向日葵(xiangrikui)(Helianthus annuus)亦称葵花。菊科,向日葵属。1年生草本,高1~3米。茎直立,粗壮,圆形多棱角,被白色粗硬毛。叶通常互生,心状卵形或卵圆形,先端锐突或渐尖,有基出3脉,边缘具粗锯齿,两面粗糙,被毛,有长柄。头状花序,极大,直径10~30厘米,单生于茎顶或枝端,常下倾。总苞片多层,叶质,覆瓦状排列,被长硬毛,夏季开花,花序边缘生黄色的舌状花,不结实。花序中部为两性的管状花,棕色或紫色,结实。瘦果,倒卵形或卵状长圆形,稍扁压,果皮木质化,灰色或黑色,俗称葵花子。性喜温暖,耐旱。原产北美洲,世界各地均有栽培。种子含油量极高,味香可口,可炒食,亦可榨油,为重要的油料作物。有食用型、油用型和兼用型3类。花托、茎秆、果壳、可作工业原料等。 关于向日葵,曾有一个凄美的传说。克丽泰是一位水泽仙女。一天,她在树林里遇见了正在狩猎的太阳神阿波罗,她深深为这位俊美的神所着迷,疯狂地爱上了他。可是,阿波罗连正眼也不瞧她一下就走了。克丽泰热切地盼望有一天阿波罗能对她说说话,但她却再也没有遇见过他。于是她只能每天注视着天空,看着阿波罗驾着金碧辉煌的日车划过天空。她目不转睛地注视着阿波罗的行程,直到他下山。每天每天,她就这样呆坐着,头发散乱,面容憔悴。一到日出,她便望向太阳。后来,众神怜悯她,把她变成一大朵金黄色的向日葵。她的脸儿变成了花盘,永远向着太阳,每日追随他,向他诉说她永远不变的恋情。 性昧 甘、平,无毒。 成分 种子含脂肪油,油中主要成分为油酸甘油酯、亚麻仁油酸甘油酯及少量软脂酸、硬脂酸等。茎的灰分含多量碳酸钾。 功用 平肝祛风,清湿热,消滞气。种子油可作软膏的基础药。茎髓为利尿消炎剂。叶与花瓣可作苦味健胃剂。果盘(花托)有降血压作用。 [头离眩晕] 鲜果盘30~60克,水煎,一日2次分服。 [妇女经期下腹痛] 葵子盘 (干品)30~60克,水煎后加红糖适量,一日2次分服。 [小便淋痛 (包括泌尿系感染、尿路结石等),妇女白带] 向日葵茎连白髓15~30克,水煎2~3沸(不要多煎),一日2次分服。 [哮喘] 鲜花盘30~60克,水煎服。 [百日咳,慢性支气管炎,咳嗽气喘] 向日葵茎连白髓30~60克,水煎去渣,加入白糖,一日2一3次分服。 [胃痛,疝气病] 向日葵花盘60克,水煎服。 [背疽、脓头多、乳腺炎] 葵花烧存性,研细,以麻油调涂于患处。另用鲜花60克,以酒水合煎服。 [脚转筋 (腓肠肌痉挛)] 鲜向日葵茎心白髓30克,伸筋草30克,煮猪爪吃 学名 Helianthus annuus 科别 菊科 别名 太阳花 原产地 北美洲 形态特征 向日葵四季皆可,主要以夏、冬两季为主。花期可达两周以上。向日葵除了外型酷似太阳以外,她的花朵明亮大方,适合观赏摆饰,她的种子更具经济价值,不但可作成受人喜爱的葵瓜子,更可榨出低胆固醇的高级食用葵花油。向日葵的品种可分为〃一般观赏用〃品种或〃食用〃品种,一般观赏用品种特征为植株较矮小,通常不超过半公尺,因此适合栽种於盆栽中;食用品种则植株较为高大,种於一般露天苗圃土壤中,可长至2公尺以上。向日葵生长相当迅速,通常种植约两个月即可开花,其花型有单瓣、重瓣或单花、多花之分,花期相当长久可达两周以上。 繁栽要点 以种子方式繁衍后代,播种时以泥炭土为宜。向日葵对光线要求度较高,对温度则忍受范围大,适合温度摄氏15-30度,但仍以夏季生长较为迅速。由于光线需求度高,新陈代谢快,因此水份需求度高,宜经常灌溉浇水,保持土壤之潮湿,夏天可每天浇水。以有机肥拌入培养土中为最佳之方式;除此之外亦可视植株状况追加化学肥料。 凡高的艺术是伟大的,然而在他生前并未得到社会的承认。他作品中所包含着深刻的悲剧意识,其强烈的个性和在形式上的独特追求,远远走在代的前面,的确难以被当时的人们所接受。他以环境来抓住对象,他重新改变现实,以达到实实在在的真实,促成了表现主义的诞生。在人们对他的误解最深的时候,正是他对自己的创作最有信心的时候。因此才留下了永远的艺术著作。他直接影响了法国的野兽主义,德国的表现主义,以至于20世纪初出现的抒情抽象肖像。《向日葵》就是在阳光明媚灿烂的法国南部所作的。画家像闪烁着熊熊的火焰,满怀炽热的激情令运动感的和仿佛旋转不停的笔触是那样粗厚有力,色彩的对比也是单纯强烈的。然而,在这种粗厚和单纯中却又充满了智慧和灵气。观者在观看此画时,无不为那激动人心的画面效果而感应,心灵为之震颤,激情也喷薄而出,无不跃跃欲试,共同融入到凡高丰富的主观感情中去。总之,凡高笔下的向日葵不仅仅是植物,而是带有原始冲动和热情的生命体。向日葵究竟向不向日 方舟子 法学教授刘大生近日寄给我几篇文章,有的是法学文章,也有的是杂文。其中有一组他写于1998年的文章《关于向日葵的陈述及对话》,大意是说经过他自己专门的观察,发现向日葵并不像一般人认为的那样其花盘随着太阳转动;从逻辑上看向日葵不可能转动,“那么粗硬的东西,怎么好随意转动呢?”;所有的工具书只 说向日葵转而不说它如何转,说明编撰者们在这个问题上是“囊中羞涩”,“肚里 无货”,根本说不出来。但是所有的工具书和教科书都说向日葵是向日的,欺 全世界60亿人。他写了一篇《向日葵如何向日?》的文章揭穿这个大,投了几 家报刊,都未被接受,只好拿到网上发表,也没有引起反响。他觉得很悲哀,“为 了反愚昧、反欺、反荒唐”,想在网上再次发表,呼吁“向日葵仅仅向东,向日 葵并不向日。中小学教师们,文学家们,科普作家们,工具书的编撰者们,请您们 慎重,不要再愚弄全人类了。” 其实只要观察过向日葵的人,都难免有同样的困惑,虽然未必像刘教授那愤 怒。比如作家张抗抗写过一篇散文《向日葵》,她在天山脚下发现一大片背着太阳的向日葵,在夕阳西下时,“却依然无动于衷,纹丝不动,固执地颔首朝东,只将那一圈圈绿色的蒂盘对着西斜的太阳。”不由发出一连串的疑问:“那众所周知的向阳花儿,莫非竟是一个弥天大谎么?”“究竟是天下的向日葵,根本从来就没有围着太阳旋转的习性,还是这天山脚下的向日葵,忽然改变了它的遗传基因,成为一个叛逆的例外?”“它们一定是一些从异域引进的特殊品种,被天山的雪水滋养,变成了向日葵种群中的异类?”……在我读幼儿园的时候,我家的阳台上曾种过一株向日葵,我也曾奇怪它怎么是一动不动的,没有像儿歌唱的那样“葵花朵朵向太阳”。不过我没有那么多疑问,只把原因归咎于没把向日葵种好。 向日葵原产北美洲,在1510年被西班牙殖民者带回欧洲,万历年间又由传教士传入中国。西方博物学家都注意到向日葵的向日性,明末清初的学者在记载向日葵时,也都特别提及其向日性,1688年出版的《花镜》说得更是详细:“向日葵,一名西番葵。高一、二丈,叶大于蜀葵,尖狭多刻缺。六月开花,每杆顶上只一花,黄办大心,其形如盘。随太阳回转,如日东升则花朝东,日中天则花直朝上,日西沉则花朝西。”中国原来的葵指的是葵菜,也有向日性,唐宋诗人曾反复吟咏,如杜诗:“葵藿倾太阳,物性固莫夺。”(藿的意思是豆叶)梅尧臣《葵花》诗:“此心生不背朝阳,肯信众草能翳之。”刘克庄诗《葵》:“生长古墙阴,,园荒草木深。可曾沾雨露,不改向阳心。”可见自古以来“葵”就与“向阳”紧密联系在一起。我怀疑向日葵的名称由刚传入时的“丈菊”、“西番菊”而改叫“向日葵”、“西番葵”,即与其向日性有关,以致现在说的“葵花”变成专指向日葵,甚至使 某些注家误以为唐宋诗人所说的葵花也指向日葵了。 那么向日葵究竟向不向日?难道这真是一个几乎愚弄了所有人的大?答案是:要看处于什么生长阶段。像工具书那样笼统地说向日葵“常朝着太阳”,是不准确的,这是引起无数人的误解、张抗抗的疑惑和刘大生的愤怒的原因。向日葵从发芽到花盘盛开之前这一段时间,的确是向日的,其叶子和花盘在白天追随太阳从东转向西,不过并非即时的跟随,植物学家测量过,其花盘的指向落后太阳大约12 度,即48分钟。太阳下山后,向日葵的花盘又慢慢往回摆,在大约凌晨3点时,又朝向东方等待太阳升起。但是,花盘一旦盛开后,就不再向日转动,而是固定朝向 东方了。刘大生、张抗抗观察的是已盛开的向日葵,所以只看到它们一动不动地面向东方。 绿色植物向日,实际上是为了充分地利用阳光进行光合作用,因此向日性实际上是向光性。古人虽然很早就注意到植物的向日性(至迟在三国时期就已注意到,曹植《求通亲亲表》说:“若葵藿之倾叶,太阳虽不为之回光,然终向之者,诚也。”),但只将之解释为“物性”,用来做比喻,却没有想到要用科学方法研究其奥秘。最早研究植物向光性的是——还会有谁——生物学之父达尔文。他在随贝格尔号环球旅行时,随身带了几只鸟,为了喂养这些鸟,又在船舱中种了一种叫草芦的草。船舱很暗,只有窗户透射进阳光,达尔文注意到,草的幼苗向窗户的方向弯曲、生长。但后来几十年间,达尔文忙着创建进化论,直到其晚年,才着手进行 一系列实验研究向光性的问题,在1880年出版的《植物的运动力》一书中总结了这些实验结果。达尔文是用草的种子做这些实验的。草的种子发芽时,胚芽外面套着一层胚芽鞘,胚芽鞘首先破土而出,保护胚芽在出土时不受损伤。达尔文发现胚芽鞘是向光性的关键。如果把种子种在黑暗中,它们的胚芽鞘将垂直向上生长。如果让阳光从一侧照射秧苗,胚芽鞘则向阳光的方向弯曲。如果把胚芽鞘尖端切掉,或用不透明的东西盖住,虽然光还能照射胚芽鞘,胚芽鞘也不再向光弯曲。如果是用透明的东西遮盖胚芽鞘,则胚芽鞘向光弯曲,而且,即使用不透光的黑色沙土掩埋胚芽鞘而只留出尖端,被掩埋的胚芽鞘仍然向光弯曲。达尔文推测,在胚芽鞘的尖端分泌一种信号物质,向下输送到会弯曲的部分,是这种信号物质导致了胚芽鞘向光弯曲。 达尔文的发现随后引起了生物学家们浓厚的兴趣。1913年,丹麦生物学家波义森-简森(Peter Boysen-Jensen)进一步验证了达尔文的推测。他切下胚芽鞘的尖端,在切面上放上一层凝胶,再把尖端放回去,胚芽鞘的向光性保持不变。但是如果在中间放的不是凝胶而是不通透的云母片,向光性就消失了。而且,只有把云母片插在切面背光的一面,才会防止向光性,如果是插在向光的一面,则向光性正常。这就表明信号物质是从胚芽鞘尖端传递到胚芽鞘背光的一面,使那里的细胞生长速度要比向光的一面快,导致弯曲。1918年帕尔(A. Paal)证实了波义森-简森的结果。他在黑暗中切下胚芽鞘的尖端,用光照射该尖端后再放回胚芽鞘的切面,但是放的时候偏离中心,放在一侧,他发现胚芽鞘生长时就往另一侧弯曲。 1925年索丁(H. Soding)发现,如果把胚芽鞘尖端切掉,则胚芽鞘的生长受抑制,但是如果把切下的胚芽鞘尖端放回去,则胚芽鞘的生长恢复正常,表明胚芽鞘尖端含有刺激细胞生长的信号物质。1926年,一名荷兰研究生文特(Fritz Went)用一简单的办法分离出了这种信号物质。他切下燕麦胚芽鞘的尖端,把它放在琼脂上放数个小时,然后把琼脂放到胚芽鞘残部,发现琼脂能刺激胚芽鞘的生长,表明有能刺激生长的物质从胚芽鞘尖端渗透到了琼脂中。这种物质后来被称为生长素。两年后,文特发明了一种办法定量地测定生长素的活性。他把渗透了生长素的琼脂放在燕麦胚芽鞘残部的一侧,在黑暗中,燕麦胚芽鞘将向另一侧弯曲。如此在黑暗中生长一个半小时后,测定胚芽鞘的弯曲度,越弯曲,则说明琼脂中含有的生长素活性越强(比如说,用的胚芽鞘尖端越多),这种测定法后来被称为燕麦测试法。文特也发现,是生长素的不均匀分布导致植物的向光性。让光从一侧照射胚芽鞘尖端,然后将胚芽鞘尖端切下放在两块琼脂上,在原来背光和向光的一侧各放一块。几个小时后用燕麦测试法分别测定这两块琼脂所含生长素的活性,发现背光的那块几乎是向光的那块的两倍。 那么这种生长素又是什么化学物质呢?可惜的是,胚芽鞘尖端所含的生长素的量实在是太少的,没法将之提取、纯化和测定其化学结构。科学家们只能用从其他来源提取的物质用燕麦测定法测定其生长素活性。1931年,荷兰科学家科格尔(Fritz Kogl)和哈根-史密特(Arie J. Haagen-Smit)首次从人尿中提取出了一种能刺激植物生长的物质,称之为生长素A(即三醇酸)。科格尔后来又从人尿中提取出了几种生长素,其中活性最强的是β-吲哚乙酸,这种物质实际上早在1885年被从发酵液中提取出来了,只不过人们当时不知道它是一种生长素。β-吲哚乙酸成了人们所发现的第一种真正的植物生长素,也是最主要的生长素。现在我们从分子水平上对生长素的作用机理有了一定的了解,不过有许多细节仍然搞不清楚。简单地说,是这样的:光(以蓝光最有效,用微弱的蓝光照射一、两秒就能引发向光性)照射到芽的尖端,被光受体(某种蛋白质,包括一种被称为趋光蛋白的黄素蛋白)吸收,激发生长素的合成。光同时刺激在向光面和背光面的生长素的合成,但是背光面的生长素合成量要高三倍。在芽尖合成的生长素经由维管组织向下传输,与细胞膜上 的蛋白质受体结合,刺激细胞壁拉长。由于背光面的生长素浓度较高,导致背光面的细胞被拉得较长,从而朝着向光面弯曲。生长素还有许多特性,其中一种是:如果含量太高,它将抑制而不是刺激植物的生长。 现在我们再回到向日葵。显然,向日葵的叶子和花盘之所以能朝着太阳转动,不必像刘教授设想的那样“除非在它的脖子上安装一个轴承”。在阳光的照射下,生长素在向日葵背光一面含量升高,刺激背光面细胞拉长,从而慢慢地向太阳转动。在太阳落山后,生长素重新分布,又使向日葵慢慢地转回起始位置,也就是东方。 在花盘盛开后,向日葵也停止了生长,而把花盘固定朝向东方。为什么最后要面向东方而不是其他方向或朝上呢?这可能是自然选择的结果,对向日葵的繁衍有益处。向日葵的花粉怕高温,如果温度高于30摄氏度,就会被灼伤,因此固定朝向东方,可以避免正午阳光的直射,减少辐射量。但是,花盘一大早就受阳光照射,却有助于烘干在夜晚时凝聚的露水,减少受霉菌侵袭的可能性,而且在寒冷的早晨,在阳光的照射下使向日葵的花盘成了温暖的小窝,能吸引昆虫在那里停留帮助传粉。 通过以上的介绍,我想已足以消除刘大生、张抗抗以及某些观察过向日葵的大人、小孩的困惑了。他们不轻信常识,能够自己做观察验证,敢于挑战权威,这是难能可贵的。可惜的是他们的观察既不系统也不细致,又没能查阅足够的专业资料,因此疑惑不解,甚至匆忙地得出了的结论。在科学问题上,仅有探索、怀疑精 神是不够的。当然,一些辞书、科普文章不严谨的甚至错误的说法也要负一定的责任,应该做出相应的修改。
向日葵究竟向不向日 方舟子 法学教授刘大生近日寄给我几篇文章,有的是法学文章,也有的是杂文。其中 有一组他写于1998年的文章《关于向日葵的陈述及对话》,大意是说经过他自己专 门的观察,发现向日葵并不像一般人认为的那样其花盘随着太阳转动;从逻辑上看 向日葵不可能转动,“那么粗硬的东西,怎么好随意转动呢?”;所有的工具书只 说向日葵转而不说它如何转,说明编撰者们在这个问题上是“囊中羞涩”,“肚里 无货”,根本说不出来。但是所有的工具书和教科书都说向日葵是向日的,欺 全世界60亿人。他写了一篇《向日葵如何向日?》的文章揭穿这个大,投了几 家报刊,都未被接受,只好拿到网上发表,也没有引起反响。他觉得很悲哀,“为 了反愚昧、反欺、反荒唐”,想在网上再次发表,呼吁“向日葵仅仅向东,向日 葵并不向日。中小学教师们,文学家们,科普作家们,工具书的编撰者们,请您们 慎重,不要再愚弄全人类了。” 其实只要观察过向日葵的人,都难免有同样的困惑,虽然未必像刘教授那么愤 怒。比如作家张抗抗写过一篇散文《向日葵》,她在天山脚下发现一大片背对着太 阳的向日葵,在夕阳西下时,“却依然无动于衷,纹丝不动,固执地颔首朝东,只 将那一圈圈绿色的蒂盘对着西斜的太阳。”不由发出一连串的疑问:“那众所周知 的向阳花儿,莫非竟是一个弥天大谎么?”“究竟是天下的向日葵,根本从来就没 有围着太阳旋转的习性,还是这天山脚下的向日葵,忽然改变了它的遗传基因,成 为一个叛逆的例外?”“它们一定是一些从异域引进的特殊品种,被天山的雪水滋 养,变成了向日葵种群中的异类?”……在我读幼儿园的时候,我家的阳台上曾种 过一株向日葵,我也曾奇怪它怎么是一动不动的,没有像儿歌唱的那样“葵花朵朵 向太阳”。不过我没有那么多疑问,只把原因归咎于没把向日葵种好。 向日葵原产北美洲,在1510年被西班牙殖民者带回欧洲,万历年间又由传教士 传入中国。西方博物学家都注意到向日葵的向日性,明末清初的学者在记载向日葵 时,也都特别提及其向日性,1688年出版的《花镜》说得更是详细:“向日葵,一 名西番葵。高一、二丈,叶大于蜀葵,尖狭多刻缺。六月开花,每杆顶上只一花, 黄办大心,其形如盘。随太阳回转,如日东升则花朝东,日中天则花直朝上,日西 沉则花朝西。”中国原来的葵指的是葵菜,也有向日性,唐宋诗人曾反复吟咏,如 杜诗:“葵藿倾太阳,物性固莫夺。”(藿的意思是豆叶)梅尧臣《葵花》诗: “此心生不背朝阳,肯信众草能翳之。”刘克庄诗《葵》:“生长古墙阴,,园荒 草木深。可曾沾雨露,不改向阳心。”可见自古以来“葵”就与“向阳”紧密联系 在一起。我怀疑向日葵的名称由刚传入时的“丈菊”、“西番菊”而改叫“向日葵”、 “西番葵”,即与其向日性有关,以致现在说的“葵花”变成专指向日葵,甚至使 某些注家误以为唐宋诗人所说的葵花也指向日葵了。 那么向日葵究竟向不向日?难道这真是一个几乎愚弄了所有人的大?答案 是:要看处于什么生长阶段。像工具书那样笼统地说向日葵“常朝着太阳”,是不 准确的,这是引起无数人的误解、张抗抗的疑惑和刘大生的愤怒的原因。向日葵从 发芽到花盘盛开之前这一段时间,的确是向日的,其叶子和花盘在白天追随太阳从 东转向西,不过并非即时的跟随,植物学家测量过,其花盘的指向落后太阳大约12 度,即48分钟。太阳下山后,向日葵的花盘又慢慢往回摆,在大约凌晨3点时,又 朝向东方等待太阳升起。但是,花盘一旦盛开后,就不再向日转动,而是固定朝向 东方了。刘大生、张抗抗观察的是已盛开的向日葵,所以只看到它们一动不动地面 向东方。 绿色植物向日,实际上是为了充分地利用阳光进行光合作用,因此向日性实际 上是向光性。古人虽然很早就注意到植物的向日性(至迟在三国时期就已注意到, 曹植《求通亲亲表》说:“若葵藿之倾叶,太阳虽不为之回光,然终向之者,诚 也。”),但只将之解释为“物性”,用来做比喻,却没有想到要用科学方法研究 其奥秘。最早研究植物向光性的是——还会有谁——生物学之父达尔文。他在随贝 格尔号环球旅行时,随身带了几只鸟,为了喂养这些鸟,又在船舱中种了一种叫草 芦的草。船舱很暗,只有窗户透射进阳光,达尔文注意到,草的幼苗向窗户的方向 弯曲、生长。但后来几十年间,达尔文忙着创建进化论,直到其晚年,才着手进行 一系列实验研究向光性的问题,在1880年出版的《植物的运动力》一书中总结了这 些实验结果。达尔文是用草的种子做这些实验的。草的种子发芽时,胚芽外面套着 一层胚芽鞘,胚芽鞘首先破土而出,保护胚芽在出土时不受损伤。达尔文发现胚芽 鞘是向光性的关键。如果把种子种在黑暗中,它们的胚芽鞘将垂直向上生长。如果 让阳光从一侧照射秧苗,胚芽鞘则向阳光的方向弯曲。如果把胚芽鞘尖端切掉,或 用不透明的东西盖住,虽然光还能照射胚芽鞘,胚芽鞘也不再向光弯曲。如果是用 透明的东西遮盖胚芽鞘,则胚芽鞘向光弯曲,而且,即使用不透光的黑色沙土掩埋 胚芽鞘而只留出尖端,被掩埋的胚芽鞘仍然向光弯曲。达尔文推测,在胚芽鞘的尖 端分泌一种信号物质,向下输送到会弯曲的部分,是这种信号物质导致了胚芽鞘向 光弯曲。 达尔文的发现随后引起了生物学家们浓厚的兴趣。1913年,丹麦生物学家波义 森-简森(Peter Boysen-Jensen)进一步验证了达尔文的推测。他切下胚芽鞘的 尖端,在切面上放上一层凝胶,再把尖端放回去,胚芽鞘的向光性保持不变。但是 如果在中间放的不是凝胶而是不通透的云母片,向光性就消失了。而且,只有把云 母片插在切面背光的一面,才会防止向光性,如果是插在向光的一面,则向光性正 常。这就表明信号物质是从胚芽鞘尖端传递到胚芽鞘背光的一面,使那里的细胞 生长速度要比向光的一面快,导致弯曲。1918年帕尔(A. Paal)证实了波义森- 简森的结果。他在黑暗中切下胚芽鞘的尖端,用光照射该尖端后再放回胚芽鞘的切 面,但是放的时候偏离中心,放在一侧,他发现胚芽鞘生长时就往另一侧弯曲。 1925年索丁(H. Soding)发现,如果把胚芽鞘尖端切掉,则胚芽鞘的生长受抑制, 但是如果把切下的胚芽鞘尖端放回去,则胚芽鞘的生长恢复正常,表明胚芽鞘尖端 含有刺激细胞生长的信号物质。1926年,一名荷兰研究生文特(Fritz Went)用一 个简单的办法分离出了这种信号物质。他切下燕麦胚芽鞘的尖端,把它放在琼脂上 放数个小时,然后把琼脂放到胚芽鞘残部,发现琼脂能刺激胚芽鞘的生长,表明有 能刺激生长的物质从胚芽鞘尖端渗透到了琼脂中。这种物质后来被称为生长素。两 年后,文特发明了一种办法定量地测定生长素的活性。他把渗透了生长素的琼脂放 在燕麦胚芽鞘残部的一侧,在黑暗中,燕麦胚芽鞘将向另一侧弯曲。如此在黑暗中 生长一个半小时后,测定胚芽鞘的弯曲度,越弯曲,则说明琼脂中含有的生长素活 性越强(比如说,用的胚芽鞘尖端越多),这种测定法后来被称为燕麦测试法。文 特也发现,是生长素的不均匀分布导致植物的向光性。让光从一侧照射胚芽鞘尖端, 然后将胚芽鞘尖端切下放在两块琼脂上,在原来背光和向光的一侧各放一块。几个 小时后用燕麦测试法分别测定这两块琼脂所含生长素的活性,发现背光的那块几乎 是向光的那块的两倍。 那么这种生长素又是什么化学物质呢?可惜的是,胚芽鞘尖端所含的生长素的 量实在是太少的,没法将之提取、纯化和测定其化学结构。科学家们只能用从其他 来源提取的物质用燕麦测定法测定其生长素活性。1931年,荷兰科学家科格尔(Fritz Kogl)和哈根-史密特(Arie J. Haagen-Smit)首次从人尿中提取出了一种能刺激植物生长的物质,称之为生长素A(即三醇酸)。科格尔后来又从人尿中提取出了几种生长素,其中活性最强的是β-吲哚乙酸,这种物质实际上早在1885年被从发酵液中提取出来了,只不过人们当时不知道它是一种生长素。β-吲哚乙酸成了人们所发现的第一种真正的植物生长素,也是最主要的生长素。现在我们从分子水平上对生长素的作用机理有了一定的了解,不过有许多细节仍然搞不清楚。简单地说,是这样的:光(以蓝光最有效,用微弱的蓝光照射一、两秒就能引发向光性)照射到芽的尖端,被光受体(某种蛋白质,包括一种被称为趋光蛋白的黄素蛋白)吸收,激发生长素的合成。光同时刺激在向光面和背光面的生长素的合成,但是背光面的生长素合成量要高三倍。在芽尖合成的生长素经由维管组织向下传输,与细胞膜上 的蛋白质受体结合,刺激细胞壁拉长。由于背光面的生长素浓度较高,导致背光面 的细胞被拉得较长,从而朝着向光面弯曲。生长素还有许多特性,其中一种是:如 果含量太高,它将抑制而不是刺激植物的生长。 现在我们再回到向日葵。显然,向日葵的叶子和花盘之所以能朝着太阳转动,不必像刘教授设想的那样“除非在它的脖子上安装一个轴承”。在阳光的照射下, 生长素在向日葵背光一面含量升高,刺激背光面细胞拉长,从而慢慢地向太阳转动。 在太阳落山后,生长素重新分布,又使向日葵慢慢地转回起始位置,也就是东方。 在花盘盛开后,向日葵也停止了生长,而把花盘固定朝向东方。为什么最后要 面向东方而不是其他方向或朝上呢?这可能是自然选择的结果,对向日葵的繁衍有 益处。向日葵的花粉怕高温,如果温度高于30摄氏度,就会被灼伤,因此固定朝向 东方,可以避免正午阳光的直射,减少辐射量。但是,花盘一大早就受阳光照射, 却有助于烘干在夜晚时凝聚的露水,减少受霉菌侵袭的可能性,而且在寒冷的早晨, 在阳光的照射下使向日葵的花盘成了温暖的小窝,能吸引昆虫在那里停留帮助传粉。 通过以上的介绍,我想已足以消除刘大生、张抗抗以及某些观察过向日葵的大 人、小孩的困惑了。他们不轻信常识,能够自己做观察验证,敢于挑战权威,这是 难能可贵的。可惜的是他们的观察既不系统也不细致,又没能查阅足够的专业资料, 因此疑惑不解,甚至匆忙地得出了的结论。在科学问题上,仅有探索、怀疑精 神是不够的。当然,一些辞书、科普文章不严谨的甚至错误的说法也要负一定的责 任,应该做出相应的修改。 2004.9.20 (载《科学世界》2004年第10期)
这是一个科学家的名字,有这么一个系数,叫做nei氏多样性指数植物分子群体遗传学研究动态分子群体遗传学是当代进化生物学研究的支柱学科, 也是遗传育种和关于遗传关联作图和连锁分析的基础理论学科。分子群体遗传学是在经典群体遗传的基础上发展起来的, 它利用大分子主要是DNA序列的变异式样来研究群体的遗传结构及引起群体遗传变化的因素与群体遗传结构的关系, 从而使得遗传学家能够从数量上精确地推知群体的进化演变, 不仅克服了经典的群体遗传学通常只能研究群体遗传结构短期变化的局限性, 而且可检验以往关于长期进化或遗传系统稳定性推论的可靠程度。同时, 对群体中分子序列变异式样的研究也使人们开始重新审视达尔文的以“自然选择”为核心的进化学说。到目前为止, 分子群体遗传学已经取得长足的发展, 阐明了许多重要的科学问题, 如一些重要农作物的DNA多态性式样、连锁不平衡水平及其影响因素、种群的变迁历史、基因进化的遗传学动力等, 更为重要的是, 在分子群体遗传学基础上建立起来的新兴的学科如分子系统地理学等也得到了迅速的发展。文中综述了植物分子群体遗传研究的内容及最新成果。 1 理论分子群体遗传学的发.展简史经典群体遗传学最早起源于英国数学家哈迪和德国医学家温伯格于1908年提出的遗传平衡定律。以后, 英国数学家费希尔、遗传学家霍尔丹(Haldane JBS)和美国遗传学家赖特(Wright S)等建立了群体遗传学的数学基础及相关计算方法, 从而初步形成了群体遗传学理论体系, 群体遗传学也逐步发展成为一门独立的学科。群体遗传学是研究生物群体的遗传结构和遗传结构变化规律的科学, 它应用数学和统计学的原理和方法研究生物群体中基因频率和基因型频率的变化, 以及影响这些变化的环境选择效应、遗传突变作用、迁移及遗传漂变等因素与遗传结构的关系, 由此来探讨生物进化的机制并为育种工作提供理论基础。从某种意义上来说, 生物进化就是群体遗传结构持续变化和演变的过程, 因此群体遗传学理论在生物进化机制特别是种内进化机制的研究中有着重要作用[1]。在20世纪60年代以前, 群体遗传学主要还只涉及到群体遗传结构短期的变化, 这是由于人们的寿命与进化时间相比极为短暂, 以至于没有办法探测经过长期进化后群体遗传的遗传变化或者基因的进化变异, 只好简单地用短期变化的延续来推测长期进化的过程。而利用大分子序列特别是DNA序列变异来进行群体遗传学研究后, 人们可以从数量上精确地推知群体的进化演变, 并可检验以往关于长期进化或遗传系统稳定性推论的可靠程度[1]。同时, 对生物群体中同源大分子序列变异式样的研究也使人们开始重新审视达尔文的以“自然选择”为核心的生物进化学说。20世纪60年代末、70年代初, Kimura[2]、King和Jukes[3]相继提出了中性突变的随机漂变学说: 认为多数大分子的进化变异是选择性中性突变随机固定的结果。此后, 分子进化的中性学说得到进一步完善[4], 如Ohno[5]关于复制在进化中的作用假说: 认为进化的发生主要是重复基因获得了新的功能, 自然选择只不过是保持基因原有功能的机制; 最近Britten[6]甚至推断几乎所有的人类基因都来自于古老的复制事件。尽管中性学说也存在理论和实验方法的缺陷, 但是它为分子进化的非中性检测提供了必要的理论基础[7]。目前, “选择学说”和“中性进化学说”仍然是分子群体遗传学界讨论的焦点。1971年, Kimura[8]最先明确地提出了分子群体遗传学这一新的学说。其后, Nei从理论上对分子群体遗传学进行了比较系统的阐述。1975年, Watterson[9]估算了基于替代模型下的DNA多态性的参数Theta(θ) 值和期望方差。1982年, 英国数学家Kingman[10, 11]构建了“溯祖”原理的基本框架, 从而使得以少量的样本来代表整个群体进行群体遗传结构的研究成为可能, 并可以进一步推断影响遗传结构形成的各种演化因素。溯祖原理的“回溯”分析使得对群体进化历史的推测更加合理和可信。1983年, Tajima[12]推导了核甘酸多样度参数Pi(π)的数学期望值和方差值。此后, 随着中性平衡的相关测验方法等的相继提出[13~15], 分子群体遗传学的理论及分析方法日趋完善[16]。近20年来, 在分子群体遗传学的基础上, 又衍生出一些新兴学科分支, 如分子系统地理学(molecular phylogeography)等。系统地理学的概念于1987年由Avise提出, 其强调的是一个物种的基因系谱当前地理分布方式的历史成因[17], 同时对物种扩散、迁移等微进化历史等进行有效的推测[18]。2 实验植物分子群体遗传研究内容及进展基于DNA序列变异检测手段的实验分子群体遗传学研究始于1983年, 以Kreitman[19]发表的“黑腹果蝇的乙醇脱氢酶基因位点的核苷酸多态性”一文为标志。以植物为研究对象的实验分子群体遗传学论文最早发表于20 世纪90年代初期[20, 21], 但是由于当时DNA测序费用昂贵等原因, 植物分子群体遗传学最初发展比较缓慢, 随着DNA测序逐渐成为实验室常规的实验技术之一以及基于溯祖理论的各种计算机软件分析程序的开发和应用, 实验分子群体遗传学近10年来得到了迅速的发展, 相关研究论文逐年增多, 研究的植物对象主要集中在模式植物拟南芥(Arabidopsis thaliana (L.) Heynh.)及重要的农作物如玉米(Zea mays L.)、大麦(Hordeum vulgare L.), 水稻(Orazy sativa L.)、高粱(Sorghum bicolor L.)、向日葵(Helianthus annuus L.)等上[16]。其研究内容涵盖了群体遗传结构(同源DNA分化式样)、各种进化力量如突变, 重组, 连锁不平衡、选择等对遗传结构的影响、群体内基因进化方式(中性或者适应性进化)、群体间的遗传分化及基因流等。同时, 通过对栽培物种与野生祖先种或野生近缘种的DNA多态性比较研究, 分子群体遗传学在研究作物驯化的遗传学原因及结果等也取得了重要的进展, 如作物驯化的遗传瓶颈, 人工选择对“驯化基因”核苷酸多态性的选择性清除(selective sweep)作用等等。2.1 植物基因或基因组DNA多态性分子群体遗传学的研究基础是DNA序列变异。同源DNA序列的遗传分化程度是衡量群体遗传结构的主要指标, 其分化式样则是理解群体遗传结构产生和维持的进化内在驱动力诸如遗传突变、重组、基因转换的前提。随着DNA测序越来越快捷便利及分子生物学技术的飞速发展, 越来越多的全基因组序列或者基因序列的测序结果被发表, 基因在物种或群体中的DNA多态性式样也越来越多地被阐明。植物中, 对拟南芥和玉米基因组的DNA多态性的调查最为系统, 研究报道也较多。例如, Nordborg等[22]对96个样本组成的拟南芥群体中的876个同源基因片段(0.48 Mbp)的序列单核苷酸多态性进行了调查, 共检测到17 000多个SNP, 大约平均每30 bp就存在1个SNP位点。而Schmid等[23]的研究结果显示: 拟南芥基因组核甘酸多态性平均为0.007( W)。Tenaillon等[24]对22个玉米植株的1号染色体上21个基因共14 420 bp序列的分析结果显示玉米具有较高的DNA多态性(1SNP/27.6 bp、 =0.0096)。Ching等[25]研究显示: 36份玉米优系的18个基因位点的非编码区平均核苷酸多态性为1SNP/31 bp, 编码区平均为1SNP/124 bp, 位点缺矢和插入则主要出现在非编码区。此外, 其他物种如向日葵、马铃薯(Solanum tuberosum)、高粱、火矩松(Pinus taeda L.)、花旗松(Douglas fir)等[26~30]中部分基因位点的DNA多态性也得到调查, 结果表明不同的物种的DNA多态性存在较大的差异。繁育方式是显著影响植物基因组的DNA多态性重要因素之一。通常来说, 自交物种往往比异交物种的遗传多态性低, 这已经被一些亲缘关系相近但繁育方式不同的物种如Lycopersicon属植物和Leavenworthia属植物的种间比较研究所证实[31, 32]。但是在拟南芥属中则不然, Savolainen等[33]比较了不同繁育方式的两个近缘种Arabidopsis thaliana(自交种)和Arabidopsis lyrata(异交种)的乙醇脱氢酶基因(Alcohol Dehydrogenase)的核苷酸多态性, 结果发现A. thaliana的核苷酸多态性参数Pi值为0.0069, 远高于A. lyrata的核苷酸多态性(Pi=0.0038)。2.2 连锁不平衡不同位点的等位基因在遗传上不总是独立的, 其连锁不平衡程度在构建遗传图谱进行分子育种及图位克隆等方面具有重要的参考价值。Rafalski和Morgante等[34]在比较玉米和人类群体的连锁不平衡和重组的异同时对连锁不平衡的影响因素做了全面的阐述, 这些因素包括繁育系统、重组率、群体遗传隔离、居群亚结构、选择作用、群体大小、遗传突变率、基因组重排以及其他随机因素等。物种的繁育系统对连锁不平衡程度具有决定性的影响, 通常来说, 自交物种的连锁不平衡水平较高, 而异交物种的连锁不平衡水平相对较低。但是也有例外, 如野生大麦属于自交物种, 然而它的连锁不平衡水平极低[35~37]。拟南芥是典型的自交植物, 研究表明: 拟南芥组基因大多数位点的连锁不平衡存在于15~25 kb左右的基因组距离内[22], 但是在特定位点如控制开花时间的基因及邻接区域, 连锁不平衡达到250 kb的距离[38]。拟南芥基因组高度变异区段同样具有较强的连锁不平衡[39]。这些研究结果说明拟南芥非常适合构建连锁图谱, 因为用少量的样本就可以组成一个有效的作图群体。除拟南芥外, 其它自交物种大多表现出较高的连锁不平衡水平, 如大豆的连锁不平衡大于50 kb[40]; 栽培高粱的连锁不平衡大于15 kb[41]; 水稻的Xa位点连锁不平衡可以达到100 kb以上[42]。与大多数自交物种相比, 异交物种的连锁不平衡程度则要低得多。例如, 玉米的1号染色体的体连锁不平衡衰退十分迅速,大约200 bp距离就变得十分微弱[24], 但是在特定的玉米群体如遗传狭窄的群体或者特定基因位点如受到人工选择的位点, 连锁不平衡水平会有所增强[43~46]。野生向日葵中, 连锁不平衡超过200 bp的距离就很难检测到(r=0.10), 而栽培向日葵群体连锁不平衡程度则可能够达到约1 100 bp的距离(r=0.10)[26]。马铃薯的连锁不平衡在短距离内下降迅速(1 kb降到r2=0.2左右), 但在1Kb以外下降却十分缓慢(10 cM降到r2=0.1)[27]。此外, 异交繁育类型的森林树种如火矩松、花旗松等同样显示出低水平的连锁不平衡[30, 31]。 2.3 基因组重组对DNA多态性的影响基因组的遗传重组是指二倍体或者多倍体植物或者动物减数分裂时发生的同源染色体之间的交换或者转换[47]。它通过打破遗传连锁而影响群体的DNA 多态性式样, 其在基因组具体位点发生的概率与该位点的结构有很大的关系, 基因组上往往存在重组热点区域, 如玉米的bronze(bz)位点, 其重组率高于基因组平均水平100倍以上[48]; 并且重组主要发生在染色体上的基因区域, 而不是基因间隔区[49, 50]。同时, 在基因密度高的染色体区段比基因密度低的染色体区段发生重组的频率也要高得多[41, 51]; 在不同的物种中, 基因组重组率平均水平也有很大的差异。如大麦群体基因组的重组率为 =7~8×10–3 [52],高于拟南芥( =2×10–4)40倍[27], 但只有玉米( =12~14×10–3)的一半左右[24]。目前有很多关于重组和DNA多态性之间的相关关系的研究, 但是没有得到一致的结论。部分研究显示重组对DNA多态性具有较强的影响。如Tenaillon等[24]研究显示玉米1号染色体的DNA多态性高低与重组率具有较高的相关性(r=0.65, P=0.007), 野生玉米群体、大麦及野生番茄也都存在同样的现象[52~54]。而在拟南芥中, 重组对DNA多态性的贡献率就非常低[22]。Schmid等[23]用大量的基因位点对拟南芥群体的核苷酸多态性进行调查后发现: 重组率与核苷酸多态性相关关系不显著; Wright等[55]调查了拟南芥1号和2号染色体的6个自然群体序列变异式样, 结果显示, 在着丝粒附近重组被抑制的染色体区域, 核苷酸多态性并没有随之降低。说明了拟南芥基因组的重组率与DNA多态性并没有必然的相关关系。Baudry等[31]对番茄属内5个种进行了比较研究, 结果也显示重组对种群间的DNA多态性的影响也不明显。2.4 基因进化方式(中性进化或适应性进化)分子群体遗传学有两种关于分子进化的观点: 一种是新达尔文主义的自然选择学说, 认为在适应性进化过程中, 自然选择在分子进化起重要作用, 突变起着次要的作用。新达尔文主义的主要观点包括: 任何自然群体中经常均存在足够的遗传变异, 以对付任何选择压力; 就功能来说, 突变是随机的; 进化几乎完全取决于环境变化和自然选择; 一个自然群体的遗传结构往往对它生存的环境处于或者接近于最适合状态; 在环境没有发生改变的情况下, 新突变均是有害的[56]。另一种是日本学者Kimura为代表的中性学说, 认为在分子水平上, 种内的遗传变异(蛋白质或者DNA序列多态性)为选择中性或者近中性, 种内的遗传结构通过注入突变和随机漂变之间的平衡来维持, 生物的进化则是通过选择性突变的随机固定(有限群体的随机样本漂移)来实现, 即认为遗传漂变是进化的主要原因, 选择不占主导地位[2~4]。这两种学说, 在实验植物分子群体遗传学的研究中都能得到一定的支持。对植物基因在种内进化方式的研究主要集中在拟南芥菜、玉米、大麦等农作物及少数森林树种。Wright和Gaut[16]对2005以前发表的相关文章进行详细的统计, 结果显示: 拟南芥中大约有30%的基因表现为适应性进化; 玉米中大约有24%的基因表现为非中性进化; 大麦的9个基因中, 有4个受到了选择作用的影响。选择作用主要包括正向选择、平衡选择、背景选择及稳定选择, 它们单独或者联合对特定基因的进化方式产生影响。如花旗松中的控制木材质量和冷硬性状的基因[30]、火炬松的耐旱基因[29]、欧洲山杨 (European aspen)的食草动物诱导的蛋白酶抑制基因(Herbivore-induced Protease Inhibitor)等[57], 经检测在各自的群体受到了正向选择、平衡选择、背景选择单独或者多重影响。植物抗性基因(R基因)是研究得比较深入的一类基因, 大部分研究结果显示抗性基因具有高度的多态性, 并经受了复杂的选择作用[58]。Liu和Burke[26]对栽培大麦和野生大麦群体中9个基因在调查显示其中的8个基因受到稳定选择。Simko等 [27]对47份马铃薯66个基因位点调查表明, 大部分基因位点在马铃薯群体进化过程中受到了直接选择或者分化选择作用。以上对不同物种的不同基因位点的研究都强调了分子进化的非中性的结果, 这说明选择在基因的进化过程中具有非常重要的作用; 另一方面, 中性进化的结果报道较少, 或被有意或者无意地忽略, 事实上即使在强调选择作用的研究文献中, 仍然有相当一部分基因表现为中性进化, 说明在种内微观进化的过程中, 选择作用和中性漂变作用可能单独或者联合影响了物种内不同的基因位点, 共同促进了物种的进化。2.5 群体遗传分化分子群体遗传学一个重要的研究内容是阐明物种不同群体之间甚至不同物种群体之间(通常近缘种, 如栽培种及其近缘种或祖先野生种)遗传结构的差异即遗传分化, 并推测形成这种差异的原因, 从而使人能够更好地理解种群动态。植物种内不同群体间遗传分化的研究案例有很多, 典型的有: (1)拟南芥全球范围内的遗传分化。Kawabe和Miyashita[59]利用碱性几丁质酶A(ChiA)、碱性几丁质酶B(ChiB)及乙醇脱氢酶(Ahd)3个基因对拟南芥进行群体亚结构的分析, 结果只有ChiB显示出一定的群体亚结构, 而ChiA、Ahd的系统学聚类与样本地理来源之间没有表现出任何相关关系,这样的结果暗示了拟南芥近期在全球范围内经历了迅速扩张。 Aguade[60]和Mauricio等[61]分别用不同的基因、Schmid等[23]用多基因位点进行的拟南芥分子群体遗传学研究也支持同样的结论。(2)森林树种的遗传分化。Ingvarsson等[62]发现欧洲山杨的日长诱导发芽的侯选基因(phyB)变异方式呈现出纬度渐变方式, 表明欧洲山杨出现了明显的适应性分化; Ingvarsson等[63]对多个基因单倍型地理格局分布的研究同样发现欧洲杨具有明显的地理遗传分化。但是研究表明花旗松(Pseudotsuga menziesii)[30]、火炬松(Pinus taeda)[29]、圆球柳杉(Cryptomeria japonica)等[64]等物种没有发生明显遗传多样性的地理分化。植物不同物种间遗传分化的研究主要集中对在栽培种及其野生近缘种的DNA多态性的比较上。由于早期的驯化瓶颈及人工选择繁育等遗传漂变作用结果 [65]。栽培物种的遗传多样性通常都低于他们的野生祖先种。Hamblin等[28]利用AFLP结果筛选得到基因片段的DNA多态性, 对栽培高粱(S. bicolor)和野生高粱(S. propinquum)进行了比较研究, 结果表明: 野生高粱的平均核苷酸多态性大约为0.012( ),大约是栽培高粱的4倍。Liu等[26]的研究显示: 野生向日葵中, 核苷酸多态性达到0.0128( )、0.0144( W),显著高于栽培向日葵的0.0056( )、0.0072( W)。Eyre-Walker等[66]对栽培和野生玉米Adh1基因大约1 400 bp的序列研究表明: 栽培玉米的遗传多样性大约只有野生玉米种(Zea mays subsp. parviglumis)的75%。Hyten等[67]的研究显示野大豆的平均核苷酸多态性为0.0217( )、0.0235( W), 地方种则分别为0.0143( )、0.0115( W),大约为野大豆的66%( )和49%( )。以上结果充分反应了栽培物种驯化过程中曾遭受过瓶颈效应。3 分子系统地理学分子系统地理学是在分子群体遗传学的基础上, 衍生出的新学科分支。早在20世纪的60年代, Malecot[68]就发现了基因的同一性随地理距离增加而减少的现象; 1975年Nei的《分子群体遗传学和进化》一书中也提到在描述群体的遗传结构时要重视基因或者基因型的地理分布[1]; 1987年Avise等[17]提出了系统地理学概念。在植物方面, 分子地理系统学研究取得很多重要的成果。如对第四世纪冰期植物避难所的推测及冰期后物种的扩散及重新定居等历史事件的阐释, 其中最为典型的研究是对欧洲大陆冰期植物避难所的确定及冰期后植物的重新定居欧洲大陆的历史事件的重现。如欧洲的栎属植物的cpDNA的单倍型的地理分布格局表明, 栎属植物冰期避难所位于巴尔干半岛、伊比利亚岛和意大利亚平宁半岛, 现今的分布格局是由于不同冰期避难所迁出形成的[69]。King和Ferris[70]推测欧洲北部的大部分欧洲桤木种群是从喀尔巴阡山脉这个冰期避难所迁移后演化形成的。Sinclair等[71, 72]推测欧洲赤松在第四纪冰期时的避难所可能是在爱尔兰岛或者在法国的西部。此外, 分子系统地理学在阐明了一些栽培作物的驯化历史事件如驯化发生的次数及驯化起源地等方面也取得了重要的进展。如Olsen等[73]对木薯 (Manihot esculenta)单拷贝核基因甘油醛-3-磷酸脱氢酶(glyceraldehyde 3-phosphate dehydrogenase)在木薯群体中单倍型的地理分布方式深入调查后推测: 栽培木薯起源于亚马逊河流域南部边界区域。Caicedo等[74]利用核基因果实液泡转化酶(fruit vacuolar invertase)的序列变异阐明了栽培番茄(Lycopersicon esculentum)的野生近缘种(Solanum pimpinellifolium )的种群扩张历史, 基因变异的地理分布方式表明栽培番茄起源于秘鲁北部, 然后逐步向太平洋岸边扩张。Londo等[75]利用一个叶绿体基因和两个核基因的变异对两个亚洲的栽培籼、粳亚种及其近缘野生种进行了系统地理学研究, 阐明了籼、粳稻分别起源于不同的亚洲野生稻(O. rufipogon)群体, 其中籼稻起源于喜马拉雅山脉的南部的印度东部、缅甸、泰国一带, 而粳稻则驯化于中国南部, 等等。4 小结与展望目前, 在国际上, 植物分子群体遗传学研究方兴未艾, 在国内, 也开始引起注意。随着植物水稻、拟南芥、杨树的全基因组测序的完成, 以及更多的粮食作物、经济作物、重要森林树种的部分基因组测序结果及EST序列被发表。人们对这些物种的DNA多态性、连锁不平衡水平、基因组或者个别基因的进化推动力量、物种内种群动态和迁移历史等群体遗传学所关注的问题有了一定的了解, 但还远不够深入和透彻。为了推动国内植物分子群体遗传学研究的发展, 笔者提出以下建议, 权当抛砖引玉。(1)大力借鉴国际上有关分子群体遗传学研究的先进方法, 尤其是借鉴以果蝇、人类为研究对象的相关工作。分子群体遗传学研究注重的是分析方法、研究思路以及所要阐明的群体遗传学问题, 而这些很容易学习、掌握并深化研究; (2)深入开展比较基因组学的研究。由于植物种类的繁多以及基因组的复杂性, 人类不可能对不同植物种一一进行全基因组测序, 只能选取少数物种作为模式物种进行测序, 鉴于不同物种之间的同源基因以及基因排列顺序存在一定程度的保守性, 因此, 利用模式植物的基因组测序结果及物种间的比较研究结果可以推动并加速其他物种的相关研究; (3)更加重视分子群体遗传学研究。分子群体遗传学从某种意义上讲是研究种内(微观)进化的一门学科, 而种内微观进化是研究种间宏观进化的前提和基础, 进而加深人们对物种形成、生命进化的认识。另一方面, 连锁不平衡水平是分子群体遗传学研究的重要内容之一, 深入了解连锁不平衡水平对于构建高通量的遗传图谱, 以及利用自然群体进行复杂性状(QTLs)的定位和相关基因克隆具有重要的参考价值; (4)特别要深入开展我国特有的具典型分布格局的植物类群的分子群体遗传学和分子系统地理学的研究, 这对于了解我国植物物种的起源、演变和分布变迁的历史具有重要的意义。同时我国是许多重要农作物和经济作物的起源和驯化中心之一, 深入了解栽培物种及其近缘野生种的DNA多态性及分布方式, 可以为我国的物种保育、重要基因的挖掘、野生物种的驯化栽培、分子育种和植物资源的可持续利用等提供理论指导。
看过很多的基因多样性,从来没见过这么个词,是不是弄错了
摘要:由于内蒙当地独特的气候特征和优越的土地资源,对于食用向日葵制种非常有利,而向日葵的虫媒授粉常是导致产量低的重要原因。为了提高向日葵的结实率采用人工授粉技术,通过了解向日葵的开花习性、授粉条件、授粉工具制作、采粉、合理授粉方法及严格培训授粉工,以达到人工授粉增产的目的。 关键词:食用向日葵制种人工授粉向日葵属于大型一年生菊科向日葵属植物。向日葵是喜温,喜光作物,又耐低温,抗旱能力强。向日葵对土壤要求不严格,除了低洼地或积水地块不宜种植外一般土壤均可种植,但最适宜由于壤土或砂壤土。向日葵较耐盐碱,在全盐含量0.4%以下的土壤上能生长结实,是改良盐碱土的最好作物之一。食用型向日葵属于向日葵类型的一种,这种类型植株高大,可长到2~3m,不分枝,多为单头,生育期100~130d,叶片,花盘都较大,籽仁不饱满,含油率为25%~30%,种皮厚,皮色多具黑色条纹,较抗叶斑病,抗锈病能力较差。 一、制种地气候特征 阿拉善左旗位于内蒙古自治区西贺兰山西麓,是阿拉善盟盟府所在地。 旗域地理坐标为北纬37°24′-41°52′,东经103°21′-106°51′。 全旗平均气温为4℃。旗境自南向北跨越四个纬度,气温由南向北逐次递减。气温旗域变动一般在5.8℃~8.6℃之问,中心值为8.6℃。 阿拉善左旗地处内陆腹地,远离海洋,当地平均海拔800~1500m,属于温带荒漠干旱区,为典型的大陆型气候,以风沙大、干旱少雨、日光充足、蒸发强烈为主要特征。年蒸发量2900~3300mm,日照时间3316h,年平均气温7.2℃,无霜期120~180d。属中温带干旱区。旗内大面积沙漠、戈壁对大气下界的强迫作用加剧了干旱程度。大部分地区年平均降水量在64.0~208.5mm之间。日最大降水量52.4mm(1981年7月2日),一年降水多集中于5~9月。天气经常晴朗无云。大气透明度好,光照时间长,光能资源丰富。有利于向日葵的生长。二、向日葵花期生理 (一) 花序构造 向日葵花为头状花序,顶生,也叫花盘。花盘直径一般为20~30cm,外缘有2~3层苞叶,边缘1~3层为舌状花,由花冠和冠毛构成,单性,黄色或橙黄色,花瓣大。向内是管状两性花,由苞叶、子房、萼片、蜜腺、花冠、雄蕊、花柱、柱头构成,有1000~1500朵。每朵花有花冠5裂,雄蕊5枚,雌蕊1枚,为黄色。 (二)开花习性 向日葵属于短日照,喜光作物,开花期最适温度20~25℃,温度过低会使花盘缩小,中部比例增多。开花顺序为向心式开放,是由外缘向盘心逐渐开放。整个花盘开花时间多为7~10d。管状花凌晨开放,花冠破裂,花丝生长加快,1~2h后散粉,之后雌蕊伸出花粉管,柱头张开两裂呈羽状,接受花粉。 (三)授粉特点 向日葵是异花授粉作物,虫媒传粉往往容易受到环境条件的限制,得不到传粉的机会,又母本采用雄性不育系,葵盘中带有粘液,常常将授粉蜜蜂连同花粉一起粘在葵盘上,导致授粉不良结实率低,空秕较多影响其产量与品质,从而进行人工授粉。 三、人工授粉的优势 人工授粉时受环境影响不是很大,人工授粉次数的增加,提高了向日葵的结实率,传统的向日葵都是依赖异花授粉,由于蜜蜂授粉时,受环境影响很大,有局限性,有时会错过授粉的良机,导致结实率不高,影响了产量。人工授粉后产量明显高于蜜蜂传粉产量,特做对比试验。以一条地为试验田,两行膜为试验对象,靠父本行的膜为蜜蜂授粉膜进行标注,而靠近蜜蜂授粉膜的旁边一膜标注为人工授粉膜,每膜的总面积都为216㎡,株数控制在1200株,两膜的葵花都未受虫和锈病的侵害,人工授粉的膜已刷过3次粉。最终蜜蜂授粉的膜产量为10kg,而人工授粉过的膜产量为21kg。与去年的产量相比,今年的产量增加了一倍多,按成本算一个授粉工一天100元可以授粉3000株,结实率达到80%,而蜜蜂授粉每箱蜂每天是2000元,结实率35%,由此观之人工授粉优于蜜蜂授粉。 四、人工授粉条件 (一) 环境要求 把握好授粉条件保证人工授粉成功的条件之一。 1. 授粉时间 晴朗天气,上午8:00~11:00时,下午15:00~18:00授粉最佳。 2. 授粉天气 低温及干热风等不良天气直接影响人工授粉的效果。气温在 18~25 ℃的晴天上午授粉最好。气温低于 15 ℃授粉效果不理想,授粉后 2 h内遇雨,需要重新授粉。向日葵喜光照,光饱和点达3~4万Lx,开花授粉期对光照不足非常敏感,光照充足有利于花粉发育提高结实,空气湿度应该在70%左右。 (二) 授粉时注意事项 在授粉时一定要严格要求授粉人员,并且向她们讲清授粉时应注意的事项 1.授粉时应按照事先制定好的授粉程序进行授粉,严禁乱涂乱摸,保证每一个葵盘上都有花粉。 2.在授粉的过程中,如遇到散粉株,应用叶子将葵盘包裹住,然后将头折断,倒扣在土壤里。 3.如果授粉的刷子,已经碰到了散粉株,就立即将刷子埋在土中,用事先准备好的备用刷子。 (三) 父本花粉采集及保存要求 1.花粉采集 (1)采粉工具 准备口径15~20 cm的铁制盆子1个,以盆口略大于父本花盘直径为宜,用一块能包住盆口的纱网,把纱网绑在盆口做成采粉盆。 (2)采粉时间 采粉最好在每天上午进行,若花粉不够用时,可在下午再收集1次花粉,以备第2天
从书中时常看到有关向日葵的资料。它们告诉我向日葵这种植物总是朝着有太阳的地方生长。心中百思不得其解,不明白为什么向日葵向阳生长呢?这其中又有着什么奥秘呢?从资料中,知道了向日葵朝阳的这个特点是因为它的茎含有一种生长素。一遇光线照射,生长素就会转移到背光的一面去,并且刺激背光一面的细胞迅速增殖。所以,背光一面就比向光一面生长得快,使向日葵产生了向光性弯曲。为了增加资料的真实性,我就对向日葵的这个特点进行了实验。首先,我准备了2盆向日葵。我把第一盆放在朝阳的一面,让其自由生长。把第二盆放在背光的一面。这个实验的结果是:第一盆向日葵生长发育良好,第二盆向日葵转向了朝阳的一面,生长较好。这次实验使我知道了向日葵是一种喜热耐寒的植物。不论何时何地它能够坚强的生长。
一、生物技术给农业带来的益处广义上讲,生物技术是利用有机体、死细胞、活细胞以及细胞内含物,采用特殊的过程生产出特殊的产品应作到农业、医药以及环境修复治理中,尤其是70年代基因工程的出现,它能改变、取代物种的基因。生物技术在农作物中已有广泛的应用。最初通过遗传工程获得而进入市场的作物是:玉米、大豆和棉花。它们经转基因后具有抗除草剂和棉铃虫的能力。这种玉米、大豆和棉花从Bt细菌获得基因,经遗传改良后具有防虫害的能力。利用Bt细菌获得经遗传改良的作物的潜力是相当大的。例如:美国有200万hm2的Bt棉花,澳大利亚有40万hm2,两者各相当于2.5亿美元价值。如果将Bt玉米引种在美国1000万hm2的土地上,只要增产5%,就意味着能增加3.5亿美元收入。这项技术进一步促进了Bt制剂控制虫害在商业上的应用。除此之外,还有许多经转入特定基因的玉米品种,这些品种能同时抗除草剂和一些虫害。生物技术在畜牧业上应用所获得的益处与在农作物上相似。一方面,生物技术有助于提高畜禽的生命力以及消灭竞争者。促进畜禽生长的物质有生长激素以及促进其生长的调节剂,这些物质可由基因工程而获得。如利用鼠类基因(该基因能促进角蛋白的形成)能获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量能提高6%左右。另一方面,生物技术在提高农作物产量、质量的同时,有助于提高畜牧业的生产力发展水平。例如,通过控制饲料作物体内碳水化合物含量可提高畜牧业生产力;利用基因调控技术可以提高包括豆科作物在内一些作物的蛋白质含量,减少饲料作物中难消化的木质素含量等。达比等人已生产出一种转基因三叶草,可应用于澳大利亚绵羊牧场。该基因来自向日葵,经转基因的三叶草能制造富含氨基酸的蛋白质,该蛋白质经食物链进入绵羊体内,进而能提高产毛量。生物技术给人类带来的益处也包括在生态和环境两个方面。利用生物技术提高现有农业生态系统的生产力可以减低农业向原始的、自然、半自然生态系统扩张的要求,因此,它有助于有人类保存、保护地球上仅有的自然生态系统及其资源,有助于人们未来再利用其中的基因资源开发新的产品。生物技术已用于生产抗虫害、抗除草剂作物。正如前面所述,一些转基因棉花、玉米、大豆等具有抗虫害、抗除草剂的能力。1995年人们可以在市场上购买到转基因马铃薯,这种马铃薯能产生水晶蛋白,而水晶蛋白对科伦那多马铃薯甲虫有毒害作用。这些转基因作物能减少杀虫剂的用量,降低杀虫剂及其残留物对食物链、水体造成污染,从而有利于保护生态环境。在许多农业生产区,土壤氮素可利用量是制约农业生产力提高的一个重要因子。而一高科技农业生产区使用人造氮肥是以牺牲生态环境为代价的。制造氮肥要利用大量能源,据统计,英联邦农场平均投入的能源大约有50%来自肥料。由施用肥料而产生的温度气体(二氧气化碳、氮氧化合物等)不可避免地促进地球气候变暖。除此之外,农业土壤的氮素流失是水体富营养化的主要原因。生物技术的利用能为这些问题的解决提供潜在的、真正有价值的帮助。同样,人们可以利用真菌来提高土壤养分的有效性。温莱指出:特定的真菌类能促进土壤养分的释放,从而促进作物生长;真菌也能通过分解有机物质(例如纤维素等)释放出糖类,促进固氮菌的生长。进一步提高土壤养分有效性的可能,包括获得转基因细菌和真菌,以进一步增强它们制造养分和释放土壤养分的能力。转基因作物的最终目标是使作物本身能够自行固氮,避免、减少使用人造肥料,从而减少对生态环境的破坏。这在目前尚不可能,但在将来却有望实现这个目标。二、生物技术带来的不利你看看这篇怎么样,如果不可以的话,还有很多你可以自己看看
当事人回应虽然听着挺荒唐的,但确实是被鸡给吃了。
我超级喜欢向日葵 毕业论文的 研究课题就是向日葵 个人觉得向日葵的笑脸永远向着太阳 很有希望 而且还能结瓜子 咯咯
关于基础美术教育发展问题的若干思考美术教育是基础教育的重要组成部分,对提高全民文化素质有特殊意义。在基础教育中,学生应具备的基本素质主要包括思想品德、劳动技能、身体心理、科学文化和审美等素质,这些素质是一个和谐的整体,缺少或忽略哪一方面都不可能是全面发展的人。《全国学校艺术教育总体规划》指出,中小学艺术教育是素质教育课程体系的主体之一。其目标是以审美为艺术教育主线,以学生才能和智力培养为中心,塑造心灵完美、品质高尚的世纪新人。然而,我国基础教育中美术教育的现状却不容乐观。首先是美术教育的教学模式不完善。美术教学还未形成一种完整统一的适合学生生理与心理特点的教学模式。虽然我国美术教育工作者从20世纪的上半叶就开始进行这方面的探索,比如产生了“情感思维教学法”、“眼高手低教学法”等,但各个地区美术教育工作者还是各自为战,自编教材也大多是根据自身情感因素确定教学内容。这样一来,有很多好的教学经验和教学方法难以及时推广和普及。其次是美术教师素质不高。美术教师对美术教育理论缺乏深入研究,把青少年基础美术教育与成人美术教育混为一谈,单纯强调技巧训练。在一些经济不发达的边远地区,美术教师能力水平很低,很难胜任教学工作。再次是家长对孩子培养也是急功近利,在强烈忧患意识推动下拔苗助长,孩子纷纷踏进教育水平良莠不齐的各种美术学习班,严重阻碍了他们创造性思维的发展,扼杀了他们纯真的天性。《美术教学大纲》明确规定了美术教学的目的、性质和任务,并且要求把美术教学的重点放在提高全体学生的美术素质、审美修养和培养能力、发展智力上;在美术教学中,对学生进行基础知识教育和简单训练的同时,要进一步加强美术欣赏、艺术原理、美学知识的教学,使美术教学向多元知识结构教学转化,真正落实素质教育。美术教育的目的在于培养公民的美的素质。对学生来说,美术教育的目的在于提高学生的文化层次,培养发展学生的能力和智力。教育心理学告诉我们:“艺术教育对促进学生的智力发展和创造力的提高有着十分重要的作用。”许多著名的教育专家对美术教育的功能都有共识,他们认为,美术教育直接的目的是寻找种种机会,利用种种方法训练人们的身心和各种感觉器官,使他们的观察力、记忆力、思维力、想象力、创造力及道德情感等本能逐渐自由生长发育。美术教育除遵循教育学提出的教学原则外,根据美术学科的特点以及目的任务和教学规律,还提出以下具体方法和原则:第一,在观察生活中提高学生的鉴赏力。要重视在教学过程中引导学生直接观察对象,认识对象。现代派代表人物马蒂斯说过:“创造始于观看,而看本身就是一种创造性活动,需要一种努力。”通过观察,培养学生正确的观察方法和良好的观察习惯,培养学生的记忆力,进而促进学生的智力发展。比如,要求学生从记忆观察对象入手,用概括表现方法和观察方法给身边的人画像,从外型到个性夸张中发现个性美,反映人的内心世界。看谁画得好,看谁画得“神似”,利用审美原则和艺术分析手段从直观感觉中获取美的表现语言,获取成功的满足感,激发学习的兴趣,提高审美水平。这是发展学生智力的基本保证。第二,在摹仿中提高想象力和创造性。“教育最伟大的技巧是知所启发”。运用启发式教学在于调动学生积极思考,主动提高自己的能力。针对学生感兴趣的问题,由浅入深地进行传授;开放师生关系,开放教学内容;充分利用美术教育的灵活性、多样性、过程性、实践性等,营造民主、自由、平等、和谐的教育氛围;尊重个性,强化学生主体意识,培养良好的非智力因素,发挥各自的专长。课堂教学要求“教”与“学”的优化,教学过程充分体现学生为主体,主动积极参与教学的全过程,激活学生的原动力,最大限度地把他们的智力潜能发挥出发。比如教师把美术大师作品的风格表现手法等,在课堂上恰到好处地介绍给学生,让学生大胆地临摹这些作品,如毕加索的《和平鸽》、梵高的《向日葵》等作品,仅用几个线条和几个色块就已经内涵深远。引导学生尽情发挥想象力去读懂大师的表现意图。想象力触发创造力,从形象思维入手激发丰富的联想,促进抽象思维发展,突出创造力的培养。
目录方法1:提交(重复提交)论文1、让同事或者教授来审阅你的研究论文。2、根据审稿人的建议修改论文。3、根据所选期刊的要求准备好你的稿件。4、当你觉得论文准备好了,就提交吧。5、当你得到期刊的最初回复时,不要惊慌。6、将审稿人的意见视为建设性的批评。7、继续努力直到成功发表论文。方法2:选择正确的期刊提交论文1、熟悉市面上所有可能接受你论文的期刊。2、选择最适合你的研究论文的期刊。3、留意期刊的发行量或者曝光度。方法3:强化你提交的论文1、你的论文应该有清晰的论点。2、缩小关注范围。3、写一篇出色的摘要。在同行评审的期刊上发表研究论文是学术界的一项重要活动。它可以让你与其他学者建立联系,让你的名字和作品流传开来,并且进一步完善你的想法和研究。发表论文并不容易,但你可以通过提交一份技术上合理、有创意但又直截了当的研究报告来提高胜算。找一本适合你研究主题和写作风格的学术期刊也很重要,这样你就可以根据它的标准来调整你的研究论文,增加发表的机会,获得更广泛的认可。方法1:提交(重复提交)论文1、让同事或者教授来审阅你的研究论文。他们应该对你论文的语法、拼写错误、错字、表达是否清晰和简洁进行修改。他们还应该验证你写的内容。研究论文需要提出一个重要和明确的问题,应该切题,易于理解,并且适合目标受众。让两三个人检查你的论文。至少应该有一个人不是论文主题方面的专家,他们身为“局外人的观点”可能会非常有价值,因为不是所有的评论者都是有关方面的专家。2、根据审稿人的建议修改论文。在最终提交研究论文之前,你很可能要拟好几次草稿。努力使你的论文表达清晰、吸引人和易于理解。这将大大增加被发表的机会。3、根据所选期刊的要求准备好你的稿件。确保研究论文的格式,符合期刊的标准。大多数期刊都会提供一个名为“投稿须知”或者“作者指南”的文档,提供关于排版、字体和长度的说明,还会告诉你如何提交论文,并且会提供审核流程的详细信息。科学期刊上的文章往往需要遵循特定的格式,比如摘要、介绍、方法、研究成果、讨论、结论、致谢和参考。艺术和人文学科论文的要求通常没有那么严格。4、当你觉得论文准备好了,就提交吧。去期刊网站上的作者指南(或者类似的文档)看看对方的投稿要求。一旦你确信你的论文符合所有的标准,就可以通过适当的渠道提交论文了。有些期刊允许在线提交,有些则更倾向于纸质版。一次只能向一份期刊投稿。根据需要,按照列表一个一个地投。在线提交时,使用你的大学电子邮箱。这样能够将你与学术机构联系起来,为你的论文增添可信度。5、当你得到期刊的最初回复时,不要惊慌。很少有第一次提交的文章能立即得到同行评审期刊的“接受”回复。如果你的论文被接受了,去庆祝吧!如果没有,就冷静地处理你收到的回复。收到的回复可能是下列之一:接受但需要修正:根据评审人员提供的反馈,只需要进行少量的调整。修改并重新提交:在考虑出版之前需要更多实质性的修改(如上所述),但是期刊仍然对你的研究非常感兴趣。拒绝并重新提交:这篇文章目前还不适合考虑,但是实质性的修改和重新调整可能会改变这个结果。拒绝:这篇论文现在和以后都不适合发表在这份期刊上,但这并不意味着它不适用于其他期刊。6、将审稿人的意见视为建设性的批评。很多时候,你会被要求根据几位(通常是三位)匿名审稿人和编辑提供的评论修改论文,然后重新提交。仔细研究他们的批评,并做出必要的改变。不要过分重视原始版本。相反,要懂得变通,根据收到的反馈重新修改论文。运用你的研究和写作技能,写出一篇优秀的论文。然而,你也不需要“完全改变”,盲目顺从于你觉得不相关的评论。与编辑展开对话,礼貌而自信地解释你的立场。记住,你是这方面的专家!7、继续努力直到成功发表论文。即使你最终被喜欢的期刊拒之门外,也要继续重写你的研究论文,并提交给其他期刊。记住,一篇被拒绝的论文并不一定很糟糕。出版方根据许多因素来决定是否接受某篇文章,其中许多因素是完全超出了你的控制的。提交给排在你第二选择的期刊。你甚至可以向第一份期刊的编辑咨询更适合你的刊物。方法2:选择正确的期刊提交论文1、熟悉市面上所有可能接受你论文的期刊。注意已经发表的研究,以及你所在领域的最新问题和研究。特别注意你所在领域的其他研究论文是如何撰写的,包括论文的格式、文章的类型(是定量研究与定性研究、初步研究,还是对现有论文的评论),以及写作风格、主题和用词。阅读与你的研究领域相关的学术期刊。在线搜索已经发表的研究论文、会议论文和期刊文章。向同事或者教授寻求他们建议的阅读清单。2、选择最适合你的研究论文的期刊。每个期刊都有自己的读者和写作风格。确认你的研究论文是更适合发表在一份技术性很强,目标受众为其他学者的期刊上,还是一份面向更广泛读者的大众期刊上。“适合”在这里至关重要,在你的领域中最有名的期刊未必是最适合你论文的刊物。不过也不要低估自己,不要认为你的论文永远不可能达到顶级出版物的水平。3、留意期刊的发行量或者曝光度。一旦你缩小了潜在的选择范围,可以做一些调查,看看这些期刊上被广泛阅读和引用的文章有多少。让你的工作得到更多的曝光,尤其是在职业生涯早期想要出名的时候。然而,一定要优先考虑同行评审期刊。在这些期刊中,会由同领域的学者匿名评审所提交的作品。这是学术出版的基本标准。你可以通过在开源期刊上发表文章来增加读者数量。这样,它会被纳入在线的同行评审学术论文库中,免费给大家阅读。方法3:强化你提交的论文1、你的论文应该有清晰的论点。好的文章会直接切入主题,并且贯穿始终。从一开始就明确论文探索、调查或实现的论点,并且确保后面每一段内容都要建立在这个论点之上。针对你的论点做出有力、清晰的陈述。比较以下无力和有力的陈述:“这篇文章探讨了乔治·华盛顿年轻时的经历,他是如何在作为一名指挥官的艰难环境中塑造自己的观点。”“本文认为,乔治·华盛顿作为一名年轻军官,18世纪50年代在宾夕法尼亚州边境的经历,直接影响了他在弗吉谷严酷的冬天中与陆军部队的关系。”2、缩小关注范围。清晰的论点也可以是很宏伟的论点,但期刊文章本身并不适合对大型主题进行彻底的研究。学者在修改论文内容时往往会遇到这个问题,你需要能够删除或者明显减少文章中的背景信息、文献综述和方法讨论等内容。对于正在进入这一领域的年轻学者来说尤其如此。把宏大的探索留给更有建树的学者去做吧,尽管都只有20-30页。3、写一篇出色的摘要。摘要是审稿人对你论文的第一印象,所以你需要让它值得一读。确保绝对没有拼写错误或者不必要的句子。你只能用大约300个词。你的声明要大胆,方法要新颖原创,但是不要过度吹嘘文章中实际包含的内容。你的摘要应该让人们想要迫不及待地开始阅读文章,但不要让他们在读完后失望。让尽可能多的人阅读你写的摘要,并且在提交论文之前寻求他们的反馈。警告如果你对期刊的修改要求感到不安或者沮丧,不要立即修改论文。把论文放在一边,几天后带着“新鲜的眼光”回过头来阅读。你收到的反馈被过滤和解决了,你才能找到你论文合适的位置。记住,这是一个大项目,最终的改进需要时间。
如何发表论文?这是许多研究者关注的内容。目前,发表论文可以给国内作者带来很大的优势。然而,在国际期刊上发表论文是有难度的。发表论文都需要掌握一定的技巧。充分的准备才能使论文更顺利地发表,首先需要一篇高质量的论文。这也要求作者阅读大量的英语文学作品,并具有较高的英语水平。如果英文水平不够,你可以先用中文写论文,然后找专业机构翻译成英文,他们也会对论文进行润色,使论文达到投稿的水平。国际论文审稿人是不习惯中国式英语的,很多国内作者投稿也是因为语言问题而被拒稿,想要避免这种情况就需要早做准备。论文写好后都会寻找相关的刊物投稿,大家阅读相关文献时也会知道一些与自己研究领域相关的刊物,掌握其影响因子及相关期刊的名称非常重要。小编建议先发一些比较高质量的期刊论文,如果能被送审,得到一些修改意见,即使被拒,也可以发表一些影响因子较低的期刊。
就SCI论文本身来说,我国科研工作者大多面临英语能力匮乏的缺陷,尤其对于年龄大和专业性强的科技工作者来说,内容不是问题,英语往往成为了制约的瓶颈。医荟园是专业科研与英语母语学术编辑服务平台,主要为非英语国家科研工作者提供SCI论文编译I﹑留学文书编辑和各类科研相关服务,现就针对毫无SCI论文写作经验情况下如何发表SCI论文进行指导。一、确认研究方向对于很多研究人员而言,选择研究方向是个很头疼的事情,但研究方向对研究的成败却起着决定性的作用。研究什么样的问题,在很大程度上就能决定了发表怎样水平的文章。同时论文的研究对象在很大程度上也决定着研究的成果,如果没有开拓研究对象,便只能一直固步自封直到落后挨打,所以研究对象必须对社会发展有重大意义、必须不断开拓新的研究对象。一般情况下,研究生的研究对象和方向基本由导师决定,自己可选的余地不大。对于博士毕业后仍然从事科研的年轻人来说,一般来说应该以自己擅长的方法、技巧、领域为基础,逐渐扩展。如果自己特别喜欢某一个领域,需要多向熟悉该领域的学者请教、学习,如果能跟着熟悉该领域的成功者干一段时间更好。在医荟园看来,不管如何,对于一篇论文的撰写,首要确定的便是论文的研究方向,在确定了研究方向之后,才能根据自己该研究领域的了解和知识继续后续的科研内容。二、英文写作需循序渐进英语写作是发表SCI论文必须过的一关,因为国内的中文期刊一般最多EI收录,想发表SCI论文很难。多读一些科技论文写作技巧的书是很有必要的。而写英文论文也是一个反复修改的过程,只要自己有耐心,多看几遍、多检查,总能有所改进。三、不断调研与研究写论文离不开查阅文献,无论是只想发表几篇论文尽快毕业,还是想发表一些有影响的论文为自己的学术道路奠定基础,大量文献的查阅都是必须的。查阅文献既可以了解别人在做些什么,这些事情有何价值,还可以了解别人是怎么做的,自己可以做些什么,也可以学习别人的方法,尝试提出自己的方法等。写论文往往是一个调研与研究不断反复的过程,我们在研究过程中遇到新问题需要调研,解决了这个问题继续前进会遇到新问题,继续调研,如此不断反复直至取得成功。最后写论文的时候还需要看文献,检查一下别人是否有人做过类似的研究,确信自己的论文是有新意、有价值的,然后再发表到合适的期刊上。四、撰写好的引言通常情况下,引言需要包括:研究对象的意义和价值、回顾相关研究工作、该研究领域目前存在的问题以及自己做该项研究目的、自己解决了什么问题以及有何意义。切忌只引用很老的参考文献,这会被编辑或评阅人认为这个领域现在已经没人研究,一方面这给编辑找审稿人带来困难,另外一方面很容易被拒稿。一般情况下,评阅人先看看摘要和结论,看完引言基本就能决定是否接受论文。写引言的过程中会读不少文献的引言,这是了解相关研究的一个过程,如果自己不打算结束这个方向的研究,写完一篇论文的引言基本上就考虑好了下一篇论文写什么。总之,一个好的引言既是对自己所研究领域的简要概括,也是对自己所做的研究的概述。五、参考文献的选择和撰写不少期刊的编辑一般通过作者的参考文献找审稿人,所以引用一些近几年的文献可以给编辑提供方便,自然可以加快自己论文的发表速度。关键的参考文献一定要引用,在引言中对参考文献的评述一定要中肯、恰当。参考文献是论文的最后一部分,建议把参考文献写好,这样有利于读者查阅相关文献,从而更快的接受你的研究成果,这对增加你的论文的引用率是有意义的。
对于普通的转基因,表达的区域将取决于启动子。如果选择全身表达的启动子,如Rosa26, CAG等,将得到全身表达的转基因小鼠;如果选择一些组织特异性表达的基因的启动子,将得到组织特异性表达的转基因小鼠,如在AP2的promoter启 动下进行表达,会得到脂肪组织特异表达的转基因小鼠。需要特别说明的是,这种转基因的策略是将转基因片段直接注射到小鼠的受精卵中,转基因片段将会在小鼠基因组中进行随机插入,因为是完全随机的,有 可能会插入到一些抑制区导致转入的基因不表达,也有可能插入到一些增强区导致转入的基因高表达。通过原核注射的方法得到的第一代转基因小鼠称为 founder(首建鼠),由于上述随机性,每一只founder都是不一样的,以每一只founder起源的品系称为line,不同的line 之间的表达可能会有差异。
从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。
2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。
在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。
2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。
CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所
“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”
除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”
此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。
Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”
该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。
3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。
同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。
近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。
此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。
图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )
A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达
图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )
A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。
图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)
A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。
2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。
该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。
人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。
在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。
作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。
帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。
该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。
大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。
研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。
为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。
在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。
需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。
(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。
(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。
(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。
RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.
Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.
Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.
Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.
The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).
Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.
One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.
Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.
Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.
The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.
References
Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272
Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514
\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors
\2. CRISPR genetic editing takes another big step forward, targeting RNA
\3. How Editing RNA—Not DNA—Could Cure Disease in the Future
[ https://www.obiosh.com/kyfw/zl/aav/209.html](