八旗子弟搓天下
向日葵(xiangrikui)(Helianthus annuus)亦称葵花。菊科,向日葵属。1年生草本,高1~3米。茎直立,粗壮,圆形多棱角,被白色粗硬毛。叶通常互生,心状卵形或卵圆形,先端锐突或渐尖,有基出3脉,边缘具粗锯齿,两面粗糙,被毛,有长柄。头状花序,极大,直径10~30厘米,单生于茎顶或枝端,常下倾。总苞片多层,叶质,覆瓦状排列,被长硬毛,夏季开花,花序边缘生黄色的舌状花,不结实。花序中部为两性的管状花,棕色或紫色,结实。瘦果,倒卵形或卵状长圆形,稍扁压,果皮木质化,灰色或黑色,俗称葵花子。性喜温暖,耐旱。原产北美洲,世界各地均有栽培。种子含油量极高,味香可口,可炒食,亦可榨油,为重要的油料作物。有食用型、油用型和兼用型3类。花托、茎秆、果壳、可作工业原料等。 关于向日葵,曾有一个凄美的传说。克丽泰是一位水泽仙女。一天,她在树林里遇见了正在狩猎的太阳神阿波罗,她深深为这位俊美的神所着迷,疯狂地爱上了他。可是,阿波罗连正眼也不瞧她一下就走了。克丽泰热切地盼望有一天阿波罗能对她说说话,但她却再也没有遇见过他。于是她只能每天注视着天空,看着阿波罗驾着金碧辉煌的日车划过天空。她目不转睛地注视着阿波罗的行程,直到他下山。每天每天,她就这样呆坐着,头发散乱,面容憔悴。一到日出,她便望向太阳。后来,众神怜悯她,把她变成一大朵金黄色的向日葵。她的脸儿变成了花盘,永远向着太阳,每日追随他,向他诉说她永远不变的恋情。 性昧 甘、平,无毒。 成分 种子含脂肪油,油中主要成分为油酸甘油酯、亚麻仁油酸甘油酯及少量软脂酸、硬脂酸等。茎的灰分含多量碳酸钾。 功用 平肝祛风,清湿热,消滞气。种子油可作软膏的基础药。茎髓为利尿消炎剂。叶与花瓣可作苦味健胃剂。果盘(花托)有降血压作用。 [头离眩晕] 鲜果盘30~60克,水煎,一日2次分服。 [妇女经期下腹痛] 葵子盘 (干品)30~60克,水煎后加红糖适量,一日2次分服。 [小便淋痛 (包括泌尿系感染、尿路结石等),妇女白带] 向日葵茎连白髓15~30克,水煎2~3沸(不要多煎),一日2次分服。 [哮喘] 鲜花盘30~60克,水煎服。 [百日咳,慢性支气管炎,咳嗽气喘] 向日葵茎连白髓30~60克,水煎去渣,加入白糖,一日2一3次分服。 [胃痛,疝气病] 向日葵花盘60克,水煎服。 [背疽、脓头多、乳腺炎] 葵花烧存性,研细,以麻油调涂于患处。另用鲜花60克,以酒水合煎服。 [脚转筋 (腓肠肌痉挛)] 鲜向日葵茎心白髓30克,伸筋草30克,煮猪爪吃 学名 Helianthus annuus 科别 菊科 别名 太阳花 原产地 北美洲 形态特征 向日葵四季皆可,主要以夏、冬两季为主。花期可达两周以上。向日葵除了外型酷似太阳以外,她的花朵明亮大方,适合观赏摆饰,她的种子更具经济价值,不但可作成受人喜爱的葵瓜子,更可榨出低胆固醇的高级食用葵花油。向日葵的品种可分为〃一般观赏用〃品种或〃食用〃品种,一般观赏用品种特征为植株较矮小,通常不超过半公尺,因此适合栽种於盆栽中;食用品种则植株较为高大,种於一般露天苗圃土壤中,可长至2公尺以上。向日葵生长相当迅速,通常种植约两个月即可开花,其花型有单瓣、重瓣或单花、多花之分,花期相当长久可达两周以上。 繁栽要点 以种子方式繁衍后代,播种时以泥炭土为宜。向日葵对光线要求度较高,对温度则忍受范围大,适合温度摄氏15-30度,但仍以夏季生长较为迅速。由于光线需求度高,新陈代谢快,因此水份需求度高,宜经常灌溉浇水,保持土壤之潮湿,夏天可每天浇水。以有机肥拌入培养土中为最佳之方式;除此之外亦可视植株状况追加化学肥料。 凡高的艺术是伟大的,然而在他生前并未得到社会的承认。他作品中所包含着深刻的悲剧意识,其强烈的个性和在形式上的独特追求,远远走在代的前面,的确难以被当时的人们所接受。他以环境来抓住对象,他重新改变现实,以达到实实在在的真实,促成了表现主义的诞生。在人们对他的误解最深的时候,正是他对自己的创作最有信心的时候。因此才留下了永远的艺术著作。他直接影响了法国的野兽主义,德国的表现主义,以至于20世纪初出现的抒情抽象肖像。《向日葵》就是在阳光明媚灿烂的法国南部所作的。画家像闪烁着熊熊的火焰,满怀炽热的激情令运动感的和仿佛旋转不停的笔触是那样粗厚有力,色彩的对比也是单纯强烈的。然而,在这种粗厚和单纯中却又充满了智慧和灵气。观者在观看此画时,无不为那激动人心的画面效果而感应,心灵为之震颤,激情也喷薄而出,无不跃跃欲试,共同融入到凡高丰富的主观感情中去。总之,凡高笔下的向日葵不仅仅是植物,而是带有原始冲动和热情的生命体。向日葵究竟向不向日 方舟子 法学教授刘大生近日寄给我几篇文章,有的是法学文章,也有的是杂文。其中有一组他写于1998年的文章《关于向日葵的陈述及对话》,大意是说经过他自己专门的观察,发现向日葵并不像一般人认为的那样其花盘随着太阳转动;从逻辑上看向日葵不可能转动,“那么粗硬的东西,怎么好随意转动呢?”;所有的工具书只 说向日葵转而不说它如何转,说明编撰者们在这个问题上是“囊中羞涩”,“肚里 无货”,根本说不出来。但是所有的工具书和教科书都说向日葵是向日的,欺 全世界60亿人。他写了一篇《向日葵如何向日?》的文章揭穿这个大,投了几 家报刊,都未被接受,只好拿到网上发表,也没有引起反响。他觉得很悲哀,“为 了反愚昧、反欺、反荒唐”,想在网上再次发表,呼吁“向日葵仅仅向东,向日 葵并不向日。中小学教师们,文学家们,科普作家们,工具书的编撰者们,请您们 慎重,不要再愚弄全人类了。” 其实只要观察过向日葵的人,都难免有同样的困惑,虽然未必像刘教授那愤 怒。比如作家张抗抗写过一篇散文《向日葵》,她在天山脚下发现一大片背着太阳的向日葵,在夕阳西下时,“却依然无动于衷,纹丝不动,固执地颔首朝东,只将那一圈圈绿色的蒂盘对着西斜的太阳。”不由发出一连串的疑问:“那众所周知的向阳花儿,莫非竟是一个弥天大谎么?”“究竟是天下的向日葵,根本从来就没有围着太阳旋转的习性,还是这天山脚下的向日葵,忽然改变了它的遗传基因,成为一个叛逆的例外?”“它们一定是一些从异域引进的特殊品种,被天山的雪水滋养,变成了向日葵种群中的异类?”……在我读幼儿园的时候,我家的阳台上曾种过一株向日葵,我也曾奇怪它怎么是一动不动的,没有像儿歌唱的那样“葵花朵朵向太阳”。不过我没有那么多疑问,只把原因归咎于没把向日葵种好。 向日葵原产北美洲,在1510年被西班牙殖民者带回欧洲,万历年间又由传教士传入中国。西方博物学家都注意到向日葵的向日性,明末清初的学者在记载向日葵时,也都特别提及其向日性,1688年出版的《花镜》说得更是详细:“向日葵,一名西番葵。高一、二丈,叶大于蜀葵,尖狭多刻缺。六月开花,每杆顶上只一花,黄办大心,其形如盘。随太阳回转,如日东升则花朝东,日中天则花直朝上,日西沉则花朝西。”中国原来的葵指的是葵菜,也有向日性,唐宋诗人曾反复吟咏,如杜诗:“葵藿倾太阳,物性固莫夺。”(藿的意思是豆叶)梅尧臣《葵花》诗:“此心生不背朝阳,肯信众草能翳之。”刘克庄诗《葵》:“生长古墙阴,,园荒草木深。可曾沾雨露,不改向阳心。”可见自古以来“葵”就与“向阳”紧密联系在一起。我怀疑向日葵的名称由刚传入时的“丈菊”、“西番菊”而改叫“向日葵”、“西番葵”,即与其向日性有关,以致现在说的“葵花”变成专指向日葵,甚至使 某些注家误以为唐宋诗人所说的葵花也指向日葵了。 那么向日葵究竟向不向日?难道这真是一个几乎愚弄了所有人的大?答案是:要看处于什么生长阶段。像工具书那样笼统地说向日葵“常朝着太阳”,是不准确的,这是引起无数人的误解、张抗抗的疑惑和刘大生的愤怒的原因。向日葵从发芽到花盘盛开之前这一段时间,的确是向日的,其叶子和花盘在白天追随太阳从东转向西,不过并非即时的跟随,植物学家测量过,其花盘的指向落后太阳大约12 度,即48分钟。太阳下山后,向日葵的花盘又慢慢往回摆,在大约凌晨3点时,又朝向东方等待太阳升起。但是,花盘一旦盛开后,就不再向日转动,而是固定朝向 东方了。刘大生、张抗抗观察的是已盛开的向日葵,所以只看到它们一动不动地面向东方。 绿色植物向日,实际上是为了充分地利用阳光进行光合作用,因此向日性实际上是向光性。古人虽然很早就注意到植物的向日性(至迟在三国时期就已注意到,曹植《求通亲亲表》说:“若葵藿之倾叶,太阳虽不为之回光,然终向之者,诚也。”),但只将之解释为“物性”,用来做比喻,却没有想到要用科学方法研究其奥秘。最早研究植物向光性的是——还会有谁——生物学之父达尔文。他在随贝格尔号环球旅行时,随身带了几只鸟,为了喂养这些鸟,又在船舱中种了一种叫草芦的草。船舱很暗,只有窗户透射进阳光,达尔文注意到,草的幼苗向窗户的方向弯曲、生长。但后来几十年间,达尔文忙着创建进化论,直到其晚年,才着手进行 一系列实验研究向光性的问题,在1880年出版的《植物的运动力》一书中总结了这些实验结果。达尔文是用草的种子做这些实验的。草的种子发芽时,胚芽外面套着一层胚芽鞘,胚芽鞘首先破土而出,保护胚芽在出土时不受损伤。达尔文发现胚芽鞘是向光性的关键。如果把种子种在黑暗中,它们的胚芽鞘将垂直向上生长。如果让阳光从一侧照射秧苗,胚芽鞘则向阳光的方向弯曲。如果把胚芽鞘尖端切掉,或用不透明的东西盖住,虽然光还能照射胚芽鞘,胚芽鞘也不再向光弯曲。如果是用透明的东西遮盖胚芽鞘,则胚芽鞘向光弯曲,而且,即使用不透光的黑色沙土掩埋胚芽鞘而只留出尖端,被掩埋的胚芽鞘仍然向光弯曲。达尔文推测,在胚芽鞘的尖端分泌一种信号物质,向下输送到会弯曲的部分,是这种信号物质导致了胚芽鞘向光弯曲。 达尔文的发现随后引起了生物学家们浓厚的兴趣。1913年,丹麦生物学家波义森-简森(Peter Boysen-Jensen)进一步验证了达尔文的推测。他切下胚芽鞘的尖端,在切面上放上一层凝胶,再把尖端放回去,胚芽鞘的向光性保持不变。但是如果在中间放的不是凝胶而是不通透的云母片,向光性就消失了。而且,只有把云母片插在切面背光的一面,才会防止向光性,如果是插在向光的一面,则向光性正常。这就表明信号物质是从胚芽鞘尖端传递到胚芽鞘背光的一面,使那里的细胞生长速度要比向光的一面快,导致弯曲。1918年帕尔(A. Paal)证实了波义森-简森的结果。他在黑暗中切下胚芽鞘的尖端,用光照射该尖端后再放回胚芽鞘的切面,但是放的时候偏离中心,放在一侧,他发现胚芽鞘生长时就往另一侧弯曲。 1925年索丁(H. Soding)发现,如果把胚芽鞘尖端切掉,则胚芽鞘的生长受抑制,但是如果把切下的胚芽鞘尖端放回去,则胚芽鞘的生长恢复正常,表明胚芽鞘尖端含有刺激细胞生长的信号物质。1926年,一名荷兰研究生文特(Fritz Went)用一简单的办法分离出了这种信号物质。他切下燕麦胚芽鞘的尖端,把它放在琼脂上放数个小时,然后把琼脂放到胚芽鞘残部,发现琼脂能刺激胚芽鞘的生长,表明有能刺激生长的物质从胚芽鞘尖端渗透到了琼脂中。这种物质后来被称为生长素。两年后,文特发明了一种办法定量地测定生长素的活性。他把渗透了生长素的琼脂放在燕麦胚芽鞘残部的一侧,在黑暗中,燕麦胚芽鞘将向另一侧弯曲。如此在黑暗中生长一个半小时后,测定胚芽鞘的弯曲度,越弯曲,则说明琼脂中含有的生长素活性越强(比如说,用的胚芽鞘尖端越多),这种测定法后来被称为燕麦测试法。文特也发现,是生长素的不均匀分布导致植物的向光性。让光从一侧照射胚芽鞘尖端,然后将胚芽鞘尖端切下放在两块琼脂上,在原来背光和向光的一侧各放一块。几个小时后用燕麦测试法分别测定这两块琼脂所含生长素的活性,发现背光的那块几乎是向光的那块的两倍。 那么这种生长素又是什么化学物质呢?可惜的是,胚芽鞘尖端所含的生长素的量实在是太少的,没法将之提取、纯化和测定其化学结构。科学家们只能用从其他来源提取的物质用燕麦测定法测定其生长素活性。1931年,荷兰科学家科格尔(Fritz Kogl)和哈根-史密特(Arie J. Haagen-Smit)首次从人尿中提取出了一种能刺激植物生长的物质,称之为生长素A(即三醇酸)。科格尔后来又从人尿中提取出了几种生长素,其中活性最强的是β-吲哚乙酸,这种物质实际上早在1885年被从发酵液中提取出来了,只不过人们当时不知道它是一种生长素。β-吲哚乙酸成了人们所发现的第一种真正的植物生长素,也是最主要的生长素。现在我们从分子水平上对生长素的作用机理有了一定的了解,不过有许多细节仍然搞不清楚。简单地说,是这样的:光(以蓝光最有效,用微弱的蓝光照射一、两秒就能引发向光性)照射到芽的尖端,被光受体(某种蛋白质,包括一种被称为趋光蛋白的黄素蛋白)吸收,激发生长素的合成。光同时刺激在向光面和背光面的生长素的合成,但是背光面的生长素合成量要高三倍。在芽尖合成的生长素经由维管组织向下传输,与细胞膜上 的蛋白质受体结合,刺激细胞壁拉长。由于背光面的生长素浓度较高,导致背光面的细胞被拉得较长,从而朝着向光面弯曲。生长素还有许多特性,其中一种是:如果含量太高,它将抑制而不是刺激植物的生长。 现在我们再回到向日葵。显然,向日葵的叶子和花盘之所以能朝着太阳转动,不必像刘教授设想的那样“除非在它的脖子上安装一个轴承”。在阳光的照射下,生长素在向日葵背光一面含量升高,刺激背光面细胞拉长,从而慢慢地向太阳转动。在太阳落山后,生长素重新分布,又使向日葵慢慢地转回起始位置,也就是东方。 在花盘盛开后,向日葵也停止了生长,而把花盘固定朝向东方。为什么最后要面向东方而不是其他方向或朝上呢?这可能是自然选择的结果,对向日葵的繁衍有益处。向日葵的花粉怕高温,如果温度高于30摄氏度,就会被灼伤,因此固定朝向东方,可以避免正午阳光的直射,减少辐射量。但是,花盘一大早就受阳光照射,却有助于烘干在夜晚时凝聚的露水,减少受霉菌侵袭的可能性,而且在寒冷的早晨,在阳光的照射下使向日葵的花盘成了温暖的小窝,能吸引昆虫在那里停留帮助传粉。 通过以上的介绍,我想已足以消除刘大生、张抗抗以及某些观察过向日葵的大人、小孩的困惑了。他们不轻信常识,能够自己做观察验证,敢于挑战权威,这是难能可贵的。可惜的是他们的观察既不系统也不细致,又没能查阅足够的专业资料,因此疑惑不解,甚至匆忙地得出了的结论。在科学问题上,仅有探索、怀疑精 神是不够的。当然,一些辞书、科普文章不严谨的甚至错误的说法也要负一定的责任,应该做出相应的修改。
南南南南者
向日葵究竟向不向日 方舟子 法学教授刘大生近日寄给我几篇文章,有的是法学文章,也有的是杂文。其中 有一组他写于1998年的文章《关于向日葵的陈述及对话》,大意是说经过他自己专 门的观察,发现向日葵并不像一般人认为的那样其花盘随着太阳转动;从逻辑上看 向日葵不可能转动,“那么粗硬的东西,怎么好随意转动呢?”;所有的工具书只 说向日葵转而不说它如何转,说明编撰者们在这个问题上是“囊中羞涩”,“肚里 无货”,根本说不出来。但是所有的工具书和教科书都说向日葵是向日的,欺 全世界60亿人。他写了一篇《向日葵如何向日?》的文章揭穿这个大,投了几 家报刊,都未被接受,只好拿到网上发表,也没有引起反响。他觉得很悲哀,“为 了反愚昧、反欺、反荒唐”,想在网上再次发表,呼吁“向日葵仅仅向东,向日 葵并不向日。中小学教师们,文学家们,科普作家们,工具书的编撰者们,请您们 慎重,不要再愚弄全人类了。” 其实只要观察过向日葵的人,都难免有同样的困惑,虽然未必像刘教授那么愤 怒。比如作家张抗抗写过一篇散文《向日葵》,她在天山脚下发现一大片背对着太 阳的向日葵,在夕阳西下时,“却依然无动于衷,纹丝不动,固执地颔首朝东,只 将那一圈圈绿色的蒂盘对着西斜的太阳。”不由发出一连串的疑问:“那众所周知 的向阳花儿,莫非竟是一个弥天大谎么?”“究竟是天下的向日葵,根本从来就没 有围着太阳旋转的习性,还是这天山脚下的向日葵,忽然改变了它的遗传基因,成 为一个叛逆的例外?”“它们一定是一些从异域引进的特殊品种,被天山的雪水滋 养,变成了向日葵种群中的异类?”……在我读幼儿园的时候,我家的阳台上曾种 过一株向日葵,我也曾奇怪它怎么是一动不动的,没有像儿歌唱的那样“葵花朵朵 向太阳”。不过我没有那么多疑问,只把原因归咎于没把向日葵种好。 向日葵原产北美洲,在1510年被西班牙殖民者带回欧洲,万历年间又由传教士 传入中国。西方博物学家都注意到向日葵的向日性,明末清初的学者在记载向日葵 时,也都特别提及其向日性,1688年出版的《花镜》说得更是详细:“向日葵,一 名西番葵。高一、二丈,叶大于蜀葵,尖狭多刻缺。六月开花,每杆顶上只一花, 黄办大心,其形如盘。随太阳回转,如日东升则花朝东,日中天则花直朝上,日西 沉则花朝西。”中国原来的葵指的是葵菜,也有向日性,唐宋诗人曾反复吟咏,如 杜诗:“葵藿倾太阳,物性固莫夺。”(藿的意思是豆叶)梅尧臣《葵花》诗: “此心生不背朝阳,肯信众草能翳之。”刘克庄诗《葵》:“生长古墙阴,,园荒 草木深。可曾沾雨露,不改向阳心。”可见自古以来“葵”就与“向阳”紧密联系 在一起。我怀疑向日葵的名称由刚传入时的“丈菊”、“西番菊”而改叫“向日葵”、 “西番葵”,即与其向日性有关,以致现在说的“葵花”变成专指向日葵,甚至使 某些注家误以为唐宋诗人所说的葵花也指向日葵了。 那么向日葵究竟向不向日?难道这真是一个几乎愚弄了所有人的大?答案 是:要看处于什么生长阶段。像工具书那样笼统地说向日葵“常朝着太阳”,是不 准确的,这是引起无数人的误解、张抗抗的疑惑和刘大生的愤怒的原因。向日葵从 发芽到花盘盛开之前这一段时间,的确是向日的,其叶子和花盘在白天追随太阳从 东转向西,不过并非即时的跟随,植物学家测量过,其花盘的指向落后太阳大约12 度,即48分钟。太阳下山后,向日葵的花盘又慢慢往回摆,在大约凌晨3点时,又 朝向东方等待太阳升起。但是,花盘一旦盛开后,就不再向日转动,而是固定朝向 东方了。刘大生、张抗抗观察的是已盛开的向日葵,所以只看到它们一动不动地面 向东方。 绿色植物向日,实际上是为了充分地利用阳光进行光合作用,因此向日性实际 上是向光性。古人虽然很早就注意到植物的向日性(至迟在三国时期就已注意到, 曹植《求通亲亲表》说:“若葵藿之倾叶,太阳虽不为之回光,然终向之者,诚 也。”),但只将之解释为“物性”,用来做比喻,却没有想到要用科学方法研究 其奥秘。最早研究植物向光性的是——还会有谁——生物学之父达尔文。他在随贝 格尔号环球旅行时,随身带了几只鸟,为了喂养这些鸟,又在船舱中种了一种叫草 芦的草。船舱很暗,只有窗户透射进阳光,达尔文注意到,草的幼苗向窗户的方向 弯曲、生长。但后来几十年间,达尔文忙着创建进化论,直到其晚年,才着手进行 一系列实验研究向光性的问题,在1880年出版的《植物的运动力》一书中总结了这 些实验结果。达尔文是用草的种子做这些实验的。草的种子发芽时,胚芽外面套着 一层胚芽鞘,胚芽鞘首先破土而出,保护胚芽在出土时不受损伤。达尔文发现胚芽 鞘是向光性的关键。如果把种子种在黑暗中,它们的胚芽鞘将垂直向上生长。如果 让阳光从一侧照射秧苗,胚芽鞘则向阳光的方向弯曲。如果把胚芽鞘尖端切掉,或 用不透明的东西盖住,虽然光还能照射胚芽鞘,胚芽鞘也不再向光弯曲。如果是用 透明的东西遮盖胚芽鞘,则胚芽鞘向光弯曲,而且,即使用不透光的黑色沙土掩埋 胚芽鞘而只留出尖端,被掩埋的胚芽鞘仍然向光弯曲。达尔文推测,在胚芽鞘的尖 端分泌一种信号物质,向下输送到会弯曲的部分,是这种信号物质导致了胚芽鞘向 光弯曲。 达尔文的发现随后引起了生物学家们浓厚的兴趣。1913年,丹麦生物学家波义 森-简森(Peter Boysen-Jensen)进一步验证了达尔文的推测。他切下胚芽鞘的 尖端,在切面上放上一层凝胶,再把尖端放回去,胚芽鞘的向光性保持不变。但是 如果在中间放的不是凝胶而是不通透的云母片,向光性就消失了。而且,只有把云 母片插在切面背光的一面,才会防止向光性,如果是插在向光的一面,则向光性正 常。这就表明信号物质是从胚芽鞘尖端传递到胚芽鞘背光的一面,使那里的细胞 生长速度要比向光的一面快,导致弯曲。1918年帕尔(A. Paal)证实了波义森- 简森的结果。他在黑暗中切下胚芽鞘的尖端,用光照射该尖端后再放回胚芽鞘的切 面,但是放的时候偏离中心,放在一侧,他发现胚芽鞘生长时就往另一侧弯曲。 1925年索丁(H. Soding)发现,如果把胚芽鞘尖端切掉,则胚芽鞘的生长受抑制, 但是如果把切下的胚芽鞘尖端放回去,则胚芽鞘的生长恢复正常,表明胚芽鞘尖端 含有刺激细胞生长的信号物质。1926年,一名荷兰研究生文特(Fritz Went)用一 个简单的办法分离出了这种信号物质。他切下燕麦胚芽鞘的尖端,把它放在琼脂上 放数个小时,然后把琼脂放到胚芽鞘残部,发现琼脂能刺激胚芽鞘的生长,表明有 能刺激生长的物质从胚芽鞘尖端渗透到了琼脂中。这种物质后来被称为生长素。两 年后,文特发明了一种办法定量地测定生长素的活性。他把渗透了生长素的琼脂放 在燕麦胚芽鞘残部的一侧,在黑暗中,燕麦胚芽鞘将向另一侧弯曲。如此在黑暗中 生长一个半小时后,测定胚芽鞘的弯曲度,越弯曲,则说明琼脂中含有的生长素活 性越强(比如说,用的胚芽鞘尖端越多),这种测定法后来被称为燕麦测试法。文 特也发现,是生长素的不均匀分布导致植物的向光性。让光从一侧照射胚芽鞘尖端, 然后将胚芽鞘尖端切下放在两块琼脂上,在原来背光和向光的一侧各放一块。几个 小时后用燕麦测试法分别测定这两块琼脂所含生长素的活性,发现背光的那块几乎 是向光的那块的两倍。 那么这种生长素又是什么化学物质呢?可惜的是,胚芽鞘尖端所含的生长素的 量实在是太少的,没法将之提取、纯化和测定其化学结构。科学家们只能用从其他 来源提取的物质用燕麦测定法测定其生长素活性。1931年,荷兰科学家科格尔(Fritz Kogl)和哈根-史密特(Arie J. Haagen-Smit)首次从人尿中提取出了一种能刺激植物生长的物质,称之为生长素A(即三醇酸)。科格尔后来又从人尿中提取出了几种生长素,其中活性最强的是β-吲哚乙酸,这种物质实际上早在1885年被从发酵液中提取出来了,只不过人们当时不知道它是一种生长素。β-吲哚乙酸成了人们所发现的第一种真正的植物生长素,也是最主要的生长素。现在我们从分子水平上对生长素的作用机理有了一定的了解,不过有许多细节仍然搞不清楚。简单地说,是这样的:光(以蓝光最有效,用微弱的蓝光照射一、两秒就能引发向光性)照射到芽的尖端,被光受体(某种蛋白质,包括一种被称为趋光蛋白的黄素蛋白)吸收,激发生长素的合成。光同时刺激在向光面和背光面的生长素的合成,但是背光面的生长素合成量要高三倍。在芽尖合成的生长素经由维管组织向下传输,与细胞膜上 的蛋白质受体结合,刺激细胞壁拉长。由于背光面的生长素浓度较高,导致背光面 的细胞被拉得较长,从而朝着向光面弯曲。生长素还有许多特性,其中一种是:如 果含量太高,它将抑制而不是刺激植物的生长。 现在我们再回到向日葵。显然,向日葵的叶子和花盘之所以能朝着太阳转动,不必像刘教授设想的那样“除非在它的脖子上安装一个轴承”。在阳光的照射下, 生长素在向日葵背光一面含量升高,刺激背光面细胞拉长,从而慢慢地向太阳转动。 在太阳落山后,生长素重新分布,又使向日葵慢慢地转回起始位置,也就是东方。 在花盘盛开后,向日葵也停止了生长,而把花盘固定朝向东方。为什么最后要 面向东方而不是其他方向或朝上呢?这可能是自然选择的结果,对向日葵的繁衍有 益处。向日葵的花粉怕高温,如果温度高于30摄氏度,就会被灼伤,因此固定朝向 东方,可以避免正午阳光的直射,减少辐射量。但是,花盘一大早就受阳光照射, 却有助于烘干在夜晚时凝聚的露水,减少受霉菌侵袭的可能性,而且在寒冷的早晨, 在阳光的照射下使向日葵的花盘成了温暖的小窝,能吸引昆虫在那里停留帮助传粉。 通过以上的介绍,我想已足以消除刘大生、张抗抗以及某些观察过向日葵的大 人、小孩的困惑了。他们不轻信常识,能够自己做观察验证,敢于挑战权威,这是 难能可贵的。可惜的是他们的观察既不系统也不细致,又没能查阅足够的专业资料, 因此疑惑不解,甚至匆忙地得出了的结论。在科学问题上,仅有探索、怀疑精 神是不够的。当然,一些辞书、科普文章不严谨的甚至错误的说法也要负一定的责 任,应该做出相应的修改。 2004.9.20 (载《科学世界》2004年第10期)
武装的蔷薇1
这是一个科学家的名字,有这么一个系数,叫做nei氏多样性指数植物分子群体遗传学研究动态分子群体遗传学是当代进化生物学研究的支柱学科, 也是遗传育种和关于遗传关联作图和连锁分析的基础理论学科。分子群体遗传学是在经典群体遗传的基础上发展起来的, 它利用大分子主要是DNA序列的变异式样来研究群体的遗传结构及引起群体遗传变化的因素与群体遗传结构的关系, 从而使得遗传学家能够从数量上精确地推知群体的进化演变, 不仅克服了经典的群体遗传学通常只能研究群体遗传结构短期变化的局限性, 而且可检验以往关于长期进化或遗传系统稳定性推论的可靠程度。同时, 对群体中分子序列变异式样的研究也使人们开始重新审视达尔文的以“自然选择”为核心的进化学说。到目前为止, 分子群体遗传学已经取得长足的发展, 阐明了许多重要的科学问题, 如一些重要农作物的DNA多态性式样、连锁不平衡水平及其影响因素、种群的变迁历史、基因进化的遗传学动力等, 更为重要的是, 在分子群体遗传学基础上建立起来的新兴的学科如分子系统地理学等也得到了迅速的发展。文中综述了植物分子群体遗传研究的内容及最新成果。 1 理论分子群体遗传学的发.展简史经典群体遗传学最早起源于英国数学家哈迪和德国医学家温伯格于1908年提出的遗传平衡定律。以后, 英国数学家费希尔、遗传学家霍尔丹(Haldane JBS)和美国遗传学家赖特(Wright S)等建立了群体遗传学的数学基础及相关计算方法, 从而初步形成了群体遗传学理论体系, 群体遗传学也逐步发展成为一门独立的学科。群体遗传学是研究生物群体的遗传结构和遗传结构变化规律的科学, 它应用数学和统计学的原理和方法研究生物群体中基因频率和基因型频率的变化, 以及影响这些变化的环境选择效应、遗传突变作用、迁移及遗传漂变等因素与遗传结构的关系, 由此来探讨生物进化的机制并为育种工作提供理论基础。从某种意义上来说, 生物进化就是群体遗传结构持续变化和演变的过程, 因此群体遗传学理论在生物进化机制特别是种内进化机制的研究中有着重要作用[1]。在20世纪60年代以前, 群体遗传学主要还只涉及到群体遗传结构短期的变化, 这是由于人们的寿命与进化时间相比极为短暂, 以至于没有办法探测经过长期进化后群体遗传的遗传变化或者基因的进化变异, 只好简单地用短期变化的延续来推测长期进化的过程。而利用大分子序列特别是DNA序列变异来进行群体遗传学研究后, 人们可以从数量上精确地推知群体的进化演变, 并可检验以往关于长期进化或遗传系统稳定性推论的可靠程度[1]。同时, 对生物群体中同源大分子序列变异式样的研究也使人们开始重新审视达尔文的以“自然选择”为核心的生物进化学说。20世纪60年代末、70年代初, Kimura[2]、King和Jukes[3]相继提出了中性突变的随机漂变学说: 认为多数大分子的进化变异是选择性中性突变随机固定的结果。此后, 分子进化的中性学说得到进一步完善[4], 如Ohno[5]关于复制在进化中的作用假说: 认为进化的发生主要是重复基因获得了新的功能, 自然选择只不过是保持基因原有功能的机制; 最近Britten[6]甚至推断几乎所有的人类基因都来自于古老的复制事件。尽管中性学说也存在理论和实验方法的缺陷, 但是它为分子进化的非中性检测提供了必要的理论基础[7]。目前, “选择学说”和“中性进化学说”仍然是分子群体遗传学界讨论的焦点。1971年, Kimura[8]最先明确地提出了分子群体遗传学这一新的学说。其后, Nei从理论上对分子群体遗传学进行了比较系统的阐述。1975年, Watterson[9]估算了基于替代模型下的DNA多态性的参数Theta(θ) 值和期望方差。1982年, 英国数学家Kingman[10, 11]构建了“溯祖”原理的基本框架, 从而使得以少量的样本来代表整个群体进行群体遗传结构的研究成为可能, 并可以进一步推断影响遗传结构形成的各种演化因素。溯祖原理的“回溯”分析使得对群体进化历史的推测更加合理和可信。1983年, Tajima[12]推导了核甘酸多样度参数Pi(π)的数学期望值和方差值。此后, 随着中性平衡的相关测验方法等的相继提出[13~15], 分子群体遗传学的理论及分析方法日趋完善[16]。近20年来, 在分子群体遗传学的基础上, 又衍生出一些新兴学科分支, 如分子系统地理学(molecular phylogeography)等。系统地理学的概念于1987年由Avise提出, 其强调的是一个物种的基因系谱当前地理分布方式的历史成因[17], 同时对物种扩散、迁移等微进化历史等进行有效的推测[18]。2 实验植物分子群体遗传研究内容及进展基于DNA序列变异检测手段的实验分子群体遗传学研究始于1983年, 以Kreitman[19]发表的“黑腹果蝇的乙醇脱氢酶基因位点的核苷酸多态性”一文为标志。以植物为研究对象的实验分子群体遗传学论文最早发表于20 世纪90年代初期[20, 21], 但是由于当时DNA测序费用昂贵等原因, 植物分子群体遗传学最初发展比较缓慢, 随着DNA测序逐渐成为实验室常规的实验技术之一以及基于溯祖理论的各种计算机软件分析程序的开发和应用, 实验分子群体遗传学近10年来得到了迅速的发展, 相关研究论文逐年增多, 研究的植物对象主要集中在模式植物拟南芥(Arabidopsis thaliana (L.) Heynh.)及重要的农作物如玉米(Zea mays L.)、大麦(Hordeum vulgare L.), 水稻(Orazy sativa L.)、高粱(Sorghum bicolor L.)、向日葵(Helianthus annuus L.)等上[16]。其研究内容涵盖了群体遗传结构(同源DNA分化式样)、各种进化力量如突变, 重组, 连锁不平衡、选择等对遗传结构的影响、群体内基因进化方式(中性或者适应性进化)、群体间的遗传分化及基因流等。同时, 通过对栽培物种与野生祖先种或野生近缘种的DNA多态性比较研究, 分子群体遗传学在研究作物驯化的遗传学原因及结果等也取得了重要的进展, 如作物驯化的遗传瓶颈, 人工选择对“驯化基因”核苷酸多态性的选择性清除(selective sweep)作用等等。2.1 植物基因或基因组DNA多态性分子群体遗传学的研究基础是DNA序列变异。同源DNA序列的遗传分化程度是衡量群体遗传结构的主要指标, 其分化式样则是理解群体遗传结构产生和维持的进化内在驱动力诸如遗传突变、重组、基因转换的前提。随着DNA测序越来越快捷便利及分子生物学技术的飞速发展, 越来越多的全基因组序列或者基因序列的测序结果被发表, 基因在物种或群体中的DNA多态性式样也越来越多地被阐明。植物中, 对拟南芥和玉米基因组的DNA多态性的调查最为系统, 研究报道也较多。例如, Nordborg等[22]对96个样本组成的拟南芥群体中的876个同源基因片段(0.48 Mbp)的序列单核苷酸多态性进行了调查, 共检测到17 000多个SNP, 大约平均每30 bp就存在1个SNP位点。而Schmid等[23]的研究结果显示: 拟南芥基因组核甘酸多态性平均为0.007( W)。Tenaillon等[24]对22个玉米植株的1号染色体上21个基因共14 420 bp序列的分析结果显示玉米具有较高的DNA多态性(1SNP/27.6 bp、 =0.0096)。Ching等[25]研究显示: 36份玉米优系的18个基因位点的非编码区平均核苷酸多态性为1SNP/31 bp, 编码区平均为1SNP/124 bp, 位点缺矢和插入则主要出现在非编码区。此外, 其他物种如向日葵、马铃薯(Solanum tuberosum)、高粱、火矩松(Pinus taeda L.)、花旗松(Douglas fir)等[26~30]中部分基因位点的DNA多态性也得到调查, 结果表明不同的物种的DNA多态性存在较大的差异。繁育方式是显著影响植物基因组的DNA多态性重要因素之一。通常来说, 自交物种往往比异交物种的遗传多态性低, 这已经被一些亲缘关系相近但繁育方式不同的物种如Lycopersicon属植物和Leavenworthia属植物的种间比较研究所证实[31, 32]。但是在拟南芥属中则不然, Savolainen等[33]比较了不同繁育方式的两个近缘种Arabidopsis thaliana(自交种)和Arabidopsis lyrata(异交种)的乙醇脱氢酶基因(Alcohol Dehydrogenase)的核苷酸多态性, 结果发现A. thaliana的核苷酸多态性参数Pi值为0.0069, 远高于A. lyrata的核苷酸多态性(Pi=0.0038)。2.2 连锁不平衡不同位点的等位基因在遗传上不总是独立的, 其连锁不平衡程度在构建遗传图谱进行分子育种及图位克隆等方面具有重要的参考价值。Rafalski和Morgante等[34]在比较玉米和人类群体的连锁不平衡和重组的异同时对连锁不平衡的影响因素做了全面的阐述, 这些因素包括繁育系统、重组率、群体遗传隔离、居群亚结构、选择作用、群体大小、遗传突变率、基因组重排以及其他随机因素等。物种的繁育系统对连锁不平衡程度具有决定性的影响, 通常来说, 自交物种的连锁不平衡水平较高, 而异交物种的连锁不平衡水平相对较低。但是也有例外, 如野生大麦属于自交物种, 然而它的连锁不平衡水平极低[35~37]。拟南芥是典型的自交植物, 研究表明: 拟南芥组基因大多数位点的连锁不平衡存在于15~25 kb左右的基因组距离内[22], 但是在特定位点如控制开花时间的基因及邻接区域, 连锁不平衡达到250 kb的距离[38]。拟南芥基因组高度变异区段同样具有较强的连锁不平衡[39]。这些研究结果说明拟南芥非常适合构建连锁图谱, 因为用少量的样本就可以组成一个有效的作图群体。除拟南芥外, 其它自交物种大多表现出较高的连锁不平衡水平, 如大豆的连锁不平衡大于50 kb[40]; 栽培高粱的连锁不平衡大于15 kb[41]; 水稻的Xa位点连锁不平衡可以达到100 kb以上[42]。与大多数自交物种相比, 异交物种的连锁不平衡程度则要低得多。例如, 玉米的1号染色体的体连锁不平衡衰退十分迅速,大约200 bp距离就变得十分微弱[24], 但是在特定的玉米群体如遗传狭窄的群体或者特定基因位点如受到人工选择的位点, 连锁不平衡水平会有所增强[43~46]。野生向日葵中, 连锁不平衡超过200 bp的距离就很难检测到(r=0.10), 而栽培向日葵群体连锁不平衡程度则可能够达到约1 100 bp的距离(r=0.10)[26]。马铃薯的连锁不平衡在短距离内下降迅速(1 kb降到r2=0.2左右), 但在1Kb以外下降却十分缓慢(10 cM降到r2=0.1)[27]。此外, 异交繁育类型的森林树种如火矩松、花旗松等同样显示出低水平的连锁不平衡[30, 31]。 2.3 基因组重组对DNA多态性的影响基因组的遗传重组是指二倍体或者多倍体植物或者动物减数分裂时发生的同源染色体之间的交换或者转换[47]。它通过打破遗传连锁而影响群体的DNA 多态性式样, 其在基因组具体位点发生的概率与该位点的结构有很大的关系, 基因组上往往存在重组热点区域, 如玉米的bronze(bz)位点, 其重组率高于基因组平均水平100倍以上[48]; 并且重组主要发生在染色体上的基因区域, 而不是基因间隔区[49, 50]。同时, 在基因密度高的染色体区段比基因密度低的染色体区段发生重组的频率也要高得多[41, 51]; 在不同的物种中, 基因组重组率平均水平也有很大的差异。如大麦群体基因组的重组率为 =7~8×10–3 [52],高于拟南芥( =2×10–4)40倍[27], 但只有玉米( =12~14×10–3)的一半左右[24]。目前有很多关于重组和DNA多态性之间的相关关系的研究, 但是没有得到一致的结论。部分研究显示重组对DNA多态性具有较强的影响。如Tenaillon等[24]研究显示玉米1号染色体的DNA多态性高低与重组率具有较高的相关性(r=0.65, P=0.007), 野生玉米群体、大麦及野生番茄也都存在同样的现象[52~54]。而在拟南芥中, 重组对DNA多态性的贡献率就非常低[22]。Schmid等[23]用大量的基因位点对拟南芥群体的核苷酸多态性进行调查后发现: 重组率与核苷酸多态性相关关系不显著; Wright等[55]调查了拟南芥1号和2号染色体的6个自然群体序列变异式样, 结果显示, 在着丝粒附近重组被抑制的染色体区域, 核苷酸多态性并没有随之降低。说明了拟南芥基因组的重组率与DNA多态性并没有必然的相关关系。Baudry等[31]对番茄属内5个种进行了比较研究, 结果也显示重组对种群间的DNA多态性的影响也不明显。2.4 基因进化方式(中性进化或适应性进化)分子群体遗传学有两种关于分子进化的观点: 一种是新达尔文主义的自然选择学说, 认为在适应性进化过程中, 自然选择在分子进化起重要作用, 突变起着次要的作用。新达尔文主义的主要观点包括: 任何自然群体中经常均存在足够的遗传变异, 以对付任何选择压力; 就功能来说, 突变是随机的; 进化几乎完全取决于环境变化和自然选择; 一个自然群体的遗传结构往往对它生存的环境处于或者接近于最适合状态; 在环境没有发生改变的情况下, 新突变均是有害的[56]。另一种是日本学者Kimura为代表的中性学说, 认为在分子水平上, 种内的遗传变异(蛋白质或者DNA序列多态性)为选择中性或者近中性, 种内的遗传结构通过注入突变和随机漂变之间的平衡来维持, 生物的进化则是通过选择性突变的随机固定(有限群体的随机样本漂移)来实现, 即认为遗传漂变是进化的主要原因, 选择不占主导地位[2~4]。这两种学说, 在实验植物分子群体遗传学的研究中都能得到一定的支持。对植物基因在种内进化方式的研究主要集中在拟南芥菜、玉米、大麦等农作物及少数森林树种。Wright和Gaut[16]对2005以前发表的相关文章进行详细的统计, 结果显示: 拟南芥中大约有30%的基因表现为适应性进化; 玉米中大约有24%的基因表现为非中性进化; 大麦的9个基因中, 有4个受到了选择作用的影响。选择作用主要包括正向选择、平衡选择、背景选择及稳定选择, 它们单独或者联合对特定基因的进化方式产生影响。如花旗松中的控制木材质量和冷硬性状的基因[30]、火炬松的耐旱基因[29]、欧洲山杨 (European aspen)的食草动物诱导的蛋白酶抑制基因(Herbivore-induced Protease Inhibitor)等[57], 经检测在各自的群体受到了正向选择、平衡选择、背景选择单独或者多重影响。植物抗性基因(R基因)是研究得比较深入的一类基因, 大部分研究结果显示抗性基因具有高度的多态性, 并经受了复杂的选择作用[58]。Liu和Burke[26]对栽培大麦和野生大麦群体中9个基因在调查显示其中的8个基因受到稳定选择。Simko等 [27]对47份马铃薯66个基因位点调查表明, 大部分基因位点在马铃薯群体进化过程中受到了直接选择或者分化选择作用。以上对不同物种的不同基因位点的研究都强调了分子进化的非中性的结果, 这说明选择在基因的进化过程中具有非常重要的作用; 另一方面, 中性进化的结果报道较少, 或被有意或者无意地忽略, 事实上即使在强调选择作用的研究文献中, 仍然有相当一部分基因表现为中性进化, 说明在种内微观进化的过程中, 选择作用和中性漂变作用可能单独或者联合影响了物种内不同的基因位点, 共同促进了物种的进化。2.5 群体遗传分化分子群体遗传学一个重要的研究内容是阐明物种不同群体之间甚至不同物种群体之间(通常近缘种, 如栽培种及其近缘种或祖先野生种)遗传结构的差异即遗传分化, 并推测形成这种差异的原因, 从而使人能够更好地理解种群动态。植物种内不同群体间遗传分化的研究案例有很多, 典型的有: (1)拟南芥全球范围内的遗传分化。Kawabe和Miyashita[59]利用碱性几丁质酶A(ChiA)、碱性几丁质酶B(ChiB)及乙醇脱氢酶(Ahd)3个基因对拟南芥进行群体亚结构的分析, 结果只有ChiB显示出一定的群体亚结构, 而ChiA、Ahd的系统学聚类与样本地理来源之间没有表现出任何相关关系,这样的结果暗示了拟南芥近期在全球范围内经历了迅速扩张。 Aguade[60]和Mauricio等[61]分别用不同的基因、Schmid等[23]用多基因位点进行的拟南芥分子群体遗传学研究也支持同样的结论。(2)森林树种的遗传分化。Ingvarsson等[62]发现欧洲山杨的日长诱导发芽的侯选基因(phyB)变异方式呈现出纬度渐变方式, 表明欧洲山杨出现了明显的适应性分化; Ingvarsson等[63]对多个基因单倍型地理格局分布的研究同样发现欧洲杨具有明显的地理遗传分化。但是研究表明花旗松(Pseudotsuga menziesii)[30]、火炬松(Pinus taeda)[29]、圆球柳杉(Cryptomeria japonica)等[64]等物种没有发生明显遗传多样性的地理分化。植物不同物种间遗传分化的研究主要集中对在栽培种及其野生近缘种的DNA多态性的比较上。由于早期的驯化瓶颈及人工选择繁育等遗传漂变作用结果 [65]。栽培物种的遗传多样性通常都低于他们的野生祖先种。Hamblin等[28]利用AFLP结果筛选得到基因片段的DNA多态性, 对栽培高粱(S. bicolor)和野生高粱(S. propinquum)进行了比较研究, 结果表明: 野生高粱的平均核苷酸多态性大约为0.012( ),大约是栽培高粱的4倍。Liu等[26]的研究显示: 野生向日葵中, 核苷酸多态性达到0.0128( )、0.0144( W),显著高于栽培向日葵的0.0056( )、0.0072( W)。Eyre-Walker等[66]对栽培和野生玉米Adh1基因大约1 400 bp的序列研究表明: 栽培玉米的遗传多样性大约只有野生玉米种(Zea mays subsp. parviglumis)的75%。Hyten等[67]的研究显示野大豆的平均核苷酸多态性为0.0217( )、0.0235( W), 地方种则分别为0.0143( )、0.0115( W),大约为野大豆的66%( )和49%( )。以上结果充分反应了栽培物种驯化过程中曾遭受过瓶颈效应。3 分子系统地理学分子系统地理学是在分子群体遗传学的基础上, 衍生出的新学科分支。早在20世纪的60年代, Malecot[68]就发现了基因的同一性随地理距离增加而减少的现象; 1975年Nei的《分子群体遗传学和进化》一书中也提到在描述群体的遗传结构时要重视基因或者基因型的地理分布[1]; 1987年Avise等[17]提出了系统地理学概念。在植物方面, 分子地理系统学研究取得很多重要的成果。如对第四世纪冰期植物避难所的推测及冰期后物种的扩散及重新定居等历史事件的阐释, 其中最为典型的研究是对欧洲大陆冰期植物避难所的确定及冰期后植物的重新定居欧洲大陆的历史事件的重现。如欧洲的栎属植物的cpDNA的单倍型的地理分布格局表明, 栎属植物冰期避难所位于巴尔干半岛、伊比利亚岛和意大利亚平宁半岛, 现今的分布格局是由于不同冰期避难所迁出形成的[69]。King和Ferris[70]推测欧洲北部的大部分欧洲桤木种群是从喀尔巴阡山脉这个冰期避难所迁移后演化形成的。Sinclair等[71, 72]推测欧洲赤松在第四纪冰期时的避难所可能是在爱尔兰岛或者在法国的西部。此外, 分子系统地理学在阐明了一些栽培作物的驯化历史事件如驯化发生的次数及驯化起源地等方面也取得了重要的进展。如Olsen等[73]对木薯 (Manihot esculenta)单拷贝核基因甘油醛-3-磷酸脱氢酶(glyceraldehyde 3-phosphate dehydrogenase)在木薯群体中单倍型的地理分布方式深入调查后推测: 栽培木薯起源于亚马逊河流域南部边界区域。Caicedo等[74]利用核基因果实液泡转化酶(fruit vacuolar invertase)的序列变异阐明了栽培番茄(Lycopersicon esculentum)的野生近缘种(Solanum pimpinellifolium )的种群扩张历史, 基因变异的地理分布方式表明栽培番茄起源于秘鲁北部, 然后逐步向太平洋岸边扩张。Londo等[75]利用一个叶绿体基因和两个核基因的变异对两个亚洲的栽培籼、粳亚种及其近缘野生种进行了系统地理学研究, 阐明了籼、粳稻分别起源于不同的亚洲野生稻(O. rufipogon)群体, 其中籼稻起源于喜马拉雅山脉的南部的印度东部、缅甸、泰国一带, 而粳稻则驯化于中国南部, 等等。4 小结与展望目前, 在国际上, 植物分子群体遗传学研究方兴未艾, 在国内, 也开始引起注意。随着植物水稻、拟南芥、杨树的全基因组测序的完成, 以及更多的粮食作物、经济作物、重要森林树种的部分基因组测序结果及EST序列被发表。人们对这些物种的DNA多态性、连锁不平衡水平、基因组或者个别基因的进化推动力量、物种内种群动态和迁移历史等群体遗传学所关注的问题有了一定的了解, 但还远不够深入和透彻。为了推动国内植物分子群体遗传学研究的发展, 笔者提出以下建议, 权当抛砖引玉。(1)大力借鉴国际上有关分子群体遗传学研究的先进方法, 尤其是借鉴以果蝇、人类为研究对象的相关工作。分子群体遗传学研究注重的是分析方法、研究思路以及所要阐明的群体遗传学问题, 而这些很容易学习、掌握并深化研究; (2)深入开展比较基因组学的研究。由于植物种类的繁多以及基因组的复杂性, 人类不可能对不同植物种一一进行全基因组测序, 只能选取少数物种作为模式物种进行测序, 鉴于不同物种之间的同源基因以及基因排列顺序存在一定程度的保守性, 因此, 利用模式植物的基因组测序结果及物种间的比较研究结果可以推动并加速其他物种的相关研究; (3)更加重视分子群体遗传学研究。分子群体遗传学从某种意义上讲是研究种内(微观)进化的一门学科, 而种内微观进化是研究种间宏观进化的前提和基础, 进而加深人们对物种形成、生命进化的认识。另一方面, 连锁不平衡水平是分子群体遗传学研究的重要内容之一, 深入了解连锁不平衡水平对于构建高通量的遗传图谱, 以及利用自然群体进行复杂性状(QTLs)的定位和相关基因克隆具有重要的参考价值; (4)特别要深入开展我国特有的具典型分布格局的植物类群的分子群体遗传学和分子系统地理学的研究, 这对于了解我国植物物种的起源、演变和分布变迁的历史具有重要的意义。同时我国是许多重要农作物和经济作物的起源和驯化中心之一, 深入了解栽培物种及其近缘野生种的DNA多态性及分布方式, 可以为我国的物种保育、重要基因的挖掘、野生物种的驯化栽培、分子育种和植物资源的可持续利用等提供理论指导。
曲多多多
古希腊神话中水泽仙女克丽泰爱上了太阳神阿波罗,但是该归的阿波罗却看也不看她一眼,伤心欲绝的克丽泰只能每天在水边仰望天空,凝视着阿波罗驾着他金碧辉煌的日车从天空中碾过,后来.众神可怜她,把她变坐了一朵向日葵,因为向日葵永远望着太阳的热度和光芒,致死方休,因此向日葵的花语就是:沉默的爱 。一、向日葵的主要特征 向日葵的植株由根、茎、叶、花、果实五部分组成。 (一)根 向日葵的根由主根、侧根和须根组成。主根入土较深,一般为100—200厘米;侧根从主根上生出,水平方向生长;侧根上长有许多的须根。侧根和须根上着生根毛。向日葵根系发达,在土壤中分布广而深,其中60%左右的根系分布在0—40厘米土层中。 向日葵根的生长速度一直比茎快,花盘形成前后根生长最快,到种子开始成熟时,根不再生长,以后便逐渐枯萎。此外,在适宜条件下可长出大量的水根(似玉米的气生根)。 (二)茎 茎秆圆形直立,表面粗糙并被有刚毛。茎由皮层、木质部和海绵状的髓组成。生育后期,茎秆木质化,而茎内的髓部则形成空心。向日葵的胚茎有绿色、淡紫、深紫等,是苗期识别品种的重要标志。 茎的高度,不同类型的品种差异较大,同一品种,株高受播期及栽培条件的影响,差异也很大。茎的生长速度以现蕾到开花最快,此时生长的高度约占总高度的55%,以后生长速 度减慢,仅占5%左右。 向日葵的分枝性,一种是由遗传性决定的后一种是环境条件引起的。 (三)叶 向日葵的叶分为子叶和真叶。子叶一对。真叶在茎下部 l一3节常为对生,以上则为互生。真叶比较大,叶面和叶柄上着生短而硬的刚毛,并覆有一层蜡质层。 叶片数目因品种不同而异,早熟种一般为25—32片,晚熟种了33—40片。茎下部叶片在开花前制造养分,主要供给根部生长,到开花时其功能基本结束。中上部叶片制造的养分主要供给花盘促使种子形成。 (四)花向日葵为头状花序,着生在茎的顶端,俗称花盘。其形状有凸起、平展和凹下三种类型。 花盘上有两种花,即舌状花和管状花。舌状花l一3层,着生在花盘的四周边缘,为无性花。它的颜色和大小因品种而异,有橙黄、淡黄和紫红色,具有引诱昆虫前来采蜜授粉的作用。管状花,位于舌状花内侧,为两性花。花冠的颜色有黄、褐、 暗紫色等。 (五)果实 果实为瘦果,习惯称为种子。果实包括果皮、种皮、子叶和胚四部分。食用型种子较长,果皮黑白条纹占多数,果皮厚,约占种子重量的40%以上,千粒重100—200克。油用型种子较短小,果皮多为黑色,皮薄,约为种子重量的20%一30%,干 粒重40一 I10克。 二、向日葵的主要特性 (一)生育期和生育时期 向日葵的生育期是指从出苗到种子成熟所经历的天数, 一般为85一120天以上。生育期长短因品种、播期和栽培条件不同而有差异。向日葵整个生育期分为幼苗期、现蕾期、开花期和成熟期四个生育时期。 1.幼苗期 从出苗到现蕾,称为幼苗期。一般需要35— 50天,夏播28—35天。此时期是叶片、花原基形成和小花分化阶段。该阶段地上部生长迟缓,地下部根系生长较快,很快形成强大根系,是向日葵抗旱能力最强的阶段。 2.现蕾期 向日葵顶部出现直径1厘米的星状体,俗称现蕾。从现蕾到开花,一般约需20天左右,是营养生长和生殖生长并进时期,也是一生中最旺盛的阶段。这个时期向日葵需 肥、水最多,约占总需肥水量的40%一50%。此期如果不能及时满足对水肥的需要,将会严重影响产量。 3.开花期 田间有75%植株的舌状花开放,即进入开花期。一个花盘从舌状花开放至管状花开放完毕,一般需要6— 9天。从第二天至第五天是该花序的盛花期。这4天开花数约占开花数量的75%。花多在早晨4—6点开放,次日上午授粉、受精。未受精的枝头可保持7一10天不凋萎。 向日葵自花授粉结实率极低,仅为3%左右;异花授粉结 实率高。但如果气温高,雨水多,湿度大,光照不足,土壤干旱等,结实率会大大降低;因此,调节播期,适时施肥、浇水,防治病虫害,以及采取放蜂或人工辅助授粉等措施,可提高结实率。 4.成熟期 从开花到成熟,春播25—55天,夏播25—40天。不同品种有差异。开花授粉盾15天左右是子粒形成阶段。 比期需天气晴朗,昼液温差较大和适宜的土壤水分。 (二)向日葵生长发育与环境条件的关系 1.温度 向日葵原产热带,但对温度的适应性较强,是一种喜温又耐寒的作物。 向日葵种子耐低温能力很强,当地温稳定,在2℃以上, 种子就开始萌动;4—5℃时,种子能发芽生根;地温达8一10℃时,就能满足种子发芽出苗的需要。发芽的最适温度为 31-37℃,最高温度为38—44℃。 向日葵在整个生育过程中,只要温度不低于10℃,就能正常生长。在适宜温度范围内,温度越高,发育越快。 2、水分 向日葵植株高大,叶多而密,是耗水较多的作物。它的吸水量是玉米的1.74倍。但因其生长发育多与当地雨热同步,水分供求矛盾不突出。 向日葵不同生育阶段对水分的要求差异很大。从播种到现蕾,比较抗旱,需水不多,仅为总需水量l.9%。而适当干旱有利于根系生长,增强抗旱性。现蕾到开花,是需水高峰,需水量约占总需水量的43%。此期缺水,对产量影响很大。此阶段恰逢雨量较多,基本上能满足向日葵生长发育对水分的需要。如过于干旱,需灌水补充。开花到成熟需水量也较多,约 占总水量38%。如果水分不足,不仅影响产量,而且还降低油 脂含量。 3.光照 向日葵为短日照作物。但它对日照的反应并不十分敏感。在天津市的日照条件下,无需特殊处理,都能正常开花成熟。向日葵喜欢充足的阳光,其幼苗、叶片和花盘都有很强的向光性。日照充足,幼苗健壮能防止徒长;生育中期日照充足,能促进茎叶生长旺盛,正常开花授粉,提高结实率;生育后期日照充足,子粒充实饱满。 4.土壤 向日葵对土壤要求不严格,在各类土壤上均能生长,从肥沃土壤到旱地、瘠薄、盐碱地均可种植。有较强的耐盐碱能力。 (三)向日葵的抗逆性 1.耐盐性 向日葵有较强的耐盐性,土壤含盐量在0.4%能出全苗。现蕾期,0—5厘米和5一10厘米土层含盐量分别为0.42%和0.445%时,向日葵仍能生长正常。向日葵不仅具有较强的耐盐碱能力,而且还兼有吸盐性能。据化验,向日葵茎秆含氯化钠高达0.5%左右,因此,它是盐碱地生物治碱作物之一。 2.耐旱性 向日葵具有较强的抗旱性。据测试,开花前后近40天的干旱,0—20厘米、20—40厘米和40—60厘米土壤含水量分别为8.8%、15.12%和19.6%,向日葵仍生育正常。 耐旱原因一是根系发达入土深,能吸收利用深层土壤中的水分;二是茎秆内充满海棉状的髓,能贮存较多的水分;三是茎上密生刚毛,叶面有腊质层,能减少水分的蒸腾。 此外,向日葵耐涝能力也很强。据验证,从现蕾期开始,在水淹状态下(地面积水50厘米)生长40天,90%以上植株不死,仍有收成。这是因为向日葵根和茎通气组织发达,遇水后增生新根能力相当强,5天新根增量相当于总根量的21%。 应该可以了吧?
一、生物技术给农业带来的益处广义上讲,生物技术是利用有机体、死细胞、活细胞以及细胞内含物,采用特殊的过程生产出特殊的产品应作到农业、医药以及环境修复治理中,尤其
你给我一些好评,我可以说的呀
摘要:由于内蒙当地独特的气候特征和优越的土地资源,对于食用向日葵制种非常有利,而向日葵的虫媒授粉常是导致产量低的重要原因。为了提高向日葵的结实率采用人工授粉技术
对于普通的转基因,表达的区域将取决于启动子。如果选择全身表达的启动子,如Rosa26, CAG等,将得到全身表达的转基因小鼠;如果选择一些组织特异性表达的基因的
基因组DNA含有细胞中全部的遗传信息。从全血中提取DNA是遗传性疾病、胎儿产前无创伤诊断、肿瘤和传染性疾病等的早期确诊的重要手段和技术,DNA提取的质量和产量直