首页 > 学术发表知识库 > 不定积分计算方法论文答辩ppt

不定积分计算方法论文答辩ppt

发布时间:

不定积分计算方法论文答辩ppt

答辩PPT模板免费下载

链接: 

答辩,是一种教育术语。一般是几位相关专业的老师根据学生的设计实体和论文提出一些问题,同时听取学生个人阐述,以了解学生毕业设计的真实性和对设计的熟悉性;考察学生的应变能力和知识面的宽窄;听取学生对课题发展前景的认识。

毕业答辩PPT模板免费下载

链接:

关于内容:1、一般概括性内容:课题标题、答辩人、课题执行时间、课题指导教师、课题的归属、致谢等。2、课题研究内容:研究目的、方案设计(流程图)、运行过程、研究结果、创新性、应用价值、有关课题延续的新看法等。3、PPT要图文并茂,突出重点,让答辩老师明白哪些是自己独立完成的,页数不要太多,30页左右足够,不要出现太多文字,老师对文字和公式都不怎么感兴趣;4、凡是贴在PPT上的图和公式,要能够自圆其说,没有把握的坚决不要往上面贴。5、每页下面记得标页码,这样比较方便评委老师提问的时候review关于模板:1、可以去像素网选择一套合适的论文答辩ppt模板,不要用太华丽的企业商务模板,学术ppt最好低调简洁一些;2、推荐底色白底(黑字、红字和蓝字)、蓝底(白字或黄字)、黑底(白字和黄字),这三种配色方式可保证幻灯质量。我个人觉得学术ppt还是白底好;3、动手能力强的大牛可以自己做附和课题主题的模板,其实很简单,就是把喜欢的图在“幻灯片母版”模式下插入就行了。关于文字:1、首先就是:不要太多!!!图优于表,表优于文字,答辩的时候照着ppt念的人最逊了;2、字体大小最好选ppt默认的,标题用44号或40号,正文用32号,一般不要小于20号。标题推荐黑体,正文推荐宋体,如果一定要用少见字体,记得答辩的时候一起copy到答辩电脑上,不然会显示不出来;3、正文内的文字排列,一般一行字数在20~25个左右,不要超过6~7行。更不要超过10行。行与行之间、段与段之间要有一定的间距,标题之间的距离(段间距)要大于行间距;关于图片:1、图片在ppt里的位置最好统一,整个ppt里的版式安排不要超过3种。图片最好统一格式,一方面很精制,另一方面也显示出做学问的严谨态度。图片的外周,有时候加上阴影或外框,会有意想不到的效果;2、关于格式,tif格式主要用于印刷,它的高质量在ppt上体现不出来,照片选用jpg就可以了,示意图我推荐bmp格式,直接在windows画笔里按照需要的大小画,不要缩放,出来的都是矢量效果,比较pro,相关的箭头元素可以直接从word里copy过来;3、流程图,用viso画就可以了,这个地球人都知道;4、ppt里出现图片的动画方式最好简洁到2种以下,还是那句话,低调朴素为主;5、动手能力允许的话,学习一下photoshop里的基本操作,一些照片类的图片,在ps里做一下曲线和对比度的基本调整,质量会好很多。windos画笔+ps,基本可以搞定一切学术图片。关于提问环节:评委老师一般提问主要从以下几个方面:1.他本人的研究方向及其擅长的领域;2.可能来自课题的问题:是确实切合本研究涉及到的学术问题(包括选题意义、重要观点及概念、课题新意、课题细节、课题薄弱环节、建议可行性以及对自己所做工作的提问);3.来自论文的问题:论文书写的规范性,数据来源,对论文提到的重要参考文献以及有争议的某些观察标准等;4.来自幻灯的问题:某些图片或图表,要求进一步解释;5.不大容易估计到的问题:和课题完全不相干的问题。似乎相干,但是答辩者根本未做过,也不是课题涉及的问题。答辩者没有做的,但是评委想到了的东西,答辩者进一步打算怎么做。提问环节很容易因为紧张被老师误导,如果老师指出你xx地方做错了,先冷静想一下,别立马就附和说啊我错了啊我没有考虑到。一般来说答辩老师提的问题,很少有你做课题这几年之中都没考虑到的。想好了再回答,不要顶撞老师,实在不会的问题,千万不要“蒙”,态度一定要谦虚,哪怕直接说“自己没有考虑到这点,请老师指正”。

快要硕士论文答辩了,PPT还没有做,在网上搜索了一通,大概知道了做论文答辩PPT的要点。也给需要答辩的同学一个参考。 哇卡卡! 一、要对论文的内容进行概括性的整合,将论文分为引言和试验设计的目的意义、材料和方法、结果、讨论、结论、致谢几部分。 二、在每部分内容的presentation中,原则是:图的效果好于表的效果,表的效果好于文字叙述的效果。最忌满屏幕都是长篇大论,让评委心烦。能引用图表的地方尽量引用图表,的确需要文字的地方,要将文字内容高度概括,简洁明了化,用编号标明。 三、 1 文字版面的基本要求 幻灯片的数目: 学士答辩10min 10~20张 硕士答辩20min 20~35张 博士答辩30min 30~50张 2 字号字数行数: 标题44号(40) 正文32号(不小于24号字) 每行字数在20~25个 每张PPT 6~7行 (忌满字) 中文用宋体(可以加粗),英文用 Time New Romans 对于PPT中的副标题要加粗 3 PPT中的字体颜色不要超过3种(字体颜色要与背景颜色反差大) 建议新手配色: (1)白底,黑、红、篮字 (2)蓝底,白、黄字(浅黄或橘黄也可) 4 添加图片格式: 好的质量图片TIF格式,GIF图片格式最小 图片外周加阴影或外框效果比较好 PPT总体效果:图片比表格好,表格比文字好;动的比静的好,无声比有声好。 四、(注意) 幻灯片的内容和基调。背景适合用深色调的,例如深蓝色,字体用白色或黄色的黑体字,显得很庄重。值得强调的是,无论用哪种颜色,一定要使字体和背景显成明显反差。 注意:要点!用一个流畅的逻辑打动评委。字要大:在昏暗房间里小字会看不清,最终结果是没人听你的介绍。不要用PPT自带模板:自带模板那些评委们都见过,且与论文内容无关,要自己做,简单没关系,纯色没关系,但是要自己做! 时间不要太长:20分钟的汇报,30页内容足够,主要是你讲,PPT是辅助性的。 记得最后感谢母校,系和老师,弄得煽情点 ^_^ 。

不定积分计算方法毕业论文

总结不定积分的运算方法如下:

1、公式法

公式法,顾名思义就是一些常用的不定积分的公式。如果遇到这样的形式可以直接套用。当然,这些不定积分都可以一步步求解得到结果。

2、换元法

换元法有两类,第一类换元积分法又称为凑微分法,第二类换元积分法又称为变量代换法。凑微分法的关键是”凑“,其目的是把被积函数的中间变量变得与积分变量一致,即把dx凑成du。

∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)=∫f(u)du,u=φ(x)。变量代换法则是先换元,再积分,最后回代。相比而言,凑微分的步骤是先凑微分后换元(熟练以后也可以直接计算,省略换元的过程)。

3、分部积分法

前面两种方法可以解决大量的不定积分的计算问题,但是对于被积函数是两个不同函数乘积的这种形式采用上述两种方法就失效了。此时需要使用分部积分法来进行求解。换元积分法是在复合函数求导法则的基础上得到的,而分部积分法则是利用两个函数乘积的求导法则来推导的。

4、有理函数积分法

f(x)=Pn(x)Qm(x) ,其中 、Pn(x)、Qm(x) 分别为x的n次多项式和m次多项式。当m>n时,f(x)为真分式,反之,则为假分式。

计算过程如下:

原式=∫secxdtanx

=secx*tanx-∫(tanx)^2secxdx

=secx*tanx-∫[(secx)^2-1]*secxdx

=secx*tanx-∫(secx)^3dx+∫secxdx

2∫(secx)^3=secx*tanx+∫secxdx

∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C

不定积分的性质:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

定积分不等式论文答辩ppt

不是只照着目录来的。要写出自己文章的创新处,主要部分。最好有图标结合,你也知道,那么多论文老师是没心情看的。模板越简单越好,前提要清晰,字体要大一些,我们组就有字体太小被老师打枪杯具的。能主要阐述你论文的主题思想就好了。介绍不要过长,会造成老师同学的反感,一点小意见,希望能帮到你

关于内容:1、一般概括性内容:课题标题、答辩人、课题执行时间、课题指导教师、课题的归属、致谢等。2、课题研究内容:研究目的、方案设计(流程图)、运行过程、研究结果、创新性、应用价值、有关课题延续的新看法等。3、PPT要图文并茂,突出重点,让答辩老师明白哪些是自己独立完成的,页数不要太多,30页左右足够,不要出现太多文字,老师对文字和公式都不怎么感兴趣;4、凡是贴在PPT上的图和公式,要能够自圆其说,没有把握的坚决不要往上面贴。5、每页下面记得标页码,这样比较方便评委老师提问的时候review关于模板:1、可以去像素网选择一套合适的论文答辩PPT模板,不要用太华丽的企业商务模板,学术ppt最好低调简洁一些;2、推荐底色白底(黑字、红字和蓝字)、蓝底(白字或黄字)、黑底(白字和黄字),这三种配色方式可保证幻灯质量。我个人觉得学术ppt还是白底好;3、动手能力强的大牛可以自己做附和课题主题的模板,其实很简单,就是把喜欢的图在“幻灯片母版”模式下插入就行了。关于文字:1、首先就是:不要太多!!!图优于表,表优于文字,答辩的时候照着ppt念的人最逊了;2、字体大小最好选ppt默认的,标题用44号或40号,正文用32号,一般不要小于20号。标题推荐黑体,正文推荐宋体,如果一定要用少见字体,记得答辩的时候一起copy到答辩电脑上,不然会显示不出来;3、正文内的文字排列,一般一行字数在20~25个左右,不要超过6~7行。更不要超过10行。行与行之间、段与段之间要有一定的间距,标题之间的距离(段间距)要大于行间距;关于图片:1、图片在ppt里的位置最好统一,整个ppt里的版式安排不要超过3种。图片最好统一格式,一方面很精制,另一方面也显示出做学问的严谨态度。图片的外周,有时候加上阴影或外框,会有意想不到的效果;2、关于格式,tif格式主要用于印刷,它的高质量在ppt上体现不出来,照片选用jpg就可以了,示意图我推荐bmp格式,直接在windows画笔里按照需要的大小画,不要缩放,出来的都是矢量效果,比较pro,相关的箭头元素可以直接从word里copy过来;3、流程图,用viso画就可以了,这个地球人都知道;4、ppt里出现图片的动画方式最好简洁到2种以下,还是那句话,低调朴素为主;5、动手能力允许的话,学习一下photoshop里的基本操作,一些照片类的图片,在ps里做一下曲线和对比度的基本调整,质量会好很多。windos画笔+ps,基本可以搞定一切学术图片。关于提问环节:评委老师一般提问主要从以下几个方面:1.他本人的研究方向及其擅长的领域;2.可能来自课题的问题:是确实切合本研究涉及到的学术问题(包括选题意义、重要观点及概念、课题新意、课题细节、课题薄弱环节、建议可行性以及对自己所做工作的提问);3.来自论文的问题:论文书写的规范性,数据来源,对论文提到的重要参考文献以及有争议的某些观察标准等;4.来自幻灯的问题:某些图片或图表,要求进一步解释;5.不大容易估计到的问题:和课题完全不相干的问题。似乎相干,但是答辩者根本未做过,也不是课题涉及的问题。答辩者没有做的,但是评委想到了的东西,答辩者进一步打算怎么做。提问环节很容易因为紧张被老师误导,如果老师指出你xx地方做错了,先冷静想一下,别立马就附和说啊我错了啊我没有考虑到。一般来说答辩老师提的问题,很少有你做课题这几年之中都没考虑到的。想好了再回答,不要顶撞老师,实在不会的问题,千万不要“蒙”,态度一定要谦虚,哪怕直接说“自己没有考虑到这点,请老师指正”。

可以分成几块来讲,不要跟论文的目录一样,没有时间讲那么多比如可以分研究背景我的工作发展前景后面一块可以做文献之类的,条理清楚就可以了

毕业论文答辩PPT应该有哪些内容?论文名称、答辩人、导师、答辩时间、学校、专业(1张)。研究背景、意义与目标、研究问题(1张)。研究框架(1张)。研究综述(1张):简要说明国内外相关研究现状,谁、什么时间、什么成果。对现状进行简要评述,引出自己的研究。研究方法与过程(1-2张):研究采用了哪些方法?在哪里展开?如何实施?主要结论(2-4张):主要阐述自己的研究成果,注意条理清晰,简明扼要。多用图表、数据来说明和论证结果。致谢(1张)。

定积分的计算方法毕业论文论文

拆开来算即可,详情如图所示

定积分的计算方法摘要定积分是积分学中的一个基本问题, 计算方法有很多, 常用的计算方法有四种: ( 1) 定义法、 (2)牛顿—莱布尼茨公式、 (3)定积分的分部积分法、 (4)定积分..

定积分分解为两个,其中前面一个为奇函数。而奇函数在对称区间上的定积分为零

定积分的计算方法如下:1、; 2、常数可以提到积分号前;3、代数和的积分等于积分的代数和;4、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件;5、Risch算法;6、如果在区间[a,b]上,f(x)≥0,则;7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点t在(a,b)内使;

定积分计算方法的研究毕业论文

数学领域中的一些著名悖论及其产生背景

太少啦,你给的财富值太少啦!要知道财富值与人民币的比值是1400:1

简析高等数学中的数学结构与数学理解【摘要】文章从分析高等数学的内容结构出发,代写论文 对数学结构与数学理解所起的作用,作了简单的剖析。【关键词】高等数学;数学结构;数学理解对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。代写毕业论文 数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来,以达到对数学知识的真正理解。1高等数学内容的结构特点高等数学以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。连续性质是自变量增量趋于零时,函数对应增量的极限;导数是自变量增量趋于零时,函数的增量(偏增量)与自变量增量之比(差商)的极限;一元或多元积分都是和式的极限,而无穷级数则是密切联系序列极限的另一种极限。微分是从微观上揭示函数的有关局部性质,积分则从宏观上揭示函数的有关整体性质,它们之间通过微积分基本定理联系起来;广义积分把无穷级数与积分的内部沟通起来;而微分方程又从方程的角度把函数、微分、积分有机地联系起来,展示了它们之间的内在的依赖转化关系。2如何利用结构加强理解2.1注重整体结构理解当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。由于高等数学具有清晰的数学结构,因而其相关知识学习中也充满了知识的同化过程。在高等数学知识结构中,微积分建立在极限的基础之上。因此在高等数学中,新知识获得要依赖于认知结构中原有的适当观念,同时新旧知识还必须要有相互作用,即新旧意义的同化,才能形成高度分化的认知结构。如微分是差商的极限,积分为微分的逆运算,而定积分则为和的极限,只有将这些新旧概念在头脑中不断同化作用,才能形成新的高级知识结构网络,才能加强对相应数学知识的真正理解。这个过程实际上是一个内部认知过程,它要求学习者要有积极主动的精神,即有意义学习倾向;同时还要在学习者的认知结构中找到适当的同化点。学生的认知结构是从所接受的知识结构转化而来的,因此教学是一个动态的过程。2.2注重结构中的概念理解数学结构是有许多个结构所组成的,而个别的概念一定要融人其它概念,合成的概念结构才有用。数学中的概念往往不是孤立的,它们之间存在着一定的联系,理清概念之间的联系,既有助于数学结构的建立,有助于新的概念地自然引入,从而有助于对数学知识的理解与掌握。在微积分这部分内容中,多元函数的极限、连续、偏导数、全微分、方向导数这组概念之间的联系,与一元函数中的极限、连续、偏导数、微分概念之间的联系,这两者之间既有相同之处,又有不同之处,而且每个相对的概念之间又存在一定的联系与区别,多元函数中许多微分概念是在一元函数基础上的推广与发展,它们是密不可分。积分学中的定积分、重积分、二类曲线积分、二类曲面积分之间也存在着类似的关系。通过联想,可以从二维空间进入到三维空间,直至到更多维的空间,从有形进入无形,从现实世界进入虚拟世界,这样步步渗入,步步构建,不断引入新概念,不断更新组建数学结构,使学生头脑中的数学结构不断更新,不断完善,从而达到对知识的真正理解与掌握。2.3在教学中利用数学结构加强学生的数学理解教师对数学结构的理解对学生建立起自身的数学结构起着不可缺少的作用,代写医学论文 只有理解数学结构,才能领会到数学逻辑结构所隐含的精神思想,才能建立自己的数学结构,才能理解数学。首先,在数学中利用高等数学结构的纵向与横向联系,有意识地帮助学生建立自己的知识结构,如在利用求曲边梯形的面积来引入定积分的概念时,其基本思维方法是:分割、近似代替,求和、取极限,最后得出定积分的概念。而这一方法同样可解决求曲顶柱体的体积、空间物体的质量、曲线段的质量等问题,区别仅在于取极限时趋向于零的元素不同而已。在具体每一章的讲解中,要着重介绍此章知识的数学结构中的内在联系及其本章的关键与核心的处理方法,使学生能够抓住本质,真正做到变被动学习为主动学习,主动建构自己本章的数学结构,并能用框图展现出知识间的内在联系,只有这样才能提高学生学习高等数学的兴趣和积极性,增加对高等数学知识的理解,提高高等数学学习的质量。帮助学生建立自己的数学结构,也有利于培养学生的思维能力、归纳能力、分析问题、解决问题的能力,还能促进其自学,调动和增强学生学习高等数学的信心和自觉程度。[参考文献][1]邵瑞珍,皮连生.教育心理学[M].上海:上海教育出版社,1988.[2]李士琦.PME:数学教育心理[M].北京:高等教育出版社.[3]毛京中,高等数学概念教学的一些思考[J].数学教育学报,2003,12(2).[4]陈琼,翁凯庆.试论数学学习中的理解学习[J].数学教育学报,2003,12(1)[5]张定强.剖析高等数学结构,提高学生数学素质[J].数学教育学报,1996,5(1)[6]刘继合.简析高等数学结构与化归[J].聊城师范学院学报(自然科学版),1999,12(3).

  • 索引序列
  • 不定积分计算方法论文答辩ppt
  • 不定积分计算方法毕业论文
  • 定积分不等式论文答辩ppt
  • 定积分的计算方法毕业论文论文
  • 定积分计算方法的研究毕业论文
  • 返回顶部