锻炼人的反应能力和思维能力。我们的生活中也时时刻刻少不了数学。 暑假的一天,因为天气很炎热,妈妈买了几个小西瓜回家。我正准备拿刀去切西瓜,被爸爸拦住了,爸爸说:“你不是很喜欢数学吗?我考考你,用4刀把一个西瓜切成9块,但必须有10块皮。你能做到吗?”我想了想,举起刀“咣咣”几刀,先三刀切成“米”字,西瓜分成6块。再横一刀切半个“米”,6+3=9,很简单呀!爸爸摇了摇头说:“数数有几块皮?”,“9块”我挠着头望着爸爸。我又试了一次,还是不对。看着一盆西瓜,我思索着,我决定拿笔在纸上画一画,妈妈爸爸投来赞同的.目光。我画着画着眼睛一亮,我又拿出一个西瓜——1,2,3,4,切了一个“井”字,西瓜分成了9块,中间的一块两面各有一块皮,不多不少正好10块。爸爸妈妈都坚起大拇指…… 其实不然,生活中还有很多有趣的数学。比如张老师才接我们班的时候,常常惩我们背儿歌:“一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿;三 只……”虽然很幼稚,但锻炼了我们的数学思维能力(爸爸说这叫逻辑思维)和反应能力。在我们家出去玩的时候,妈妈常常让我管理花钱。一定数量的钱,包括吃饭、坐车、门票还有购物。我总结了三要点:第一,钱要保管好;第二,付钱找零钱时要核算是否对;第三,要合理安排怎样花钱。千万别把吃饭、坐车的钱乱买了东西。呵呵……那样是要饿肚子的。妈妈说这是锻炼我不乱花钱的最好办法。其实这种体验,让我的数学能力有更大的提高。同学们不防回家试试? 数学就像一座山峰,刚开始攀登时的得很容易,到了后面会越来陡峭,越来越险峻,只有不怕苦,不怕困难人,才能攀登高峰,体味其中的快乐。
生活中的数学有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。奇妙的“黄金数”取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。
孔子曰:教学相长。一语道破教与学的真正内涵:互相协调,共同促进。因此,教师除了注重自己的教以外,更应注重学生的学。把学生当作教育的主体。现代教学论认为,教学的过程归根结底是如何教会学生学习,而要教会学生学习,教师必须先对学生进行充分了解,对症下药。本文针对初中学生数学学习现状,探讨数学学法,以提高学生数学效率。 一、初中生数学学习现状 在多年的数学教学中,使我深切地体会到当前初中生,特别是初一学生在数学学习的基本方法“读、听、思、记、写”方面都存在着一定的缺陷,严重影响学生数学学习效率,主要表现在: 1.阅读能力差 往往沿用小学学法,死记硬背,囫囵吞枣,像浮萍溅水,一摇即落。根本谈不上领会理解,当然更谈不上应变和应用了。这严重制约了自学能力的发展。 2.听课方法差 抓不住要点,听不入门,顾此失彼,精力分散,越听越玄,如听天书。如此恶性循环,厌学情绪自然而生,听课效率更为低下。 3.思维品质差 常常固守小学算术中的思维定势,不善于分析、转化和作进一步的深入思考,以致思路狭窄、呆滞,不利于后继学习。 4. 识记方式单调 机械识记成份多,理解记忆成份少。对数学概念、公式、法则、定理,往往满足于记住结论,而不去理解它们的真正含义,不去弄清结论的来龙去脉,更不会数形结合,纵横联系,致使知识无法形成完整的知识网络。 5.表达能力差 格式混乱,表达不清。尤其是几何解证,对三种语言(图形语言、符号语言、文字语言)不能融会贯通、相互转换、作图失准、条理不清,缺乏数学应有的严谨、逻辑性、条理性。 6.畏难情绪严重 一遇难题(综合性强、灵活性大的题)便不问津,或互相抄袭,应付了事。 针对学生存在的上述缺陷,教师应继续保持多数学生对数学的兴趣,转化少数数学差生,数学差生分为智力型数学差生和情节感型数学差生,对智力数学差生的转化对策是帮助他们树立信心,诱发并强化学习动机;进行强化记忆训练,让其熟练各种记忆方法,筛选适合自己性格和个性的学习方法;反复进行思维方法的训练,让其掌握基本的数学方法,培养思维品质。对情感型数学差生要抓住兴趣缺乏这一环节,调动情感状态,优化外部环境,充分挖掘数学中的趣味和奥妙及应用,介绍有趣的数学故事,培养数学学习兴趣,帮助其在战胜困难的实践中感受成功的喜悦。 二、初中生数学学法指导 根据多年来的教学经验,就如何提高数学教学质量,使学生变“被动”为“主动”,提高学生学习效率,笔者认为应从以下几个方面入手: 1.教导“读” 现代教育理论认为:教师在教学中起主导作用,学生在教学中居主体地位。让学生学会自主读书,必须通过教师的正确指导,学生才能由“读会”转为“会读”。数学教学中,教师不仅要教会学生对数学语言的翻译,更重要的是教导学生怎样读数学,这是读法的核心,教师可以从以下几个方面教会学生读书: ①粗读。即先浏览整篇内容的枝干,传到既见树木又见森林。然后边读边勾、边划、边圈,粗略懂得教材内容,弄清重难点,将不理解的内容打上记号(以便求教老师、同学)。 ②细读。即根据章节的学习要求细嚼教材内容,理解数学概念、公式、法则、思想方法的实质及因果关系,把握重点,突破难点。 ③研读。即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书本读“薄”,以形成知识网络,完善知识结构。这样,当学生掌握了读法“三部曲”,形成稳固习惯,就能从本质上改变其读书方式,提高学习效率。 2. 开导“听” 课堂教学是师生的双边活动,教师的讲是信息的输出,学生的听是信息的接收,只有调谐学生的“频道”,使接收与输出同频,才能获得最佳收效。 数学教学中,对学生听法的开导,教师首先应从培养学习数学兴趣入手来集中学生注意力,使其激活原有认知结构,打开“听门’,专心听讲。这样,才能把接收的“频道”调谐到教师输出的“频道”,达到同频共振,获得最佳教学效果。其次,要开导学生注意去听教师对每节课所提出的学习要求;对定理、公式、法则的引入与推导过程;对概念要点的剖析和概念体系的串联;对例题关键部分的提示和处理方法;对疑难问题的解释及课末的小结。这样,让学生会抓住要点,延着知识的“生展线”来听课,就能大大提高听课效率。 3. 引导“思” “数学是思维的体操”,数学学习离不开思维。要使学生学会科学的思维方法,形成一定的数学思想,需要教师科学的指路引导。 数学教学中,对学生思法的引导,教师应着力于以下四点:①从学生思维的“最近发展区”入手来开展启发式教学,引导学生去积极主动思考,使学生学会联想。②从挖掘“问题链”来开展变式训练,引导学生去观察、比较、分析、推理、综合,使学生学会转化。③从创设问题情境来开展探索式教学,引导学生追根究源去思索,使学生学会深思。④从回顾解题分歧过程来开展评价,引导学生去分析错因,便学生学会反思。此外,教师在教学过程中,还应善于暴露思维过程,留下一定的思维时间和空间,让学生学会“思在知识的转折点,思在问题的疑难处,思在矛盾的解决上,思在真理的探求中”。这样,就能使学生学会并掌握基本数学思想方法,达到思悟思,融会贯通。 4. 传导“记” 学生学业成绩的好坏,是与其有无掌握良好的记忆方法正相关,而学生对良好记忆方法的领悟,尚需教师的传授指导。 数学教学中,对学生记法的传导,教师首先要重视改革教学方法,摒弃“满堂灌”,以避免学生死呆背。其次要善于结合教学之际,来传授记忆方法。如通过对知识编成顺口溜,使学生学会去联想记忆;通过绘制直观图,使学生在以形助数中,学会数形结合记忆;通过对发掘知识的本质属性,使学生在形成概念的同时,学会凭特征记忆;通过归纳概括所学知识,使学生学会按知识结构来系统记忆;通过揭示获取知识的思维过程,使学生学会循线索记忆。此外,教师还应让学生明确各种记忆的价值、效果、适用范围,以使他们牢固掌握和灵活运用。 5. 指导“写” 作业书写最能反映学生对知识的掌握程度,因此,必须充分重视。 深究学生书写条理混乱的原因可知,教师教学起始时不重视写法指导是一主要导致因素。因此,精心指导学生怎样写,才有助于其驾驭知识,正确解决问题。为此,应切实加强对学生数学语言的教学。 ① 在教学中,既要注重对教学语言的解释,又要注重必要的句法分析 ,这是理解、掌握数学语言的基础。由于数学语言不像日常用语那样能在生活中得到直接印证,换句话说,如果不是在特定的教学研究环境,一般难以使用其语言,因此,其特定的语义、句法规则,使学生理解起来困难。为此,其一,必须明确数学语言的语义,使学生正确理解其含义。如通过比较、区分和弄清一些易混淆的词语,如“大于”与“小于”,“都不”与“不都”,“有一个”与“至少”等等;其二,要明确符号的指代,提示符号的特征。如对符号 ,不仅要指明 所代表的对象,指明 的几何意义,提示它的非负性,还应与其它相关的表示方法相联系,加深学生的认识,如 等等,其三,加强句法分析,由于数学语言有一定的逻辑结构,其概念符号需要按一定的逻辑关系组合。了解这些句法规则是学生会用数学语言的必要条件,因此,在教学中要进行必要的“咬文嚼字”和对比分析,如“ 、 两数的和的平方”与“ 、 两数的平方的和”等,要作仔细的分辨,帮助学生体会、区分、理解 ,进而会灵活运用,对一些长句。还要作必要的分解。 ② 要注意语言规范,这是正确运用数学语言的保证。其一,说法要规范。以利思考和表达的规范,如“在直线 上顺次截取 ”,不能说成“在直线 上截取 ”;其二,书写、作图要规范,如(x+5)千克,不能写成x+5千克。画图也要规范,直线要直,垂线要垂,锐角要锐,不能乱来。 ③ 加强文字语言、符号语言、图形语言的互译和转换,这是促进学生理解数学语言,学会灵活运用的有效手段,为此,首先在概念和定理教学中应多采取转换成符号语言和图形语言来表述的练习。如:“ 是负数”可转换成“ ”,还可以用数学上原点左侧的点来表示。其次,应采用多种形式的互译训练促进三种形态语言的灵活转换能力。如:读图填空训练、读句画图训练等;再其次,要逐步强化语言的训练。 总之,教师在教学中要充分认识学生的认知障碍和情绪障碍,克服学生在“读、听、思、记、写”等方面的缺陷,创设正迁移条件,矫正学生学习障碍;同时加强与学生的沟通,强化学生主体意识参与意识,提高师生互动的正面效益,从而取得良好的教学效果和学习效益。笔者通过几年的教学实践经验总结,逐惭形成了自己的教学特色,学生平时及升学考试中均正常发挥,取得较好的成绩。
直接在百度文库里找 ,或者是中国知网里有。
生活中的数学“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!
你以为这是奴隶社会啊。
数学源于生活,生活中又充满着数学。学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际。在课堂教学中,把数学和学生的生活实际衔接起来,让数学贴近生活,使学生感到生活中处处有数学,学起来自然、亲切、真实。实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。 如何把握数学与生活的衔接,提高教学效果,我在教学中注意从以下几方面入手。一、 数学语言生活化,理解数学前苏联数学教育家斯托利亚尔曾说过:数学教学也就是数学语言的教学。在课堂教学的师生交往中,主要是通过言语交流。同一堂课,不同的教师教出来的学生接受程度不一样,主要还是取决于教师的语言素质如何,尤其是在我们数学课堂教学中,要将抽象化的数学使学生形象地接受、理解。一个没有高素质语言艺术的教师是不能胜任的。看似枯燥无味的数学,实则里面蕴藏着生动有趣的东西。鉴于此,教师的数学语言生活化是学生引导理解数学、学习数学的重要手段。教师要结合儿童的认知特点、兴趣爱好、心理特征等个性心理倾向,在不影响知识的前提下,对数学语言进行加工、装饰,使其通俗易懂、富有情趣。如认识“ <”、“>”,教师可引导学生学习顺口溜:大于号、小于号,两个兄弟一起到,尖角在前是小于,开口在前是大于,两个数字中间站,谁大对谁开口笑。区别这两个符号对学生来说有一定的难度,这个富有童趣的顺口溜可以帮助学生有效的区分。又如把教学长度单位改成“长长短短”;把教学元、角、分改成“小小售货员”,把比大小说成“排排队”等等,学生对这些生活味十足的课题知识感到非常好奇,感到学习数学很有趣。二、数学问题生活化,感受数学新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。因此,通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。比如:生活中每时每刻都要用到估算,要求学生估算一下每天上学到校需多少时间,以免迟到;或估算一下外出旅游要带多少钱,才够回来等等。在教学中引导学生寻找生活中的数学问题,既可积累数学知识,让学生通过如此切身的问题感受到学数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。三、数学情境生活化,体验数学教育心理学的研究表明:学生在没有精神压力,没有心理负担,心情舒畅,情绪饱满的情境下,大脑皮层容易形成兴奋中心,思维最活跃,实践能力最强。在日常的教学中,应该提供这样的思维环境,创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就像在日常生活中遇到了数学问题一样,需要大家一起来实践解决,通过自己的动手操作,集体的共同研究,最终得出学习结论。如在空间与图形的教学中,要充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组到操场上选定一个建筑物,让学生站在不同角度看这个建筑物,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生在方格纸画出示意图:假设图书馆在学校的正东方向200米处,小红家在学校正北方向500米处,医院在学校的正南方向1000米处,车站在学校的正西方向800米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师再及时组织引导学生进行交流,逐步发展学生的空间观念。又如教学“元角分的认识”,组织学生开展一次“我是一位出色的售货员”活动,让他们在逼真的买卖中掌握、消化和应用知识。再如,相遇问题应用题教学,教师采用学生登台表演,情景再现的方法,把抽象的相关的各种数学术语让学生迅速地理解,既活跃了课堂气氛,又高效率地完成了教学任务。四、数学作业生活化,运用数学数学来源于生活而最终服务于生活。尤其是小学数学知识 ,在生活中都能找到其原型。把所学的知识应用到生活中,是学习数学的最终目的。由于课堂时间短暂,所以作业成了课堂教学的有益延伸,成了创新的广阔天地。学生适当运用课堂内容的自然延伸,能从广阔的大千世界中学习知识。教师在教学中应努力激发学生运用知识解决问题的欲望,引导学生自觉地应用知识解决生活中相关的问题。如学习了长度单位,可以测自己和父母的身高,从家到学校的路程;认识了人民币可以用自己零用钱买所需要的东西;学习了统计知识和百分比应用题,可以去统计本校学生人数以及男女生比例;会计算图形面积可以算一算自己家里的面积,所用瓷砖的块数等。再如布置学生“观察你家中的物品,找出几道乘法算式”;“你家一天的生活费用是多少,记录下来,制成表格,再进行计算”,这样把抽象的知识具体化,有助于学生理解,同时能用所学的知识解释生活中的现象,也培养学生收集处理信息的能力、观察能力、实践能力。这样,学生在轻松愉快地交流中,学得积极、主动,思维随之展开,兴趣随之激起。将数学教学与生活相衔接,让学生从生活中寻找数学素材,感受生活中处处有数学,学习数学如身临其境,就会产生强烈的亲近感和认同感,有利于形成似曾相识的接纳心理。教学实践使我体会到:数学即生活,只有将学生引到生活中去,切实地感受数学在生活的原型,才能让学生真正的理解数学,使学生感受到我们生活的世界是一个充满数学的世界,从而更加热爱生活,热爱数学生活中的数学在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?一天,我就遇到了这样一道实际生活中的问题:某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?面对问题我们并不能一目了然。我做了一个假设,假如有16人,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客,二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000= 14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为280000元(14000÷5%=280000)。所以由此可得:(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.(2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是14000元,优惠较大。(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。像这样的问题,我们在日常生活中随处可见。例如。有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好?这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。作为跨世纪的小学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。再给你一些地址:自己拼接吧
一、操作中学习———主动体验
操作中学习,或称做中学,是着重寻找解决问题过程的学习方式,是一种探索和研究的活动,是一名学生进行数学思考的历程.美国数学家哈尔莫斯指出:“学习数学的唯一方法是做数学.”《数学课程标准》指出:“学会与人合作,并能与他人交流思维的过程与结果.”做中学不仅是个体的学习过程,也是进行小组合作学习的有效途径.数学活动不仅是传授知识的过程,也是创造机会让学生自主探究的过程.学生只有在自己亲自动手探索的过程中,才能对物质材料有充分的感知和兴趣,才能对材料有所发现和疑问.数学探究的意义正在于学生动手动脑主动操作、体验与思考的过程。
例如苏教版一年级“认钟表”一课,我就把认钟面改为做钟面,小组合作来完成.我准备了学具,每个小组都有一个硬纸片,印好时针与分针,一个圆周,里面有12个均分的点.我让4人小组合作,组长安排,做个钟面.合作开始了,只见有人剪时针,有人剪分针,有人剪外形,有人写数字,组装成了一个钟面.学生在制作钟面的过程中,了解了钟面有时针、分针和秒针,明白了钟面上有12个数字,均匀地分割了整个钟面.学会了你做一部分,我做一部分,再整合成一个钟面的合作过程.在这个过程中既有知识的渗透,也有合作中人际关系的处理,学会在小组中发表见解和倾听小组同学的意见.儿童心理学的研究表明,操作不是单纯的身体动作,它应该是与大脑的思维活动紧密联系着的,能让他们亲手接触、亲自动手的事情记忆会更深刻.操作学习中和同伴的交流也会更加自由,而同伴或老师的不同看法和解决问题的不同方式能促进学生不断思考,完善自己的想法或建构新策略
.因此我们应给学生更多自己动手操作的机会来经历数学,例如可以通过制作长方体、正方体等感知几何图形,通过剪纸学习对称,通过制作年历感知和学习年、月、日的相关概念等.操作中学习,能帮助学生更深刻主动地经历数学,提高学习的有效性.
二、生活中学习———经验迁移
陶行知说过:“生活即教育.”生活本身就是一个巨大的数学课堂,小学数学教育理应回归到儿童的生活中去.荷兰教育家弗赖登塔尔说:“数学来源于生活,也必须植根于生活.”紧密联系学生的生活实际,让数学从生活中来,到生活中去,是数学课程改革的重要理念之一.我们不妨结合课堂教学内容捕捉生活现象,采撷生活实例,把学习与儿童自己的生活充分地融合起来,让学生感受到数学处处与生活同在.同时新课程标准强调数学与现实生活的联系,而且要求“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发”,因此我们必须关注学生的生活,他们在学校之内、之外都做些什么事情,对什么比较感兴趣.
1.在生活中发现数学
让学生根据自己现有的知识水平在生活中经历“数学发现”,会使抽象的数学变得通俗易懂,让课本上的“数学”和孩子们变得更加贴近,使学生们更加主动地去学习数学,会发现一些新的数学内容.作为教学主导者的教师也要善于发现生活中的数学素材.如教室排列的座位、体育课上的队列、本教室在学校各个教室中的相对位置等;生活中到处可见的几何形体,门、柱子、柜子、各种球等;人们生活中的吃穿住行包含着许许多多的数学问题.假如能把这些生活中的数学问题搬进课堂,学生们就会感到非常真实、有趣,同时学生们也会充分地认识到数学并非枯燥无味,会感到数学就在他们身边.生活中的数学发现不仅是一种数学学习的“预习”或者“复习”,它更是数学知识建构的桥梁.如寻找生活中的几何图形,联系生活中实际事物的过程使几何表象更加清楚,有利于建立对应的几何概念.
2.在生活中解决问题
让学生运用学到的数学知识解决生活中的实际问题,是数学教学的目的.华罗庚说过:“宇宙之大,粒子之微;火箭之速,化工之巧;地球之变,生物之谜;日用之繁,无处不用数学.”数学源于生活,课本上的数学知识都可以在生活中找到它的蓝本.在生活中解决数学问题,使得单一的数学练习更富有现实意义,也更加有综合性,可以说是更多地还原了数学的本质.如让学生记录自己和家人的一次超市购物过程:买了哪些东西,单价多少,每种物品花了多少钱,总共花了多少,什么东西最贵/便宜,吃的物品有几种,用的有几种,等等.这样一个过程涵盖了多个数学知识点,不仅是加减乘除的练习,也是统计等概念的渗透.另外,我们也可以让学生计算家里一年的`水电费,了解水电费的计费方式;记录并计算出行、旅游的交通费用;学习比例时,将自己家房屋结构平面图画出来;学习平均数,可以统计班级各科考试的平均分等.如下面两道题就是很好地利用生活资源来进行数学学习的案例:
(1)在下面的括号里选择合适的单位、数或词语填在横线上.你的身高是138(米、分米、厘米),体重是36(吨、千克、克),你每天步行去上学从家到学校要走20(时、秒、分),你每分钟走50(千米、分米、米),你的家到学校有(100、1000)米,来回一趟要走2(千米、分米、米).如果学校8:45上课,你8:30离家去上学,你(一定、可能、不可能)会迟到,因为.
(2)请你计算一下你家客厅的面积.如果客厅用边长为5分米的正方形地砖铺设需要多少块?
3.在生活中养成数学眼光
在新课程中体现了这样一种理念:学生不是为了学习而学习.因此我们在数学教学中,不能仅仅关注学生对于数学概念的掌握,或者是学生解决习题的能力,我们同时也应该有意识地培养学生尝试用数学思维方式去观察生活.在学习数学的过程中,如果不能及时地提出问题,不会恰当地提出问题,数学就会枯竭.使学生从小就学会用数学的眼光来看待周围的事物,是把数学学习更多的内化为学生的一种主动意识,这是我们不能遗忘的一项数学教学任务.
数学本身是一门抽象的科学,小学生由于自己的生活经验的缺乏会觉得数学离自己很遥远,很陌生.当我们把数学学习的方式变成有趣的情境、可以动手操作的实物,或他们所熟悉的生活情节和事物,让他们在经历数学的过程中感受到学习数学的乐趣和成就感,体验到数学就在自己每天的生活中之后,他们对数学的学习就能以更轻松和喜欢的态度参与、建构、获得提升.
在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。下面是关于生活中的数学论文的内容,欢迎阅读!
最近,我们学习了圆柱、圆锥体积和表面积的计算方式。我认真学习了课内知识,并做了一些课外练习巩固所学知识。综合学习和练习情况,我对相关知识进行了总结和归纳:此方面的考好主要有一线六个方面:
一是卷。就是把一个长方形形状的纸卷成圆柱的形状,然后算圆柱的最大体积。例如:一个长12,56米、宽9。42米的长方形,卷成一个圆柱,重叠部分忽略不计,求圆柱的最大体积。这种题目有两种可能,以长为圆形或以宽为圆形。因此,要把这两种可能都算出来,然后比较。这种题目要注意的是:必须看清楚是用长方形的长和宽分别卷成圆形。
二是转。就是把一个长方形的纸,延一条边旋转3600,求所得形状的体积或面积。举个例子:一个长方形长8厘米,宽5厘米,以长为轴旋转一周,算得到的形状的体积。一个长方形的纸,旋转一周得到的形状是圆柱体,然后利用圆柱体体积的计算公式,就能得到答案。这种题目要注意是用什么形状的纸旋转的。
三是削。就是一种形状的物体,按一定规则消除一些部分,计算剩下形状的体积或表面积,这种题目要注意的是:要把所有的可能全部计算出来,不能偷懒只计算一种。
四是铸。就是把一种形状的物体融化成液体,然后重新浇铸成另一个形状的物体。这种题目要抓住形状虽然变化,但体积不会这一关键点来考虑。
五是增。就是在一种形状上再继续增加一种形状。这种题目路要注意增加的形状是什么样的。
六是切。就是吧把一种形状切成几段,然后告诉你增加了什么,增加了多少,让你计算原理的,这种题目要看清楚是怎么切的,切了以后有什么变化,面积如何增加,等等。
以上是我对近期学习内容的总结和思考,大家说数学是不是很神秘而又充满趣味呢?
数学源于生活,又广泛应用于生活。在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。数学知识的生活化,就是通过将数学教材中枯糙、脱离学生实际的数学知识还原,取之于学生生活实践并具有一定真实意义的数学问题,以此来沟通“数学与现实生活”的联系,激发学生学习数学的兴趣。
一、让学生在生活中感悟数学。
“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”因此,数学教学,只有从学生的生活经验出发,让学生在生活中学数学、用数学,数学教学才能焕发生命活力。
1、在小学数学教学中,从生活实际出发,把教材内容与“数学现实”有机结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强数学的应用意识,唤起学生的学习兴趣。例如:如教学循环小数概念时,我先给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在说从前山上有座庙……”,通过实例让学生初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环引出“循环”的概念,使学生产生浓厚的兴趣。
2、小学数学中的许多概念和法则都是在现实生活中抽象出来的,因此概念法则的`教学也就必须在生活实际中找到相应的实例,并引导学生从直观入手从而抽象出来,逐步加深理解和运用。例如:在教学应用题常见的数量关系时,学生对于“工作效率×工作时间=工作总量”中的“工作效率”不易理解。为此,我在教学前,在班里举行了一次口算比赛和跳绳比赛。教学新课时,联系两次比赛活动,学生就非常容易理解“工作效率”这一抽象而又陌生的概念:即指单位时间内所作的工作量。又如在学习“接近整百整十数加减法的简便算法”中,有这样一题:128-96=128-100+4,学生对减100时要加上4 难以理解。我便设计了一个“买东西找零钱”的生活实际:我要过生日了,妈妈带了128元钱去商店买一个96元的布娃娃准备送给我。妈妈付给营业员一张百元钞票(应把128元减去100元),营业员找回4元,(应加上4元)。所以,多减去的4应该加上。
这样的“生活教学”例子,通过生活经验验证了抽象的运算,而具体的经验更提炼上升为理论(简便运算的方法),学生容易理解且不易忘记。
让数学回到生活,使学生感到数学就在身边,学习数学是有用的、有必要的,从而激发学好数学的愿望。
二、让数学知识回归学生生活。
学习是为了应用。因此,教师在教学中要经常培养学生联系生活实际、运用数学知识,解决问题的意识和能力。知识也只有运用才能被学生真正掌握,也只有在实践运用中才能体现其价值。
1、创设情境,培养学生解决实际问题的能力
学生掌握了某项数学知识后,可以有意识地创设一些把所学知识运用到生活实际中的情境。例如,在学习了利息后,让学生去银行了解利息、利息税等有关知识,让学生当家长的小参谋:家中多余的钱怎样存最合算?并帮助家长计算利息和利息税。
2、联系实际,增强学生的数学意识
数学知识在日常生活中有着广泛的应用,生活中处处有数学。例:如学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性。学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,其它形状的行不行?为什么?
3、加强操作,培养学生把所学知识运用于实际的能力。
知识来源于实践,又指导于实践。我们经常看到由于学生的感性知识缺乏,出现不符合客观生活实际的数量意识。这就要求我们的课堂教学更要注重联系实际,强化学生的动手操作活动。在学习了米、厘米以及如何进行测量之后,让学生运用掌握的数学知识解决生活中的实际问题。如测量身高,测量手臂伸开的长度,测量一步的长度,测量教室门的宽度以及测量窗户的宽度,通过上述活动,加深学生对厘米和米的理解,巩固用刻度尺量物体长度的方法,同时,学生获得了日常生活中一些常识性数据。在这个活动中提高了学生的学习兴趣和实际测量的能力,让学生在生活中,在生活中用。
学习了平均数问题后,让学生以小组为单位,自选专题,展开活动,如:测量计算班级同学的平均身高、平均体重、平均年龄,全校各班的平均人数、教师平均年龄,附近菜场某一蔬菜的平均价格等。学生在互相协作活动中,自然而然地锻炼了他们解决实际问题的能力。
运用数学知识解决生活实际问题,能实现数学与生活的紧密结合,帮助学生学会用数学的眼光观察生活,从而不断体验数学的价值与魅力。
大千世界,无奇不有,在我们的日常生活里也有许多有趣的数学问题哦。
一天,我的家人带着我一起去超市买东西,我一路上蹦蹦跳跳的,十分兴奋。
进入后,逛了一段时间,我们就拿了四袋洗衣液。在走到文具区时,奶奶问我需不需要些什么文具。我走到货架前看了看……
到了收银台,我们一共买了如下商品:四袋洗衣液,一袋18。5元;十包卫生纸,一包4。5元;一支自动铅笔,一支2。5元;三支钢笔,一支5。5元。
突然,在结账后,我的爷爷问我:“你最近不是学了关于小数的知识么?能不能先用笔算出今天买的每种商品的总价,再算出一共花了多少元?”
“能,怎么不能?一定不会错的!”我胸有成竹的回答他。
说干就干。我拿了一张超市的广告纸,再拿出随身携带的笔,立即在空白处算了起来。
我的思路是这样的:洗衣液一共四袋,每袋18。5元,所以直接用乘法就行了;卫生纸一共十包,每包4。5元,只需要把这个小数的小数点向右移动一位来算便行了;自动铅笔只有一支,在最后时加上便可以了;还有三支钢笔,也用乘法来算。
于是,我算了起来。我先用4×18。5=74元(老师说过,整数乘一位小数等于一位小数,但如果两数末尾相乘的得数末尾是零,那么结果就是整数)算出洗衣液的总价;接着,用10×4。5=45元(一个小数乘10,把这个小数的小数点向右移动一位就是这道算式的结果)算出卫生纸的总价;然后,又用3×5。5=16。5元算出钢笔的总价。今天买的每种商品的总价都算出来了,该算一共花的钱了。一道综合算式74+45+16。5+2。5=138(元)(在讲小数加法时,老师特别强调过,列竖式时,相同数位要对齐)便算出了所有花的钱。
当我把纸递给爷爷并讲了我的思路后,他直夸我聪明,我也乐开了花。
我真诚地对大家说:“你们也好好学数学吧,难道不会受益终生么?”我想:学数学,真有用啊,我以后肯定会好好学数学的!
数学来源于生活,生活中的数学知识比比皆是,我们平时走路、乘车、购物……等,其中都包含着数学问题和知识,只要注意观察就能发现,连航空、航海、航天都与数学有着密切的关系。
数学可以锻炼我们的思维体操,我们不仅能从数学中学到知识,还能从数学中找到一些乐趣。
在我过去的记忆中,发生过有关数学的趣事。有一天在奶奶家,当时有爷爷、奶奶、姐姐和我共四个人在看电视,奶奶到厨房拿来洗好的三个苹果说:“只有这三个,你们一人一个吧。”爷爷说:“那怎么行,叫他俩分,每人一份。”这下我傻眼啦!我说:“少一个怎么分?姐姐说:”我来分。“她拿起刀,把每一个苹果十字切开,切成了12块,三块一份,正好四份,当时我边吃边想,怎么也没想到分苹果还有学问,这件事给我留下深刻的印象。
我学奥数做题时有次遇到了难点,题目是:徐师傅锯木头锯了五次,每段一百二十厘米,问原来这根木头长多少厘米?看题后我想锯五次是五段吗?这样理解对不对?突然想到老师教的画圈法,于是用尺子先画一条直线,用笔在直线上画五个段点,表示锯了五次,一看是六段,用120乘6结果是720厘米,这是十我的心情很轻松自信,对老师教的线段图解法印象深刻,非常高兴。
“免费午餐”的故事,爷爷听人讲,过去有个饭店开业这天,为了吸引顾客,在门口的招牌上写有“免费午餐”四个大字引来很多人围观,前面的人还看见四个大字下面有几行小字,上写着“答题正确免费午餐”,题目是:“饭店来了一群人,一人一碗饭,两人一碗菜,三人一碗汤,一共用了55只碗,饭店来了多少人?”爷爷让我算算饭店来了多少人,我想了很久才想到人数必须被2、3整除,用能被2、3同时整除的数6试算,6人6+3+2=11不行,用12人,24+12+8=22不行,用18人,18+9+6=33也不行,用24人,24+12+8=44不对,用30,30+15+10=55对了。我终于算出来了。饭店来了30人。爷爷高兴的问我:做题时你是怎么想的?我说:求的是人数,那有一半的人呀!所以想到被2、3整除。爷爷说:这是解题的关键被你找到了,加上多次试验做出来的,你可别忘啦!我说分苹果的事我还记住那!
下载一片获奖论文,之后的所有基本就都解决了吧!!
如何撰写数学建模论文兼谈数学建模竞赛答卷要求当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文.撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的.事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题.首先要明确撰写论文的目的.数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中.当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的.其次,要注意论文的条理性.下面就论文的各部门应当注意的地方具体地来作一些分析.(一)问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉.列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题.历届数学建模竞赛的试题可以看作是情景说明的范例.对情景的说明,不可能也不必要提供问题的每个细节.由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣.所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系.这部分内容就应该在论文的“问题的假设”部分中体现.由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解.(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考.(3)假设应验证其合理性.假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设;或者由观察所给数据的图象,得到变量的函数形式;也可以参考其他资料由类推得到.对于后者应指出参考文献的相关内容.(二)模型的建立在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件.论文中用到的各种数学符号,必须在第一次出现时加以说明.总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据.(三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析.在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出).还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果.基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论.有些模型(例如非线性微分方程)需要作稳定性或其他定性分析.这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论.在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来.结论使用时要注意的问题,可以用助记的形式列出.定理和命题必须写清结论成立的条件.(三)模型的讨论对所作的数学模型,可以作多方面的讨论.例如可以就不同的情景,探索模型将如何变化.或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化.还可以用不同的数值方法进行计算,并比较所得的结果.有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化.通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围.除正文外,论文和竞赛答卷都要求写出摘要.我们不要忽视摘要的写作.因为它会给读者和评卷人第一印象.摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意.语言是构成论文的基本元素.数学建模论文的语言与其他科学论文的语言一样,要求达意、干练.不要把一句句子写得太长,使人不甚卒读.语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句.在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态.最后,论文的书写和附图也都很重要.附图中的图形应有明确的说明,字迹力求端正.有条件的,最好能把文章用计算机打印出来.如何写好数学建模竞赛答卷一、写好数模答卷的重要性1.评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据.2.答卷是竞赛活动的成绩结晶的书面形式.3.写好答卷的训练,是科技写作的一种基本训练.二、答卷的基本内容,需要重视的问题1评阅原则:假设的合理性,建模的创造性,结果的合理性,表述的清晰程度.2答卷的文章结构0.摘要1.问题的叙述,问题的分析,背景的分析等,略2.模型的假设,符号说明(表)3.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)4.模型的求解▲计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;▲引用或建立必要的数学命题和定理;▲求解方案及流程5.结果表示、分析与检验,误差分析,模型检验……6.模型评价,特点,优缺点,改进方法,推广…….7.参考文献8.附录计算框图详细图表……3要重视的问题0.摘要.包括:a.模型的数学归类(在数学上属于什么类型)b.建模的思想(思路)c.算法思想(求解思路)d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验…….)e.主要结果(数值结果,结论)(回答题目所问的全部“问题”)▲表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式.务必认真校对.1.问题重述.略2.模型假设跟据全国组委会确定的评阅原则,基本假设的合理性很重要.(1)根据题目中条件作出假设(2)根据题目中要求作出假设关键性假设不能缺;假设要切合题意3.模型的建立(1)基本模型:1)首先要有数学模型:数学公式、方案等2)基本模型,要求完整,正确,简明(2)简化模型1)要明确说明:简化思想,依据2)简化后模型,尽可能完整给出(3)模型要实用,有效,以解决问题有效为原则.数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大).能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被人看懂、理解的方法,就不用只能少数人看懂、理解的方法.(4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在▲建模中,模型本身,简化的好方法、好策略等,▲模型求解中▲结果表示、分析、检验,模型检验▲推广部分(5)在问题分析推导过程中,需要注意的问题:分析:中肯、确切术语:专业、内行原理、依据:正确、明确,表述:简明,关键步骤要列出切忌:外行话,专业术语不明确,表述混乱,冗长.4.模型求解(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密.(2)需要说明计算方法或算法的原理、思想、依据、步骤.若采用现有软件,说明采用此软件的理由,软件名称(3)计算过程,中间结果可要可不要的,不要列出.(4)设法算出合理的数值结果.5.结果分析、检验;模型检验及模型修正;结果表示(1)最终数值结果的正确性或合理性是第一位的;(2)对数值结果或模拟结果进行必要的检验.结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;(3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;(5)结果表示:要集中,一目了然,直观,便于比较分析▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好(6)必要时对问题解答,作定性或规律性的讨论.最后结论要明确.6.模型评价优点突出,缺点不回避.改变原题要求,重新建模可在此做.推广或改进方向时,不要玩弄新数学术语.7.参考文献8.附录详细的结果,详细的数据表格,可在此列出.但不要错,错的宁可不列.主要结果数据,应在正文中列出,不怕重复.检查答卷的主要三点,把三关:模型的正确性、合理性、创新性;结果的正确性、合理性;文字表述清晰,分析精辟,摘要精彩.三、对分工执笔的同学的要求四、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数……五、答卷要求的原理准确――科学性实用――实际问题要求.建模理念:1.应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题.2.数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决.3.创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新
不好意思,建模在高中水平上还真是涉及很少,建模问题也是难道很多大学生的问题。而且建模要求的独立思维,所以希望你最好自己写。能在网上查到的都不是高中能做出来的。大学学的数学,我建模都不敢说会做。如有帮助,希望采纳,有问题继续追问
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。