太阳能充电器的设计摘要:设计了基于LP3947的太阳能充电电路,通过脉宽调制对锂电池充电进行智能控制,从而提高太阳能电池输出功率及锂电池的使用效率,达到延长电池使用寿命和时间的目的。关键词:太阳能;LP3947;锂电池1.引言 太阳能作为一种新型的资源越来越多地被人们关注,它所带来的一系列的产业也逐渐成为目前非常具有开发潜力的产业。太阳能光伏发电是太阳能应用的主要产业之一。在我国太阳能资源极其丰富,陆地每年接受的太阳辐射能相当惊人。如果将这些太阳能充分加以利用,不仅有可能节省大量常规能源,而且可以有效地减少常规能源所带来的环境污染。 目前光伏发电在小型电器电路上的运用也逐渐的成熟,随着人们生活中越来越多的离不开手机、mp3、数码相机等一系列的数码产品,它们的充电问题成为了使用者极其关心的问题之一。设计一个利用光伏充电原理的充电器来为这些数码产品进行充电可以在很多方面解决各种问题。太阳能充电器具有携带方便、外型美观时尚,甚至可以在没有电源的情况下为手机等一系列的数码产品进行充电。2.太阳能电池板种类及工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,目前处于主流的是应用光电效应原理工作的太阳能电池,其基本原料为以半导体.当P-N 结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子,即引起光伏效应,产生一与P-N 结内建电场方向相反的光生电场,其方向由P 区指向N区.此电场使势垒降低,其减小量即为光生电势差,P 端正,N 端负,由此生产的结电流由P 区流向N 区,形成单向导电,发挥出与电池一样的功能。由于太阳电池板输出电压不稳定,故增加了稳压电路,通过稳压电路、充电电路为负载电池充电,同时还可以为内部蓄电池充电以备应急之用;光照条件较差时,太阳电池板输出电压较低,达不到充电电路的工作电压,因此增加了升压、稳压电路,以便为充电电路提供较稳定的工作电压.阴天、夜间等光照条件极差的情况下,可利用系统内部的蓄电池,通过升压电路为后续设备充电。另外,充电器还设计有照明灯,当夜间光线较暗时,通过蓄电池为照明灯供电,可供应急使用。3.充电器设计3.1电池充电原理 锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命,图3为锂电池的充电曲线,共分三个阶段:预充状态、恒流充电和恒压充电阶段。以800 mAh 容量的电池为例,其终止充电电压为4.2V。用1/10C(约80 mA)的电池进行恒流预充,当电池端电压达到低压门限V(min)后,以800 mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近4.2 V 时,改成4.2V恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(约80 mA)时,认为接近充满,可以终止充电。 手机电池充电曲线3.2充电器设计思想 太阳能手机充电控制电路的设计思想,从手机锂离子二次电池的恒流/恒压充电控制出发,同时配有锂离子蓄电池.当在户外无220V 交流电时,采用太阳能对手机锂离子直接充电,同时对锂离子蓄电池充电;当阴雨天天气或夜晚等阳光不足时,采用配置的锂离子蓄电池对手机锂离子充电,以保证任何情况下不间断.即:系统的设计以太阳能充电为主,在有足够的阳光且蓄电池又有足够供电能力的情况下,系统能够以太阳能充电为主给手机充电,蓄电池给手机补电;在无阳光或阳光弱时,以蓄电池充电为主给手机充电,太阳能为手机补电。3.3充电控制电路设计3.3.1升压电路设计由于在不同的时间、地点太阳光照强度不同,太阳电池板输出电能不稳定,需加人相应的升压、稳压等控制环节。直流升压就是将电池提供的较低的直流电压提升到需要的电压值。3.3.2稳压电路设计稳压电路的设计以三端集成稳压器W7800为核心,它属于串联稳压电路,其工作原理与分立元件的串联稳压电源相同。由启动电路、取样电路、比较放大电路、基准环节、调整环节和过流保护环节等组成,此外还有过热和过压保护电路,因此,其稳压性能要优于分立元件的串联型稳压电路。而且三端集成稳压器设置的启动电路,在稳压电源启动后处于正常状态下,启动电路与稳压电源内部其他电路脱离联系,这样输入电压变化不直接影响基准电路和恒流源电路,保持输出电压的稳定。3.3.3充电电路设计 锂电池以体积小、容量大、重量轻、无记忆效应、无污染、电池循环充放电次数多(寿命长)等优点,广泛地被使用在许多数码产品中。但锂电池对使用条件要求较严格,如充电控制要求精度高,对过充电的承受能力差等。因此,为了保护锂电他,该充电电路包括电池充电控制电路与电池电量检测控制电路两部分。电池充电控制电路,用来控制升压或稳压电路对锉电池进行充电,同时也是锂电池的充电电路。电池电量检测电路,用以检测充电电量的多少,当电池充满电时,充满指示灯亮,逻辑电路控制充电电路断开,停止充电。4结束语 随着现代的科技发展电子产品几乎可以普及,但电子产品的电池却一直困扰这我们。我着次的研究的目的不是让电池的容量增大,而是把太阳能充电器安装在电子产品表面上这样就可以大量增加电池的使用时间。
[论文关键词] 锂离子筛 前驱体 制备 检测
[论文摘要] 锂离子筛可以直接从盐湖卤水和海水中提取锂,是极具发展前景的锂吸附剂,介绍锰氧化物锂离子筛前驱体的制备和检测方法,并简要叙述离子筛分材料的发展过程。
锂是自然界中最轻的金属,锂及其化合物有着广泛而特殊的用途,在能源、航空航天工业、金属冶炼及制造业、制冷、玻璃、陶瓷、医药等行业都有着重要的用途:在原子能领域,锂被誉为新“能源元素”,锂-6是氢弹、热核反应堆原料。锂离子电池因其能量高、循环性能好、无毒而广泛用于便携式通讯设备。二十一世纪,用于锂电池的碳酸锂将超过2万吨。锂基润滑脂已成为润滑脂的主导产品。另外,碳酸锂作为情感矫正剂可有效治疗狂躁精神病。目前,世界对锂的需求量越来越大,其消耗量也从侧面反映了一个国家高新技术的发展水平。
全球锂资源约1276万吨,主要分布于花岗岩伟晶型矿床及盐湖中,其中,锂矿石中锂的储量仅为40万吨,约占全球总储量的3.0%,而盐湖卤水中,锂资源的占有率为77%以上。锂矿石中锂的储量远远不能满足市场的需求,固体矿源又不断枯竭,因此锂矿资源的开发利用正面临重大转折,探讨从盐湖卤水、低浓度海水、地下水中提取锂成为目前化学、化工、材料等学科的重要研究课题。盐湖卤水提锂工艺简便、成本约为矿石提锂的一半,目前国外从盐湖卤水中提锂的年产能力近2万吨,约占锂盐总产能力的40%。采用卤水或其他含锂液体矿资源取代矿石生产锂盐是世界锂工业的发展趋势。
一、离子筛分材料的发展过程
1850年,Thompon等,最早系统地研究了土壤中Ca2+、Na2+与水中NH+、K+的离子交换现象。其中具有交换性能的物质后来被鉴定为粘土、海绿石沸石分子筛和腐植酸。一般认为,这是离子筛分材料的最初发现。20世纪初,Harms等合成了硅酸铝凝胶作为离子交换材料应用于水的软化。但其选择性筛分性能较差,耐酸性也不好,性能易变。上世纪60年代,Clearfield A等,发现磷酸锆可以结晶,这为离子筛分材料的.发展指明了一个全新的方向。结晶使得这些磷酸锆的多晶结构得以测定,宏观的离子筛分和交换行为能够从微观结构的角度加以解释。到80年代以后,Kenta ,Qi Feng等合成出了结晶石结构的锂锰氧化物LiMn2O4,该物质对锂离子具有特殊的选择吸附性能。
二、我国盐湖卤水的提锂前景
我国盐湖资源相当丰富,集中分布于青海、西藏、新疆和内蒙古四个省区。锂资源储量大,含量高的盐湖卤水多集中在青海省的柴达木盆地,如:台吉乃尔盐湖、一里坪盐湖、察尔汗盐湖和大柴旦盐湖等,都具有极高的开采价值。西藏的扎布耶湖是世界上锂含量超过百万吨级的三大盐湖之一。因此,建立和发展我国的盐湖锂工业不仅可以将资源优势转化为经济优势,而且可以促进和发展我国西部的经济,并为二十一世纪高科技的发展提供理想的材料。
三、从盐湖卤水提取锂的方法
目前,锂资源的开发及利用主要集中在盐湖卤水提锂的方法上。盐湖卤水提锂的方法有蒸发结晶分离法,沉淀法、浮选法、溶剂萃取法和离子交换法等。蒸发结晶分离法大量使用烧碱和纯碱,致使锂盐产品成本较高;沉淀法和溶剂萃取法费时费力;浮选法工艺流程复杂;而离子交换法成本低,工艺简单,应用广泛。因此,研究开发高效、高选择性的新型无机离子吸附剂成为当今分离技术的发展方向。尖晶石结构的锰氧化物,不仅对Li+具有很高的选择性和较大的交换吸附容量,且具有经济、环保的特点,从而成为国内外学者研究的热点。
四、锂离子筛的制备方法
现阶段制备锂离子筛前驱体LiMn2O4的方法主要分为两大类:固相法和液相法。固相合成法主要分为:高温固相法、微波烧结法和固相配位法等。固相法一般操作较为简单,步骤短,便于大规模生产,易于实现工业化,但耗能大,产率低;液相合成法主要包括:溶胶凝胶法、共沉淀和水热法等。液相法一般操作要求高,反应步骤较长,产物粒度均匀、形态规整,晶相较纯。下面选取几种常见的方法分别介绍:
1、高温固相反应法:高温固相反应法是合成锂离子筛前驱体最常用且易操作的一种方法,是将锂和锰的易熔或易分解化合物先按一定的比例混合均匀,再于高温下焙烧一定时间而合成所需化合物。其中,锂源主要有Li2CO3、LiOH·H2O、LiNO3和LiI等;锰源主要包括MnO、Mn2O3、MnO2、MnCO3和Mn(CH3COO)2·4H2O等。高温固相反应法具有操作简便、易于工业化的优点。同时,也存在几点不足:能耗大,生产率低;锂盐的部分挥发,造成原配比不易把握;产物的均匀性差。
2、微波烧结法:微波烧结法是近些年发展起来普遍用于制备陶瓷材料的方法。其主要依据微波直接作用于材料内部后而转化为热能,从材料内部进行加热,进而缩短了反应的时间。微波烧结法可通过调节微波的功率来控制粉末的物相结构,易于工业化,值得关注。但其毕竟属于固相反应,所得粉末的粒度通常只能控制在微米级以上,粉末的形貌稍差。
3、固相配位反应法:此方法也是近些年发展起来的,尤其适于合成金属簇合物和固相配合物的一种方法。首先,在室温或低温下制备固相金属配合物,然后,在一定温度下热分解制得氧化物超细粉末。固相配位反应法保留了传统高温固相反应法操作简便的特点,同时在合成温度、焙烧时间和产物粒度大小及分布等方面又优于它。
4、溶胶凝胶法(Sol-Gel):也称Pechini合成法,属于液相合成法,是基于某些弱酸能与某些阳离子形成螯合物,而螯合物又可与多羟基醇聚合物形成固体聚合物树脂的原理。由于金属离子可与有机酸发生化学反应而均匀分散在聚合物树脂中,达到原子水平的混合,从而在较低温度下可制得超细氧化物粉末。传统的溶胶凝胶法是采用金属醇盐水解制得溶胶,然后干燥得凝胶。
由于该法成本偏高,工艺复杂,材料工作者相继对其进行了改进,派生出一些新方法,如柠檬酸配合法、甘氨酸配合法、高分子聚合物配合法、多羟基酸配合法等。锂离子筛的制备主要是在不破坏前驱体尖晶石构型的前提下,用合适的脱出剂脱出其中的锂离子,以保证所得锂离子筛对锂离子的记忆性。目前,使用的脱出剂主要是酸性化合物,如盐酸、硝酸以及硫酸等。评价脱出效果的指标主要是锂的脱出率及锰的溶损率。人们希望通过采用优良的脱出剂,使锂的脱出率最大、锰的溶损率最小。因为相对于盐酸,硝酸和硫酸都具有较强的氧化性,某种程度上会加大锰的溶损,所以用合适浓度的盐酸作为脱出剂的居多。然而,同种洗脱剂,浓度不同,洗脱时间不同,洗脱效果也不一样。因此,在制备离子筛的时,需要选择出最佳酸洗转型条件。
五、锂离子筛的检测
制备好的离子筛需对其表面形貌检测即对前驱体酸洗脱锂后产物进行SEM检测,得出扫描结果图像。通过与前驱体结构的扫描图像对比可以检测出,在酸洗脱锂过程中前驱体的结构有没有被破坏,再通过与文献中图片对比,可以检测出产物是否为尖晶石晶体结构, 晶型是否完整。然后再对产物(前驱体)进行XRD检测,得出扫描结果图, 根据扫描结果图,判断产物是否为尖晶石型LiMn2O4,是否有杂质。通过与文献中图谱对比,可以检测出产物是否有缺陷,是否为尖晶石型LiMn2O4,是否有杂质等。
六、结语
目前,对离子筛的研究还停留在试验阶段,如果要实现其工业化,就必须先解决其造粒及锰的溶损问题。同时,必须通过改进合成方法、优化实验条件等手段来提高离子筛的实际吸附量。锰氧化物锂离子筛是一种新型的、高效的、绿色的吸附剂,有着良好的应用前景。所以,锰氧化物锂离子筛吸附法已经成为国际上从盐湖卤水和海水中提锂的重要研究方向。
如今电动 汽车 愈发受到市场青睐,但漫长的充电时间也让人望而却步。传统燃油 汽车 仅需5分钟即可满油增程500公里,而目前市售最先进的电动 汽车 则需要“坐等”充电一小时才能达到同样的增程效果。发展具有快速充电能力的大容量锂离子电池一直是电动 汽车 行业的重要目标。中国科学技术大学的这项最新研究突破使人类距离该目标更近了一步。 论文第一作者金洪昌博士介绍:“在锂离子电池中,能量通过锂离子与电极材料的化学反应进出电池,因此电极材料对锂离子的传导能力是决定充电速度的关键;另一方面,单位质量或体积的电极材料容纳锂离子的多少也是一个重要因素。” 黑磷是白磷的同素异形体,特殊的层状结构赋予了它很强的离子传导能力和高理论容量,是极具潜力的满足快充要求的电极材料。然而黑磷容易从层状结构的边缘开始发生结构破坏,实测性能远低于理论预期。 为此,季恒星团队采用“界面工程”策略将黑磷和石墨通过磷碳共价键连接在一起,在稳定材料结构的同时提升了黑磷石墨复合材料内部对锂离子的传导能力。针对电极材料在工作过程中会被电解液逐渐分解的化学物质所包裹,部分物质会阻碍锂离子进入电极材料,就像玻璃表面的灰尘阻碍光线穿透一样。研究团队用轻薄的聚合物凝胶做成防尘外衣“穿”在黑磷石墨复合材料表面,使锂离子得以顺利进入。 “我们采用常规的工艺路线和技术参数将黑磷复合材料做成电极片。实验室的测量结果表明,电极片充电9分钟即可恢复约80%的电量,2000次循环后仍可保持90%的容量。”论文共同第一作者、中国科学院化学研究所研究员辛森介绍说,“如果能够实现这款材料的大规模生产,找到匹配的正极材料及其他辅助材料,并针对电芯结构、热管理和析锂防护等进行优化设计,将有望获得能量密度达350瓦时/千克并具备快充能力的锂离子电池。” 这样的锂离子电池能够使电动 汽车 的行驶里程接近1000公里,而特斯拉Model S满电后的行驶里程为650公里。快速充电能力将使电动 汽车 的用户体验上升一个台阶。
原创论文,包通过,包修改。
太阳能充电器的设计摘要:设计了基于LP3947的太阳能充电电路,通过脉宽调制对锂电池充电进行智能控制,从而提高太阳能电池输出功率及锂电池的使用效率,达到延长电池使用寿命和时间的目的。关键词:太阳能;LP3947;锂电池1.引言 太阳能作为一种新型的资源越来越多地被人们关注,它所带来的一系列的产业也逐渐成为目前非常具有开发潜力的产业。太阳能光伏发电是太阳能应用的主要产业之一。在我国太阳能资源极其丰富,陆地每年接受的太阳辐射能相当惊人。如果将这些太阳能充分加以利用,不仅有可能节省大量常规能源,而且可以有效地减少常规能源所带来的环境污染。 目前光伏发电在小型电器电路上的运用也逐渐的成熟,随着人们生活中越来越多的离不开手机、mp3、数码相机等一系列的数码产品,它们的充电问题成为了使用者极其关心的问题之一。设计一个利用光伏充电原理的充电器来为这些数码产品进行充电可以在很多方面解决各种问题。太阳能充电器具有携带方便、外型美观时尚,甚至可以在没有电源的情况下为手机等一系列的数码产品进行充电。2.太阳能电池板种类及工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,目前处于主流的是应用光电效应原理工作的太阳能电池,其基本原料为以半导体.当P-N 结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子,即引起光伏效应,产生一与P-N 结内建电场方向相反的光生电场,其方向由P 区指向N区.此电场使势垒降低,其减小量即为光生电势差,P 端正,N 端负,由此生产的结电流由P 区流向N 区,形成单向导电,发挥出与电池一样的功能。由于太阳电池板输出电压不稳定,故增加了稳压电路,通过稳压电路、充电电路为负载电池充电,同时还可以为内部蓄电池充电以备应急之用;光照条件较差时,太阳电池板输出电压较低,达不到充电电路的工作电压,因此增加了升压、稳压电路,以便为充电电路提供较稳定的工作电压.阴天、夜间等光照条件极差的情况下,可利用系统内部的蓄电池,通过升压电路为后续设备充电。另外,充电器还设计有照明灯,当夜间光线较暗时,通过蓄电池为照明灯供电,可供应急使用。3.充电器设计3.1电池充电原理 锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命,图3为锂电池的充电曲线,共分三个阶段:预充状态、恒流充电和恒压充电阶段。以800 mAh 容量的电池为例,其终止充电电压为4.2V。用1/10C(约80 mA)的电池进行恒流预充,当电池端电压达到低压门限V(min)后,以800 mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近4.2 V 时,改成4.2V恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(约80 mA)时,认为接近充满,可以终止充电。 手机电池充电曲线3.2充电器设计思想 太阳能手机充电控制电路的设计思想,从手机锂离子二次电池的恒流/恒压充电控制出发,同时配有锂离子蓄电池.当在户外无220V 交流电时,采用太阳能对手机锂离子直接充电,同时对锂离子蓄电池充电;当阴雨天天气或夜晚等阳光不足时,采用配置的锂离子蓄电池对手机锂离子充电,以保证任何情况下不间断.即:系统的设计以太阳能充电为主,在有足够的阳光且蓄电池又有足够供电能力的情况下,系统能够以太阳能充电为主给手机充电,蓄电池给手机补电;在无阳光或阳光弱时,以蓄电池充电为主给手机充电,太阳能为手机补电。3.3充电控制电路设计3.3.1升压电路设计由于在不同的时间、地点太阳光照强度不同,太阳电池板输出电能不稳定,需加人相应的升压、稳压等控制环节。直流升压就是将电池提供的较低的直流电压提升到需要的电压值。3.3.2稳压电路设计稳压电路的设计以三端集成稳压器W7800为核心,它属于串联稳压电路,其工作原理与分立元件的串联稳压电源相同。由启动电路、取样电路、比较放大电路、基准环节、调整环节和过流保护环节等组成,此外还有过热和过压保护电路,因此,其稳压性能要优于分立元件的串联型稳压电路。而且三端集成稳压器设置的启动电路,在稳压电源启动后处于正常状态下,启动电路与稳压电源内部其他电路脱离联系,这样输入电压变化不直接影响基准电路和恒流源电路,保持输出电压的稳定。3.3.3充电电路设计 锂电池以体积小、容量大、重量轻、无记忆效应、无污染、电池循环充放电次数多(寿命长)等优点,广泛地被使用在许多数码产品中。但锂电池对使用条件要求较严格,如充电控制要求精度高,对过充电的承受能力差等。因此,为了保护锂电他,该充电电路包括电池充电控制电路与电池电量检测控制电路两部分。电池充电控制电路,用来控制升压或稳压电路对锉电池进行充电,同时也是锂电池的充电电路。电池电量检测电路,用以检测充电电量的多少,当电池充满电时,充满指示灯亮,逻辑电路控制充电电路断开,停止充电。4结束语 随着现代的科技发展电子产品几乎可以普及,但电子产品的电池却一直困扰这我们。我着次的研究的目的不是让电池的容量增大,而是把太阳能充电器安装在电子产品表面上这样就可以大量增加电池的使用时间。
体积很大的电阻(一块瓷砖上饶了一根线),有拳头那么大的电阻接到你电池上面相当于短路.并且大电流充电或者放电对电池寿命影响最大.不要这样搞.浪费电池.
太大太慢,太小危险。你应先看一下这方面的书,再选电阻。推荐:《电化学原理》(航空出版社)
体积很大的电阻(一块瓷砖上饶了一根线),有拳头那么大的电阻接到你电池上面相当于短路.并且大电流充电或者放电对电池寿命影响最大.不要这样搞.浪费电池.
深度放电 伤电池的。。。。用至3%关机就行三思吧
锂电池的放电是需要专门的负载设备的。用电阻的方式你是无法知道电池容量的变化情况。如果你只是想了解你的手机或者笔记本电池的充电时间,你只需要将他们使用到自动关机,这就代表电放完了。锂电池通常要和电源保护电路一同工作,该电路的一个作用就是检测电池容量,这是个非常复杂的问题,到现在为止,它还是许多博士论文的题目呢。但对于小电流放电的应用,如手机和笔记本电脑,用一般的电压测量法就可以估算电池的容量了。 一般情况下电池的电压小于2.5V时即认为容量为0。
一、背景介绍迄今为止,锂离子电池(LIB)已广泛应用于便携式电子设备和电动汽车,而且它们的普及率还在继续增长。然而,随着应用的增加,挑战也越来越多,尤其是当运行条件偏离室温时。虽然研究人员已经对LIB的高温性能和降解进行了广泛的研究,但低于零摄氏度的性能受到的关注较少。低温下LIB的容量损失在一定程度上受到电池内部液体电解质的控制。因此,对电解质进行改性有望解决LIB的低温失效问题。【图1】用于改善低温性能的电解质工程策略示意图。二、正文部分1、成果简介美国劳伦斯伯克利国家实验室GaoLiu团队近日发表了一篇综述文章,首先简要介绍了决定锂离子在0°C以下性能的各种过程。然后,概述了提高上述低温性能的电解质改性策略,包括各种添加剂、溶剂和锂盐。最后,总结了这些策略的优缺点,并就该领域的现状提供了一些见解,包括有前景的新型研究领域。该研究以题目为“Liquidelectrolyte development for low-temperature lithium-ionbatteries”的论文发表在国际顶级期刊《Energy& Environmental Science》上。2、研究亮点简要回顾了低温LIBs液体电解质的发展历史。首先总结了决定锂离子在低温(<0°C)下性能指标的各种过程,以及电解质如何影响它们。然后,回顾了近年来低温LIB的电解质改性策略。最后,对该领域未来的发展方向提出了一些建议。3、图文导读【图2】石墨‖LiNi0.80Co0.15Al0.05O2全电池中锂传输路径的概述。锂离子电池的容量通常会随着温度的降低而降低。当温度恢复到正常条件时,这种容量损失通常是可逆的。另一方面,如果电池在低温下充电,也可能发生不可逆的容量损失,这是由于在负极表面沉积了锂金属。这两种类型的容量损失主要归因于低温下增加的内阻。这种内阻有许多组成部分,每个部分对应于锂离子在电池中不同的传输过程(图2)。【图3】(a)EMC-EC的液固相图,(b)PC-EC的液固相图。典型的LIB电解质有机碳酸酯溶剂包括碳酸亚乙酯(EC),其具有较大的介电常数,能够使Li+和PF6-强烈离解以形成高导电性电解液。LIB电导率普遍随温度降低,这主要归因于粘度增加,导致内阻上升。由于粘度与EC含量相关,因此应尽量减少这种溶剂。然而,由于EC在稳定SEI形成方面具有重要作用,这项工作具有挑战性。EC具有高熔点,容易凝固。当EC发生结晶时,它会降低剩余液相的电导率,甚至可能堵塞电极孔,导致容量降低。对于浓度>30mol%EC的EC/EMC体系,液相线点仍保持在0°C以上(图3a)。与线性碳酸酯相比,碳酸亚丙酯(PC)在作为助溶剂添加时能够更有效地抑制EC结晶(图3b)。因此,PC广泛用作一种低温溶剂。【图4】(a)商业锂离子电池放电至3.87V时电解质体电阻(Rb)、SEI电阻(RSEI)、电荷转移电阻(Rct)以及Rct占总电阻的百分比(Rct%)随温度的变化。(b)Rct的Arrhenius曲线。早期的阻抗研究显示,LIB过电位与充电状态强烈相关,特别是低于-20°C情况下(图4a)。阻抗谱显示,随着温度降低,中频区的电阻增加,这通常对应电荷转移电阻(Rct)。后续工作发现Rct和温度之间存在Arrhenius关系(图4b),并且电荷转移过程的活化能(Ea,ct)强烈依赖于电解质组成。综上所述,这些结果显示,Li+去溶剂化过程才是与电荷转移相关的限速步骤,而不是Li+跨越SEI的过程。【图5】(a)石墨界面处Li+去溶剂化示意图。(b和c)Gr‖NCA电池的放电曲线。E9A是指在E9电解质中经历了化成循环的负极(贫EC配方),而E2C是指在E2中经历化成循环的正极(富含EC的配方)。最近的研究工作也证明,Li+去溶剂化是低温下的限速过程(图5a)。2017年,太平洋西北国家实验室的一个团队系统地比较了Gr‖Gr、NCA‖NCA和LTO‖LTO对称电池中不同成分的碳酸盐电解质,从而消除了锂金属的影响。尽管在这些材料及其界面中化学结构不同,它们的中频EIS响应在-40°C时几乎相同,这意味着在每种情况下,离子去溶剂化都是限速过程。此外,当石墨负极在一种电解液中进行SEI化成过程,然后与另一种电解液重新组装成Gr‖NCA全电池时,-20℃时电池的放电容量与前一种电解液几乎没有相关性,但与后一种电解液密切相关(图5b和c)。【图6】(a)锂离子电池阻抗图。(b)Li‖MCMB半电池阻抗图。电解质的主要影响是界面组成。中间相可能在负极(SEI)或正极(CEI)表面上形成,它们对电池阻抗产生了体相传输电阻(RSEI)。然而,RSEI不太可能是低温下内阻的最大组成部分。事实上,一些早期的研究指出SEI电导率是低温LIB容量的主要限制因素,这是一个普遍的误解。那么,为什么这种误解会持续存在呢?一个可能的原因是RSEI和Rct可能难以区分。与中间相离子传输和电荷转移相关的阻抗通常有相当大的重叠,这可能导致它们在阻抗图中显示为一个半圆(图6a和b)。另一个可能的原因是,虽然RSEI不是总电阻的最大组成部分,但仍存在,从而显着影响性能。【图7】(a)带有锂参比电极的MCMB‖LiNi0.8Co0.2O2电池在-20°C充电期间的电极/电池电压曲线。(b)MCMB‖LiNi0.8Co0.2O2电池在-20°C放电期间的电压-容量图。在低于25°C或以高倍率对石墨负极进行充电会导致锂金属沉积,引发安全隐患和容量过早衰减。如果石墨颗粒相对于Li/Li+的电化学电势下降到0V以下,则在热力学上可能形成锂金属。当施加电流足够大时,负极电位可能会进一步下降到锂电镀状态(图7a)。这种过电位可能由多种因素引起,包括欧姆损耗以及传质和动力学限制。大量研究表明,在低温运行期间,石墨上也会发生镀锂。研究人员采用电化学方法检测低温下何时发生锂电镀(图7b),并对-30°C时LIB放电曲线进行dV/dQ分析。这些dV/dQ分析表明,低温充电后电池阻抗升高,这归因于锂金属与电解质反应生成的SEI。【图8】(a)MCMB‖LiNi0.5Mn1.5O4全电池在市售电解质(BE)和含有三(三甲基甲硅烷基)亚磷酸酯和1,3-丙二醇环状硫酸盐添加剂(BE+MA+1wt% TMSP+1 wt%PCS)电解质中的循环性能。(b)在室温下0.5C充电后,上述电池在-20至-60°C的放电曲线。(c)亚磷酸盐和硫酸盐添加剂在该体系中的工作机制。有机亚磷酸酯已作为LIB电解质添加剂用于降低可燃性和提高高压稳定性。特别是,亚磷酸三(三甲基甲硅烷基)酯,又名TMSP或TMSPi,由于其对金属氧化物的钝化作用而受到关注,因为其有助于形成稳定的正极电解质界面(CEI)层。TMSPi还参与石墨上SEI的形成,因为它与EC降解过程中形成的锂醇盐产生反应。最近的研究发现TMSPi可降低-40°C下Gr‖NCA全电池的过电位,从而提高容量。同年的另一篇论文显示,添加TMSPi能够使得5V级MCMB‖LiNi0.5Mn1.5O4电池在-60°C下运行,且没有容量衰减(图8a和b)。除了钝化正极外,该添加剂还能够显着稳定负极SEI,防止锂金属沉积并减少微裂纹的形成(图8c)。【图9】(a)在标准电解质(1M LiPF6in EC/EMC/PC 4:7:1 w/w)中添加1wt% LiPO2F2后,Gr‖NMC523电池在低温下的放电容量保持率。(b和c)完全充电的正极和负极半电池在0°C时的阻抗。尽管已经开发了许多不同的锂盐作为LIB添加剂,但很少有人专门研究它们在低温下的作用。其中,二氟磷酸锂(LiPO2F2)可以改变正负极的界面化学特性。在标准电解质(1M LiPF6 in EC/EMC/PC 4:7:1 w/w)中仅添加1wt% LiPO2F2,就可以将Gr‖NMC523电池在-30°C下的相对容量保持率从9.6%提高到57.9%(图9)。最近,另外一些研究表明,这种添加剂在石墨和NMC表面上都充当界面形成剂,大大降低了SEI和CEI电阻。【图10】(a)在低温(Gr‖NMC111软包电池)和室温(Gr‖NCA纽扣电池)下少量(0.05M)CsPF6添加剂对锂离子全电池性能的影响。(b)Gr‖NCA纽扣电池在-40°C和C/5倍率下,三种含有CsPF6添加剂的电解质中的放电电压曲线,其中E1=1M LiPF6in EC/PC/EMC 1:1:8 w/w+0.05 MCsPF6。(c)含有E1、E2或E3电解质的Gr‖NMC111软包电池在-40°C下的1C放电曲线。电解液E2含有0.5wt%的FEC和TMSPi,但不含1,3-丙磺酸内酯(PS)。(d)在60°C,1C恒流循环期间,含有E1、E2或E3的Gr‖NCA纽扣电池的容量保持率。电解液E3中存在0.5wt% PS。用于改善低温性能的添加剂之一是CsPF6(图10)。Cs+的作用是由于它在引导SEI形成方面的作用:铯离子在其溶剂壳中只能容纳1-2个EC分子,而且[Cs(EC)1-2]+的还原电位高于[Li(EC)3-4]+的还原电位。这导致SEI由EC的分解产物主导,即使在具有竞争性溶剂或低EC含量的电解质中也是如此。在优化溶剂和添加剂组成后,0.05M CsPF6电解质组装的1Ah软包电池(Gr‖NMC111),其在-18°C下保持0.69Ah的放电容量,在-40°C下保持0.37Ah的放电容量,均在1C倍率下。相同的电池在25°C时能够循环1000次,容量保持率>85%,而使用相同电解质的Gr‖NCA纽扣电池在60°C下循环300次后容量保持率>60%。【图11】(a)含有10wt% PC和30wt% EC(E6)、20wt% EC(E7)或10wt% EC(E8)的电解质的差示扫描量热法结果,其余为EMC。(b)不同温度下具有不同EC含量的10%PC电解质电导率。(c)Gr‖NCA纽扣电池在不同温度下的C/5放电容量随EC含量的变化。碳酸丙烯酯 (PC)是一种极性非质子溶剂(ε=65),具有宽的液体温度范围(-49至242°C)。由于PC的熔点和粘度优于EC,添加少量PC可以提高低温下的电导率并显着降低结晶倾向。在2017年的一项研究中,李等人彻底比较了含有不同比例EC、PC和EMC且具有恒定盐浓度(1.0M LiPF6和0.05MCsPF6)的电解质热特性和离子电导率。发现添加PC显着降低了液相线温度和凝固点,对于PC:EC:EMC=1:1:8的电解质,分别为-58.4°C和-67.2°C(图11a)。此外,在低于-20°C的温度下,电导率随着EC含量的降低而均匀增加,在-40°C下,1:1:8混合物的电导率可高达1mS cm-1(图11b)。这种相对简单的三元混合物能够使Gr‖NCA纽扣电池和Gr‖NMC111软包电池在-40°C和C/5条件下的容量保持率>65%(图11c)。【图12】(a)高氟化FEC基电解质的冰点。(b)几种电解质电导率随温度的变化。含有高氟电解质和标准电解质的Li‖NCA半电池(c)在不同温度下的循环性能,以及(d)在-20°C,C/3下的循环性能。Fan等人最近报道了一种使用FEC作为主要溶剂成分的高氟含量电解液。作者在FEC:DEC=1:3的混合物中溶解了高浓度的氟化盐LiFSI或LiBETI。然后将浓缩的电解质进一步稀释到惰性氟化溶剂中,这种溶剂通常不能溶解锂盐,但可与预溶剂化的混合物混溶。由此产生的局部高浓电解质在-120°C以下保持液态(图12a),达到了惊人的低温极限。它们的电导率对温度不敏感,从-80°C到25°C仅变化两个数量级(10-5-10-3Scm-1)(图12b)。此外,由于盐与(配位)溶剂分子的比例很高,Li+的平均溶剂化能显着降低。总之,这种电解质使得Li‖NCA电池能够在-95至70°C内运行(图12c和d)。【图13】(a)MCMB‖LixNiyCo1−yO2软包电池的串联电阻随温度的变化,该软包电池电解质为1M LiPF6 inEC/EMC/各种酯=1:3:1。(b和c)在标准电解质和1M LiBOB in GBL:F-EPE=7:3电解质中,Gr‖NMC111纽扣电池在不同温度下的0.1C放电曲线。除了碳酸酯类之外,酯类以及它们的环状衍生物(称为内酯类)也可以作为低温锂离子电池的电解质溶剂。其中,丙酸甲酯(MP)是最有效的(图13a),把它添加在1M LiPF6in EC/EMC/MP=2:6:2电解质中后,Gr|LiNi0.8Co0.2O2电池的放电容量可在-60°C下超过5Ah。另外,环状内酯与线性酯类不同,它们具有较高的极性,足以部分或完全替代EC/PC。研究最多的是γ-丁内酯(GBL),其在室温下具有42的相对介电常数,约为EC的一半,但仍然足够大,使得Li+盐有效电离。它还能在更宽的范围内保持液态,并且比EC具有更低的粘度。然而,与其他酯一样,它无法在石墨上形成钝化SEI。然而,最近Shi等人在GBL与惰性氢氟醚(F-EPE)的混合物中溶解了1M 双(草酸根)硼酸锂(LiBOB)作为电解质。这种电解质使得Gr‖NMC111电池能够在宽的温度范围内(-40至60°C)稳定循环,在-40°C下能提供74mAh g-1的比容量,而传统电解质做不到(图13b和c)。【图14】(a)完全充电的锂离子电池在-20°C下的阻抗谱,电解质为1MLiPF6/LiBF4in EC/DMC/DEC=1:1:1 w/w。(b)使用混合LiDFOB/LiBF4电解质与标准电解质的Li‖LiFePO4电池在-20°C下的初始充放电曲线,放电速率为0.5C。(c)-20°C下,Gr|LiNi0.5Mn1.5O4电池在含有不同比例LiDFOB与LiBF4电解质中的循环性能。LiBF4在电解质中的离子电导率和SEI特性较差,但在零度以下,LiBF4可以实现比LiPF6更好的电池性能。当使用LiBF4时,全电池Rct显着降低(图14a)。然而,由于电解质溶液中形成的SEI性能较差,LiBF4并没有得到广泛普及。另一方面,双(氧代)硼酸锂(LiBOB)具有优异的SEI形成能力。然而,LiBOB的溶解度和导电性比LiPF6更差,限制了它的应用。在二氟(氧代)硼酸锂(LiDFOB)中可以避免上述两个问题,它具有LiBOB的SEI形成特性,以及适当的溶解度和离子解离特性。使用LiDFOB和LiBF4组成的混合盐可以最大限度地发挥这两种化合物在低温下的优势。例如,李等人研究了一种EC/DMS/EMC=1:1:3v/v电解液,其中LiDFOB和LiBF4总量为0.9M。在半电池测试中发现这种电解质与石墨和LiFePO4兼容,在-20°C时,其容量比标准电解质高得多(图14b)。Zhou和同事对在-20至60°C内具有不同DFOB/BF4比的电解质进行了详细研究。纯LiDFOB普遍适用室温和更高温度,在Gr‖LMNO电池中产生最好的电导率和放电容量,但这种趋势在-20°C时完全相反,LiDFOB和LiBF4混合物显示出更好的特性(图14c)。在0.8M LiDFOB和0.2M LiBF4比例下达到了最优的性能,因为即使是少量的LiBF4也可以在-20°C下将电池Rct从482.6Ω降低到346.3Ω,而不会影响LiDFOB的钝化效果。因此,含有这种混合物的电池在所有温度下都表现出优异的容量保持率。【图15】(a-c)含有各种电解质的Si纳米片粉末半电池在不同温度下的循环性能。电解质为1M LiPF6in EC/DEC=1:1 v/v,具有10wt%的添加剂。(d-f)上述电池在不同温度下第10次循环的充放电曲线。硅负极具有较高的容量,有望取代石墨负极,然而它在低温下的性能研究较少。春田等人比较了几种常见电解质添加剂在不同温度下对Si纳米片负极的影响(图15),发现10wt% FEC在-5°C下和60°C下都有较高的容量和循环稳定性。而10wt% VC在高温下的容量稍好一些,但低温下的容量则会大大降低。4、总结和展望这篇综述首先总结了与液体电解质相关的阻抗来源以及它们在低温性能中所起的作用。低温下LIB运行的最大限制因素是电荷转移电阻,而这与电解质/活性材料界面处的Li+去溶剂化相关。通过电解质工程能够解决这些问题。电解质添加剂通常有助于形成坚固的SEI/CEI层,降低Li+传输阻力。低温下最简单但最有效的溶剂组分之一是碳酸丙烯酯(PC),因为它熔点较低(-49°C)。最后,使用其他锂盐,如LiBF4,LiBOB和LiDFOB,也能够将低温下的电荷转移电阻大大降低。总的来说,通过对电解质添加剂、溶剂、锂盐进行改性和不同的组合有望进一步提升低温LIB性能,使其能够应用于一些极端条件如航空航天,深海探测等领域。参考文献DionHubble, David Emory Brown, Yangzhi Zhao, Chen Fang, Jonathan Lau,Bryan D. McCloskey and Gao Liu*. Liquid electrolyte development forlow-temperature lithium-ion batteries, Energy& Environmental Science.DOI:10.1039/D1EE01789F
电池怎么检测电流要求检测电流的话,一般都是使用外称万能表,用外用表进行两个正负极连接以后,然后看它的数字显示,就可以知道它是哪种电流的。
首先是电池极性判别电路,对于有电荷的电池判断倒是很简单,没有一点电的电池要复杂一点点! 其次是电池能冲的最高电压判断,这个要根据电池的充电特性曲线来判断。 然后是充电的电流大小判断,这个要根据电池的电压等级,已经其电压增长幅度了决定! 最后就是考虑浮充和充电完毕的问题了!
采用恒流放电器进行放电,先将电池充满电(4.2V),静止12小时,再恒流放电到3.0V停止。放电计量时间为小时,再用放电电流(安培)乘以放电时间(小时),乘积即为电池容量。例如,放电电流为0.3A,放电时间为8小时,则该电池的容量为0.3A*8H=2.4AH
利用万用表的电流测量档位就可以测,有的万用表配备电流钳,利用电流钳来测也可以。
原理:
高级的锂电池一般都有一个电池控制芯片,比如 线性锂电池芯片SL1053。这是控制电池充放电,电池过载保护,以及分析电压数据估计电量温度的。相当于一个高级保险丝,基本都是靠这个芯片读取电量,而不是直接去分析电压来换算电量。
有时候这个电池芯片会出故障,比如瞬间高压击毁芯片,会导致电量显示不正确,无法充电什么的。很多时候,电池的问题都是出在芯片上。
检测方法:
1 电压测试法:就是说电池的电量通过简单的监控电池的电压而得来的。电池的电量和电压不是线性关系的,所以这中 测试方法并不精准,电量测量精度仅仅超过20%。尤其是电池电量低于50%时,手机的电量计算将会变得非常不准确。所以这种方法对电池的保护是非常有限的。
2 电池建模法:这个方法是根据电池的放电曲线来建立一个数据表,数据表中会标明不同电压下的电量值,这一方法可以有效的提高测量的精度。
但要获得一个精准的数据表并不简 单,因为电压和电量的关系还涉及到了电池的温度、自放电、老化等的因素。只有结合了众多的因素来进行修正才能够得出较满意的电量测量。
3 库仑计:库仑计是在电池的正极和负极串如一个电流检查电阻,当有电流流经电阻时就会产生Vsense,通过检测Vsense就可以计算出流过电池的电流。
因此可以精 确的跟踪电池的电量变化,精度可以达到1%,另外通过配合电池电压和温度,就可以极大的减少电池老化等因素对测量结果的影响。其中iPhone中就是采用 这一方法。
扩展资料:
剩余电量是指电池内的可用电量占标称容量的比例,是电池管理系统的一个重要监控数据,电池管理系统根据SOC值控制电池工作状态。
电池的剩余电量也即反映的是电池的荷电状态。电池本身复杂的电化学反应导致其瞬态电压响应。电荷必须首先以电子的形式穿越储存能量的电化学活性材料(阳极或阴极),在到达粒子表面后以离子的形式存储于电解液中。这些化学步骤与电池电压响应的时间常数相关。
充放速率有时率和倍率两种表示法。时率是以充放电时间表示的充放电速率,数值上等于电池的额定容量(安·小时)除以规定的充放电电流(安)所得的小时数。倍率是充放电速率的另一种表示法,其数值为时率的倒数。
原电池的放电速率是以经某一固定电阻放电到终止电压的时间来表示。放电速率对电池性能的影响较大。
储存寿命从电池制成到开始使用之间允许存放的最长时间,以年为单位。包括储存期和使用期在内的总期限称电池的有效期。
储存电池的寿命有干储存寿命和湿储存寿命之分。循环寿命是蓄电池在满足规定条件下所能达到的最大充放电循环次数。在规定循环寿命时必须同时规定充放电循环试验的制度,包括充放电速率、放电深度和环境温度范围等。
电池在存放过程中电容量自行损失的速率。用单位储存时间内自放电损失的容量占储存前容量的百分数表示。
参考资料:百度百科——电池
在充电器上加上测检到充电电流小于多少时就自动断电的电路呀,一般手机里都带有这个电路,所以直接给手机充电,电池充满了就会自动断电.
1、电压测试法:这种方法相对来说比较简单,通过简单地监控电池的电压得到的。但电池的电量和电压不是线性关系,所以这种测试方法并不精确。尤其是手机电量低于50%时,这种方法就显得很不精确了。
2、电池建模法:这个方法是根据电池的放电曲线来建立一个数据表,数据表会标明不同电压下的电量值,这一方法可以有效的提高测量的精度。但要获得一个精确的数据表并不简单,因为电压和电量的关系还涉及到了电池的温度、自放电、老化等因素。只有结合了众多的因素来进行修正才能得出比较满意的电量测量。
3、库仑计:在电池的正极和负极串联一个电流检测电阻,当有电流流经电阻时库仑计就会产生感应,通过检测感应就可以计算出流过电池的电流,因此可以精确到追踪电池的电量变化,精度可以达到1%。是最准确的电池电量检测方法。
手机用的锂电池除了电量的测试外,还需要进行性能测试,主要是为了保证电池的安全性。测试中选择导电性能好的大电流弹片微针模组,能保持稳定的连接,也能过1-50A的电流。
太阳能充电器的设计摘要:设计了基于LP3947的太阳能充电电路,通过脉宽调制对锂电池充电进行智能控制,从而提高太阳能电池输出功率及锂电池的使用效率,达到延长电池使用寿命和时间的目的。关键词:太阳能;LP3947;锂电池1.引言 太阳能作为一种新型的资源越来越多地被人们关注,它所带来的一系列的产业也逐渐成为目前非常具有开发潜力的产业。太阳能光伏发电是太阳能应用的主要产业之一。在我国太阳能资源极其丰富,陆地每年接受的太阳辐射能相当惊人。如果将这些太阳能充分加以利用,不仅有可能节省大量常规能源,而且可以有效地减少常规能源所带来的环境污染。 目前光伏发电在小型电器电路上的运用也逐渐的成熟,随着人们生活中越来越多的离不开手机、mp3、数码相机等一系列的数码产品,它们的充电问题成为了使用者极其关心的问题之一。设计一个利用光伏充电原理的充电器来为这些数码产品进行充电可以在很多方面解决各种问题。太阳能充电器具有携带方便、外型美观时尚,甚至可以在没有电源的情况下为手机等一系列的数码产品进行充电。2.太阳能电池板种类及工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,目前处于主流的是应用光电效应原理工作的太阳能电池,其基本原料为以半导体.当P-N 结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子,即引起光伏效应,产生一与P-N 结内建电场方向相反的光生电场,其方向由P 区指向N区.此电场使势垒降低,其减小量即为光生电势差,P 端正,N 端负,由此生产的结电流由P 区流向N 区,形成单向导电,发挥出与电池一样的功能。由于太阳电池板输出电压不稳定,故增加了稳压电路,通过稳压电路、充电电路为负载电池充电,同时还可以为内部蓄电池充电以备应急之用;光照条件较差时,太阳电池板输出电压较低,达不到充电电路的工作电压,因此增加了升压、稳压电路,以便为充电电路提供较稳定的工作电压.阴天、夜间等光照条件极差的情况下,可利用系统内部的蓄电池,通过升压电路为后续设备充电。另外,充电器还设计有照明灯,当夜间光线较暗时,通过蓄电池为照明灯供电,可供应急使用。3.充电器设计3.1电池充电原理 锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命,图3为锂电池的充电曲线,共分三个阶段:预充状态、恒流充电和恒压充电阶段。以800 mAh 容量的电池为例,其终止充电电压为4.2V。用1/10C(约80 mA)的电池进行恒流预充,当电池端电压达到低压门限V(min)后,以800 mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近4.2 V 时,改成4.2V恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(约80 mA)时,认为接近充满,可以终止充电。 手机电池充电曲线3.2充电器设计思想 太阳能手机充电控制电路的设计思想,从手机锂离子二次电池的恒流/恒压充电控制出发,同时配有锂离子蓄电池.当在户外无220V 交流电时,采用太阳能对手机锂离子直接充电,同时对锂离子蓄电池充电;当阴雨天天气或夜晚等阳光不足时,采用配置的锂离子蓄电池对手机锂离子充电,以保证任何情况下不间断.即:系统的设计以太阳能充电为主,在有足够的阳光且蓄电池又有足够供电能力的情况下,系统能够以太阳能充电为主给手机充电,蓄电池给手机补电;在无阳光或阳光弱时,以蓄电池充电为主给手机充电,太阳能为手机补电。3.3充电控制电路设计3.3.1升压电路设计由于在不同的时间、地点太阳光照强度不同,太阳电池板输出电能不稳定,需加人相应的升压、稳压等控制环节。直流升压就是将电池提供的较低的直流电压提升到需要的电压值。3.3.2稳压电路设计稳压电路的设计以三端集成稳压器W7800为核心,它属于串联稳压电路,其工作原理与分立元件的串联稳压电源相同。由启动电路、取样电路、比较放大电路、基准环节、调整环节和过流保护环节等组成,此外还有过热和过压保护电路,因此,其稳压性能要优于分立元件的串联型稳压电路。而且三端集成稳压器设置的启动电路,在稳压电源启动后处于正常状态下,启动电路与稳压电源内部其他电路脱离联系,这样输入电压变化不直接影响基准电路和恒流源电路,保持输出电压的稳定。3.3.3充电电路设计 锂电池以体积小、容量大、重量轻、无记忆效应、无污染、电池循环充放电次数多(寿命长)等优点,广泛地被使用在许多数码产品中。但锂电池对使用条件要求较严格,如充电控制要求精度高,对过充电的承受能力差等。因此,为了保护锂电他,该充电电路包括电池充电控制电路与电池电量检测控制电路两部分。电池充电控制电路,用来控制升压或稳压电路对锉电池进行充电,同时也是锂电池的充电电路。电池电量检测电路,用以检测充电电量的多少,当电池充满电时,充满指示灯亮,逻辑电路控制充电电路断开,停止充电。4结束语 随着现代的科技发展电子产品几乎可以普及,但电子产品的电池却一直困扰这我们。我着次的研究的目的不是让电池的容量增大,而是把太阳能充电器安装在电子产品表面上这样就可以大量增加电池的使用时间。