最值问题是高中数学中永恒的话题,可综合地考查函数的性质、导数、均值不等式、线性规划、向量等知识的应用;涉及到代数、三角、几何等方面的内容;体现数学中的数形结合、分类讨论、转化与化归、函数与方程等思想与方法,并能综合考查学生的数学思维能力、分析和解决问题的能力,是历届高考中的焦点、热点、难点.本文就近几年高考中的常见类型略作探讨,难免有不当之处,权作抛砖引玉. 中国论文网 /9/view-4821051.htm一、代数问题一般通过考察常见函数的单调性,或者能够利用导数问题研究其单调性,在定义域内求最值,或者通过方程思想,得到不等式再求最值.【例1】(2008·江西·第9题)若0
我理解是对于每个x0,fn(x0)的上下极限构成的新的函数。你那个学校的?
【摘要】高中数学函数求最值问题是高中数学最重要的课程之一,由于求最值问题的内容较散,方法难以选择,因此最值问题求解一直困扰我们的学习。最值问题是数学考试中常用的求解题目,我们在学习中要通过例题的练习熟悉最值求解问题的解题方法,并且通过精确例题来确认可能存在的解题陷阱,从而让同学们提高对这一部分题目的解题熟练度和准确度。
1.函数最值求解的理论知识
高中数学函数中求最值是整个阶段学习的核心内容,最值求解问题的覆盖度较广,在高考题目中屡次出现,这也体现了这一知识点的重要性。函数最值问题的定义是:假设y=f(x)的定义域为A,如果存在x0∈A,使得A范围内的任意x值都有f(x0)≤f(x),则成为函数的最大值,反之则成为函数的最小值,这是最值问题的严格定义,将函数最值问题和函数单调性结合在一起,我们在学习过程中,要注重函数单调性的理解,精确求解函数最值。
函数最值问题的`求解较为复杂,这也是导致我们学习出现障碍的症结所在,函数最值问题求解需要考虑的方面较多,如果忽略了函数定义域的处理,就会导致函数最值求解错误。我们在最值问题求解时会涉及到函数定义域和值域、三角函数、单调性等问题,涉及的数学方法和解题技巧也较多,因此对于这类问题的求解要注重解题细节,灵活运用最值求解方法。
2.函数中求最值需要注意的点
2.1区间上二次函数最值求解
二次函数最值求解是较为常见的函数问题,由于二次函数是非线性函数,讨论函数区间内的最值问题要综合考虑函数的特性,确定函数定义域区间内的最值,最值求解一定要在有意义的定义域区间内,我们要明确函数区间的开闭性,而此函数是给定的,其相应的函数值域也是确定的。例如已知二次函数f(x)=ax+bx+c(a>0),它的函数曲线是以直线x=-b/2a为对称轴,曲线为开口向上的抛物线,根据数形结合我们可以求解函数区间。我们在求解过程中,要注意函数区间(m、n)的界定,在函数区间内区分增区间和减区间,从而求解函数的最大值和最小值。
2.2动二次函数的区间最值求解
二次函数随着参数的变化而变化,其函数曲线是运动的,但是其区间固定在一个区域内,这种情况下的函数定区间最值求解要考虑函数区间的单调性。函数参数如果实在曲线开口上,就要针对函数曲线开口向上和开口向下进行重点讨论,如果函数参数出现在对称轴上,就针对函数区间左侧、右侧和中间定义域进行讨论,如果函数区间在对称轴区间的中间,要分为两种情况进行讨论,细分为对称轴是分为左侧或者右侧的端点。动二次函数包含了参数,去区间也是变化的,函数在闭区间的最值可能是出现在区间端点,顶点处取得,最后要对得出的参数值进行验证。同时函数最值求解要把握二次函数的图像开口方向,确定定点的横坐标,并确定函数的单调性和对称性。
2.3利用基本不等式求解最值问题
有些同学在利用基本不等式求解最值问题时,会忽视了等号成立条件的问题,在利用基本不等式求解最值时要必须对定理的前提的进行考虑,核实“一正二定三相等”的前提条件是否成立,否则求得的最值容易出现错误。例如对于例题:正数x、y满足x+2y=1,求解1/x+1/y的最小值,对于不等式最值求解可能会出现以下的错解,即由基本不等式可以得出x+2y=1≥。
所以可以得出xy≤1/8,我们可以将不等式变化带入到不等式1/x+1/y≥2≥4,其最小值为4。对于这种错误解题方法分析,第一次等号成立的条件为x=2y,但是第二次等号成立的条件是x=y,这两种之间的矛盾直接导致最值求解直接错误,因此我们在不等式求解最值时要格外注重等号成立条件的规定。
2.4数形结合求解函数最值
数形结合求解函数最值问题是我们往往忽略的方法,这种方法借助图形可以直接观察到函数的单调性,从而确定函数最值在哪个位置。图形可以直观表现函数曲线的走向,而数则可以精确计算函数区间,通过数和形的联系可以结合函数最值问题。我们可以根据函数画出相应的图形,将函数图形纳入到坐标系中,画出函数曲线中的对称线和区间端点,利用函数图形辅助最值求解,函数图形可以直观准确计算出两个变量表达式的数值,用导数求极值进而求最值,也要借助草图来画出函数的单调性才能确定最大最小值在哪取得;在区间上求二次函数的最值问题也要画出二次函数的图象才能确定最值,因此我们要合理利用数形结合来求解函数最值,灵活运用函数图像的辅助作用,提高函数区间单调性的把握,从而精确计算函数最值。
3.结语
综上所述,高中数学函数中求最值是最常见的数学问题,对于这一问题的学习,我们要掌握多种求解方法,根据函数特征灵活运用,同时要注意函数定义域和值域的范围,采用数形结合、分类讨论、区间划分及函数单调性等方法来计算函数最值,提高最值问题的解题准确性,避免由于疏忽而导致解题错误。高中生在函数最值求解学习中,要对最值求解问题进行系统练习,在习题练习中总结求解方法,攻克最值求解的学习难关。
研究生论文答辩经验
导语:在听答辩的时候,注意老师们经常会提什么类型的问题,他们提出的建议也要认真记笔记,防止相同的错误出现在自己的论文里。还要注意从师兄师姐的回答中吸取经验教训。下面和我一起来看研究生论文答辩经验,希望有所帮助!
首先,我们论文编辑的经验。
只要熟悉论文就行,但是这种熟悉是按照论文答辩框架有条理的总结熟悉,这个框架按照(研究意义、研究内容、创新点以及论文的不足4个方面阐述)。
其次,下面是我们的答辩范文:
各位老师好!我叫xxx,我的论文题目是《关于考研的机会成本研究》。在这里,请允许我向xxx老师的悉心指导表示深深的谢意,向各位老师不辞劳苦参加我的论文答辩表示衷心的感谢。
首先,论文意义。
本文在对“考研热”解读的同时,选择明瑟收入函数作为计算大学生考研收益率的基本模型,并辅以成本收益分析,对考研的机会成本做出计算;同时综合个体理性选择和环境体制层面进行分析,探讨制度作用对于个体选择的影响,分析考研的决定是如何“被选择”的,个体的理性选择是如何导致集体的非理性选择。
理论方面:
本文主要针对大学生在不确定条件下的选择行为提出了一个较新的可供,研究的观点:面对毕业抉择,大学生是否对一于考研的机会成本进行过理性的计算,做出考研的决定是由于个人的“自主选择”还是由于制度或社会环境的“被选择”。虽然考研的机会成本问题作为一种研究的视角,己经逐渐受到人们的'关注,但是关于考研的机会成本研究几乎都是从经济学的角度去进行分析,社会学的视角还很少而且没有进行深入的实证分析。从微观层面来看,每个人做出考研的决定未必都是通过个人的理性选择来确定的;从中观层面来看,学校通过对考研的正面宣传促使了考研热的盛行;从宏观层面来看,国家教育制度的改革和社会环境的影响则使得考研成为一种必然趋势。
现实方面:
随着近年来硕士研究生招生规模的逐步扩大,“考研热”已经成为应届本科生当中的普遍现象。尽管研究生教育在为我国培养高层次人才和促进社会经济发展方面发挥着重要的作用,但是研究生教育中愈演愈烈的报考热却在深层次上隐藏着潜在的风险。考研作为一项教育投资具有投入费用较大、周期较长、报录比低的特点,在投入回报上的不确定性方面存在着许多的风险。
研究生教育作为我国高等教育的最高层次,其设立的初衷是为了培养国家经济建设和社会发展所需要的高层次和高素质的创新性人才,但是随着研究生扩招的开始,很多同学考研的目的偏离了国家招考的目标。很多同学只是将考研当作就业的避风港或者提升自己学历和层次的跳板,而不是出于提高自己的科研和学习的能力,违背了研究生教育的最本质目的。从这个角度去分析考研更多的是一种对稀缺的高等教育资源的争夺,如果不是出于学术深造或者提升科研能力的考研应该算是对稀缺教育资源的巨大浪费。
其次,在研究内容框架上。
第一章绪论主要讨论研究思路与方法以及相关概念与基础理论。
第二章关于就业与调研的调查(现象分析)。
第三章考研的机会成本分析(成本计算)。
第四章“考研热”原因分析。
第五章如何让考研回归理性选择。
然后,本文的创新点。
本文的创新之处在于:
1、研究视角的创新。本论文从“考研热”现象入手,通过对东北财经大学同学就业和考研现状的调查,深入分析了考研的机会成本,并引入教育经济学中对于教育投资收益的计算方法计算了考研的投资收益率,通过直观的数据反映了考研的机会成本的大小及投资收益率的高低。
2、理论视角的综合创新。本文在社会学理性选择理论的基础上,引入社会分层理论及经济学中的机会成本、投资收益进行研究,通过对本科生考研意向的调查,本科生和研究生就业现状的调查,通过计算考研的机会成本来分析考研是否是一种理性选择,是否是制度和社会环境下的一种“被选择”。
3、探析问题原因的综合创新。本文在探析考研热原因时,综合了宏观、中观和微观三个层面,从宏观层面的高等教育制度和社会分层制度层面来探讨造成“考研热”的环境因素,从中观层面的学校就业指导层面分析学校指导偏向的原因,从微观层面的个体行为选择层面分析考研群体自身做出选择的原因,从而对考研的“选择”与“被选择”进行解答。
最后,本文的不足。
经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于本人才疏学浅,能力不足,加之时间和精力有限,在许多内容表述、论证上存在着不当之处,与老师的期望还相差甚远,许多问题还有待进行一步思考和探究,借此答辩机会,万分肯切的希望各位老师能够提出宝贵的意见,多指出我的错误和不足之处,本人将虚心接受,从而不断进一步深入学习研究,使该论文得到完善和提高。
再一次谢谢各位老师。
数学与应用数学幂函数论文,行咯,多少字的,姐给.
我理解是对于每个x0,fn(x0)的上下极限构成的新的函数。你那个学校的?
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法. ●难点磁场 已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围. ●案例探究 〔例1〕已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R). (1)求证:两函数的图象交于不同的两点A、B; (2)求线段AB在x轴上的射影A1B1的长的取值范围. 命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”. 技巧与方法:利用方程思想巧妙转化. (1)证明:由 消去y得ax2+2bx+c=0 Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4〔(a+ c2〕 ∵a+b+c=0,a>b>c,∴a>0,c<0 ∴ c2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=- ,x1x2= . |A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2 ∵a>b>c,a+b+c=0,a>0,c<0 ∴a>-a-c>c,解得 ∈(-2,- ) ∵ 的对称轴方程是 . ∈(-2,- )时,为减函数 ∴|A1B1|2∈(3,12),故|A1B1|∈( ). 〔例2〕已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围. (2)若方程两根均在区间(0,1)内,求m的范围. 命题意图:本题重点考查方程的根的分布问题,属★★★★级题目. 知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点. 技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制. 解:(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得 ∴ . (2)据抛物线与x轴交点落在区间(0,1)内,列不等式组 (这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过) ●锦囊妙计 1.二次函数的基本性质 (1)二次函数的三种表示法: y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n. (2)当a>0,f(x)在区间〔p,q〕上的最大值M,最小值m,令x0= (p+q). 若-
0时,f(α)
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
我知道能函授问题明白道理
(1) 将 (sin5/2x-sin1/2x)/(sin1/2x) 转化为cosx型 解: (sin5/2x-sinx)/(sin1/2x)= sin5/2x sin1/2x- (sin1/2x)^2=-1/2(cos3x-cos2x)+1/2(cosx-1)=1/2(-cos3x+cos2x+cosx-1)=1/2(3cosx-4(cosx)^3+2(cosx)^2-1-1)=-2(cosx)^3+(cosx)^2+3/2cosx-1(2) 已知0
(1)最大值3/2x/2-π/6=π+2kπx=7π/3+4kπ其中k为整数最小值-3/2x/2-π/6=2kπx=π/3+4kπ其中k为整数(2)最大值1/2x/2+π/3=π/2+2kπx=π/3+4kπ其中k为整数最小值-3/2x/2+π/3=3π/2+2kπx=7π/3+4kπ其中k为整数极值常用方法:对于三角函数只要记住结论sinx:x=π/2+2kπ取最大值x=3π/2+2kπ取最小值cosx:x=2kπ取最大值x=π+2kπ取最小值对于一般函数可以对函数求导,找出导数为0的点就是极值点
三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。2.y=asin2x+bsinxcosx+cos2x型的函数。 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 3.y=asin2x+bcosx+c型的函数特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 4.y=asinx+c/bcosx+d型的函数 特点是一个分式,分子、分母分别会有正、余弦的一次式。几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。 5.y=sinxcos2x型的函数。 它的特点是关于sinx,cosx的三次式(cos2x是cosx的二次式)。因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。 6.含有sinx与cosx的和与积型的函数式。 根据二次函数的图象,解出y的最大值是1+根号2。 相信通过这一归纳整理,大家对有关三角函数最值的问题就不会陌生了。并且好多其它的求最值的问题可以通过代换转化成三角求最值的问题。望同学们在做有关的问题时结合上面的知识。
分析:f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的最大值和最小值。一般而言,可以把函数化简,化简成为f(x)=k(ax+b)²+c 的形式,在x的定义域内取值。当k>0时,k(ax+b)²≥0,f(x)有极小值c当k<0时,k(ax+b)²≤0,f(x)有最大值c
最大值,即为已知的数据中的最大的一个值,在数学中,常常会求函数的最大值,一般求解方法有换元法、判别式求法、函数单调性求法、数形结合法和求导方法。
1.判别式求最值
主要适用于可化为关于自变量的二次方程的函数。根据二次方程图像的特点,求开口方向及极值点即可。
2.函数单调性
先判定函数在给定区间上的单调性,而后依据单调性求函数的最值
3.数形结合
主要适用于几何图形较为明确的函数,通过几何模型,寻找函数最值。
拓展资料:
示范解法
资料参考:百度百科 最大值 百度百科 最小值
中学范围内,常用的有四种方法:1.利用二次函数求最值2.利用均值不等式求最值3.利用导数求最值4.利用单调性和闭区间求最值。除此无它。