首页 > 学术发表知识库 > 尼龙纤维的应用领域研究论文

尼龙纤维的应用领域研究论文

发布时间:

尼龙纤维的应用领域研究论文

尼龙6是尼龙材料最主要产品之一,普遍应用于纺丝、注塑、薄膜等方面。尼龙6纤维为最早开发的合成纤维。目前我国尼龙6生产技术相对成熟,尼龙6生产能力逐年提升,尼龙6下游应用领域不断由尼龙纤维领域拓展至工程塑料及薄膜领域,我国已成全球最大的尼龙6消费国。

尼龙的种类:

尼龙塑料底材的种类丰富,常见的有PA66、PA6、PA11、PA12、PA46等等,还有例如PA610、PA612、PA1212、PA6T、PA9T等其他类型的尼龙底材。

尼龙的应用:

尼龙主要应用于纤维和树脂。用作纤维时其突出的优点是耐磨性优于其他纤维,在混纺织物中加入一些聚酰胺尼龙纤维,可大大提高其耐磨性和拉伸强度。在生产中常见的应用有例如服装、蚊帐、地毯等,在工业生产领域则主要应用的有帘子线、工业用布、缆绳、传送带、帐篷、渔网、安全气囊等,当然还有例如降落伞及军用织物。

用做树脂时,聚酰胺尼龙可通过挤塑、注塑、浇注等成型加工方法制造从柔软性制品到刚性硬质制品,从热塑性弹性体到工程结构材料,具有广泛的应用领域,如汽车、电子、电气、家具、建材、生活用品、体育用品、包装材料、航空航天材料等,其中汽车、电子电气和包装行业是聚酰胺尼龙树脂应用非常广泛的领域。

增强尼龙底材与油漆、胶水附着力的方法:

尼龙表面喷漆、胶粘表面处理工艺中,不良缺陷现象发生较为频繁,实际的情况表现为掉漆、脱胶等。其主要的原因则是由于尼龙底材与油漆之间的附着力差所导致,因此想要解决掉漆、脱胶问题,就需要提升两者之间的附着力。有效的解决方法是通过底涂炅盛尼龙处理剂的方式,打底法施工在尼龙基材表面,再喷涂油漆,从而达到增强附着力解决掉漆问题的作用。

化工材料方面的制作;如尼龙绳啦

酶纤维研究应用论文

改良碱性磷酸酶染色法[日期:2008-08-11] 来源: 作者:乔海兵,邢开宇 【关键词】 碱性磷酸酶染色法 1939年Gomori首次提出碱性磷酸酶组织化学染色法用于哺乳动物神经系统血管内皮,1951年Gomori修改了自已的 方法 ,并称为“钙钴法”。1984年Bell在Gomori碱性磷酸酶染色法的基础上进行了改良,用于人脑海马和距状裂区的毛细血管取得成功〔1〕。本文以Bell法为基础,对其法的某些步骤进行了简化和改良, 应用 于脑微血管的 研究 ,同时可以显示出脑微动脉、微静脉。现将此法介绍如下。 1 原理 此方法为金属阳离子沉淀法。以β甘油磷酸钠为底物,在酶的作用下,产生磷酸离子与钙离子形成磷酸钙为第一反应产物。经硝酸铅处理变为磷酸铅沉淀,为第二反应产物。两种反应产物均易解离,进一步用稀硫化铵处理,形成稳定的硫化铅颗粒,沉淀于微血管内皮中,光镜下呈黑色〔2〕。 2 方法 2.1 取材 标本在24 h内取出,切成2 cm×2 cm×2 cm的组织块,放入4 ℃冰箱中保存。尽快放入固定液中固定24 h以上。 新鲜固定液的配制:无水氯化钙 5 g;巴比妥纳 2.5 g;纯甲醛液 5 ml;蒸馏水 488 ml。 2.2 脱水 组织固定好之后,移入70%的酒精24 h,依次移入85%酒精4 h,无水酒精,丙酮(1∶1)溶液4 h,无水酒精,乙醚(1∶1)溶液中4 h。 2.3 包埋 将脱水之后的组织块修整,移入5%的火棉胶溶液中浸泡包埋,放入4 ℃冰箱中,1周后可成块。 2.4 切片 切片厚度在60 μm左右,置入75%酒精中。 2.5 孵化 将切片放入孵化液中,在37 ℃恒温箱内孵化2 h~4 h。孵化液的配制:β甘油磷酸钠1.2 g;无水氯化钙1.96 g;巴比妥钠1 g;蒸馏水200 ml。 2.6 染色 将孵化好的切片快速更换3次蒸馏水,马上置入1.5%硝酸铅溶液中5 min,快速更换3次蒸馏水,然后放入2%硫化铵溶液中3 min,再快速更换3次蒸馏水。 2.7 裱片、脱水、封片 裱片后脱水,二甲苯透明封片。 3 改良措施 取材要新鲜,以免降低血管内皮碱性磷酸酶的活性。固定液和孵化液配好之后,可不调其pH值,只需用pH试纸测试固定液呈弱酸性,孵化液呈弱酸性即可。包埋过程中 应用 梯度包埋法,火棉胶浓度最高不能超过10%。先将组织块放入5%的火棉胶溶液中,留一小开口,置入4 ℃冰箱中,以利于酒精挥发,每天给容器加满火棉胶。2 d~3 d后改换10%的火棉胶,直至包埋好为止。包埋好的组织块应硬度适宜,用手指轻按可留有指纹,但不易碎。孵化过程适当延长,以利于内皮细胞碱性磷酸酶与孵化液充分反应。在裱片过程中由于切片较厚,切片很容易脱落。可采用先透明后封片的办法,既不 影响 切片的透明度,片子也不容易脱落。 4 讨论 碱性磷酸酶染色属于组化呈色法,由于此法对微血管显色均匀、充分,并可较好的反映正常微血管的 自然 扩张状态,有效地避免了血管灌注法的种种缺憾,而且此法经多次改良,使操作 方法 更为简单,呈色时间缩短,因而成为 目前 较为流行的一种微血管形态学的 研究 方法〔3〕。但Hunzlker等认为,由于小静脉内皮细胞碱性磷酸酶分布不集中,活性较低,因而微静脉难以显示。我们在研究过程中对碱性磷酸酶法进一步改良之后,可显示大量的带有三角形膨大的血管(见图1),而这一特点正是微静脉所特有的,所以我们认为,并非微静脉用此法不能显示,而是在实验过程中pH值、温度掌握不准所致。 参考 文献 : 〔1〕王有伟,陈以慈.碱性磷酸酶染色法(钙铅法)在研究人脑和心脏微血管方面的应用〔J〕.解剖学杂志,9(3):227. 〔2〕杜卓民.实用组织学技术〔M〕.北京:人民卫生版社,1982:309. 〔3〕张为龙.脑血管研究近况〔J〕.临床解剖学杂志,1986,4:118.

设为首页 收藏本站 理 工 类 管 理 学 经 济 学 法 学 类 政 治 学 医 学 类 哲 学 类 艺 术 类 教 育 学 其 它 类 计算机类 公共管理 会计审计 论文指导 证券金融 财政税收 财务管理 工商管理 应用文写作 社 会 学 文学论文 文化类论文 理工类 位置: 首 页 --> 免费论文 --> 医 学 类 --> 医学 --> 腰椎间盘突出症胶原酶治疗进展 精 彩 推 荐 近年来随着临床疼痛医学、神经生理、神经解剖、神经生化、神经内分泌以及药理、医学影像学等诸学科的深入研究和发展,对腰椎间盘突出症治疗这一重要课题,重新引起临床医师和社会的广泛关注。本文就腰椎间盘突出症治疗的发展史与现状、胶原酶治疗的基础研究及胶原酶治疗腰椎间盘突出症的若干问题综述如下。1 腰椎间盘突出症治疗的发展史与现状 1934年,美国学者Mixter和Barr〔1〕通过手术证实和治愈腰椎间盘突出症压迫神经所致的坐骨神经痛,开创了手术治疗腰椎间盘突出症的先河。1959年,瑞典学者Carl Hirsh〔2〕提出设想用某种酶注入椎间盘内,加速椎间盘的退化过程,使之纤维化缩小来减轻对神经根的压迫。美国学者Smith(1964)〔3〕从中得到启示,首先采用木瓜凝乳蛋白酶(chymopapain)注入椎间盘内,溶解病变的髓核组织来治疗腰椎间盘突出症,从而开创了化学溶解疗法治疗腰椎间盘突出樱帆症的历史,悄颂裤使腰椎间盘突出症的治疗进入了一个重要的历史发展阶段。美国学者Sussman(1968)〔4〕在此基础上提出用胶原酶(collagenase)注入椎间盘内进行治疗。70年代腰椎间盘突出症胶原酶治疗技术在我国萌芽。1975年由朱克闻、董宏谋首先开展胶原酶治疗腰椎间盘突出症的临床应用,在经过临床Ⅰ、Ⅱ、Ⅲ期并取得了令人满意的治疗效果基础上,90年代卫生部批准在全国开展并推广。为应用胶原酶治疗腰椎间盘突出症这一新的医疗技术的发展,创造了有利的条件,提供了广阔的发展前景。2 胶原酶治疗椎间盘的基础研究 正常腰椎间盘是由纤维环、髓核及软骨板构成。人体椎间盘髓核是一个高度含水的组织,水分占80%~90%;干性成分中,蛋白多糖占65%,胶原约占25%,胶原纤维无定向排列成一疏松的立体网络。纤维环中水分占60%~70%;干性成分中,蛋白多糖占20%,胶原占60%。椎间盘内主要含有Ⅰ型和Ⅱ型胶原分子,从纤维环的外层到内层,胶原构成由Ⅰ型逐渐变为Ⅱ型。Ⅰ型胶原提供纤维环的张力强度,Ⅱ型胶原提供承受压力强度。当腰椎间盘突出时,髓核中的水分含量下降,胶原含量可达60%或更高。Bromley等〔5〕用狗进行的实验认为:胶原酶注入盘内剂量达400u~500u时,有纤维环内缘的轻微溶解,超过这个剂量溶解作用将增加,但也只是纤维环内缘的溶解,注入胶原酶2w之后溶解程度不再增加。孙磊等〔6〕将胶原酶注入兔椎间盘内后观察到:胶原酶注入盘内24h,可见髓核结构破坏;1w后髓核浓缩,纤维组织增生;2w时椎间盘髓核结构界线不清;4w时椎间隙狭窄,髓核结构消失。被纤维软骨替代,但纤维环的外层胶原纤维结构无变化。Sussman(1968)〔4〕首先提出并证明胶原酶可以溶解术中切取的人体椎间盘组织,证明胶原酶能迅速地、选择性地溶解髓核和纤维环中的胶原纤维。Sussman(1975)〔7〕进行的毒性试验表明:胶原酶行盘内、静脉内、腹腔内、脊柱旁及硬膜外注射有相当大的安全范围,胶原酶对透明软骨、骨及成熟的纤维组织如前、后纵韧带作用极小,对硬脊膜、马尾神经等接触也不会造成损害,腰神经根等神经实质对胶原酶不敏感,但认为胶原酶鞘内注射可引起严重的并发症。3 胶原酶用于腰椎间盘突出症治疗中的若干问题3.1 胶原酶治疗机理 胶原蛋白水解酶(collagenase,简称胶原酶),其化学本质是启简蛋白质,是一种有催化作用的高度特异性生物催化剂,是唯一能作用于胶原组织螺旋结构的酶,能在生理pH值及温度条件下水解天然胶原纤维。人体内源性胶原酶与胶原分子在细胞内共同合成,以酶原的方式处于潜伏状态〔8〕。当椎间盘内环境改变或受到机械作用时,椎间盘纤维细胞崩解,酶激活物进入基质激活处于酶原状态的胶原酶,使其具有生物活性,胶原纤维出现降解。降解的结果引起椎间盘本身出现自溶,使纤维环强度下降,出现裂隙或破裂,并引起相应的临床症状。当外源性胶原酶以酶原的形式大量注入病变的椎间盘,便被其中的酶激活物激活。胶原酶被激活后作用于胶原分子的全部3条α-链,距氨基酸端的3/4处,将胶原分子水解为3/4和1/4两个片段,使之溶解度增加,易解链变性被其他 蛋白酶水解〔9〕,最终降解为相关的氨基酸,被血浆中和吸收。由于椎间盘的总体积明显缩小,从而使突出物减小或消失,对神经组织的压迫得以缓解或消除,临床症状得以改善或消失。3.2 胶原酶治疗对象选择 对胶原酶治疗对象的选择至今仍缺乏统一认识,国内外至今尚无统一标准,如何选择病例,提高治疗效果,是有待进一步探索和研究的课题。有作者〔10〕提出对椎间盘向侧后方突出大于10mm,椎间盘突出伴钙化、伴侧隐窝狭窄等均可列为适应症。目前国内多数学者比较一致认定的是:单侧腰腿痛有明显神经根压迫症状;经系统保守治疗无效者。凡伴有过敏体质、马尾综合征、代谢性疾病、椎间盘炎或椎间盘感染、心理变态、腰椎管狭窄或脊椎滑脱、非椎间盘源性腿腰痛、孕妇及14岁以下儿童、突出物游离于腰椎管内及突出物已钙化或骨化者均不宜列为治疗选择。适应症的选择恰当与否,直接关系治疗效果,故此笔者认为对治疗对象应慎重选择,不宜过宽。3.3 胶原酶治疗方法 目前临床上主要有以下5种方法:(1)经皮斜刺或侧方直刺椎间盘(盘内)注射法。此法是经典注射法,适用于各种类型的椎间盘突出,尤其适用于椎间盘膨出、中央型突出或偏斜不重者。其穿刺途径安全,定位客观,精确可靠,效果确实,但操作要求准确。笔者主要采用此法,我们认为此法具有针对性强,直接溶解胶原纤维的作用。(2)经皮椎间孔硬膜外侧隐窝突出物局部(盘外)注射法。此法适于突出物偏向一侧,而且突向神经根管,临床有神经根刺激症状者。此法针对突出物,准确性要求高,术中需造影确定,效果可靠。(3)经椎板外切迹或小关节内缘行硬膜外侧隐窝穿刺法。此法系盘外注射的改进法,由宋文阁等〔11〕提出并应用于临床。此法进路骨性标志清楚,定点明确,进针角度和方向固定,可变范围小,但其应用时间较短,目前临床报道较少。(4)经皮棘突旁硬膜外注射法。它是经椎板间隙利用硬膜外套管注射法。适用于多间隙突出或老年体弱有明显骨质增生并有骨桥形成者。在操作时需在最高位间隙穿刺插管,并将硬膜外导管送到最低突出间隙,边退管边向突出区域注药。此法简单、安全,但效果不如其他方法 。(5)经皮切吸与胶原酶注射联合法。此法是先将椎间盘髓核组织吸出,使椎间盘内压力降低并有一定空隙,再注入胶原酶,使药液均匀地渗透到纤维环部,髓核及纤维环得到充分溶解。但其操作复杂,外套管针较粗,创伤相对较大。目前国外均采用盘内法注射,国内盘内、盘外均有使用。3.4 胶原酶临床疗效及与手术疗效对比 目前国内报道胶原酶治疗优良率在60%~84%,有效率在83%~96%。笔者治疗25例,优良率为74%,有效率为92%,基本上报道一致。经过比较,盘内法与盘外法治疗疗效并无明显差异。Weinstein(1986)〔12〕将胶原酶注射与手术组进行了详细比较,其结果为:化学溶核组治疗后近期疼痛缓解者为51%,手术组为41%;3个月后疼痛缓解者化学溶核组为75%,手术组为70%;1年后化学溶核组为86%,手术组为80%;2年以上无需其他治疗者分别为86%与88%。治疗后第一年度复发率化学溶核组12%,手术组18%;10年后化学溶核组为32%,手术组为39%,需再次手术。治疗后短期感觉良好,恢复工作者化学溶核组为90%,手术组87%。根据比较,化学溶核组的有效率高于手术组,而复发率却低于手术组。化学溶核术显得更为优越。3.5 胶原酶治疗的副反应与并发症3.5.1 副反应 ①疼痛反应。一般在治疗后3~10天疼痛可比治疗前加重,但笔者体会往往多在注药后1~2h后即开始出现疼痛加重。其原因是胶原酶的注入增加了盘内容积,同时胶原纤维在胶原酶作用下出现降解。导致椎间盘内容物增加,使盘内压升高及降解过程中的化学刺激反应,窦椎神经受到激惹后出现的〔13〕。 ②尿潴留和肠麻痹。是由于盘内压力增高后窦椎神经受到激惹引起植物神经功能紊乱所致〔13〕。 ③脊柱失稳性腰背痛。椎间盘溶解后椎间隙变窄,小关节将出现重叠,对窦返神经的刺激,出现反射性腰背部不适和疼痛。3.5.2 并发症 ①过敏反应。胶原酶作为一种生物制剂,存在过敏反应的可能。杨述华等〔14〕报道1例二次注射发生过敏反应;谢国华等〔15〕报道1例于注射后8h出现过敏性休克。 ②椎间隙感染。主要表现为腰肌痉挛,腰痛加剧,有深压痛,白细胞计数和分类可正常或升高,血沉增快。高翔等〔16〕报道1例椎间隙感染。 ③神经损伤。多为穿刺针刺伤脊神经根或穿刺过程中误伤脊膜或神经外膜,高浓度胶原酶使神经根发生脱水、变性,一旦误入蛛网膜下腔,轻者出现化学性脑膜炎,重者可发生截瘫。高翔等〔16〕报道2例神经损伤致腓骨长、短肌瘫疾,经治疗后一个月恢复。汤华丰等〔17〕报道全麻下2例产生腰神经根症状,半年后随访尚未完全恢复。鞠作金等〔18〕报道1例出现化学性脑膜炎及严重的神经根损伤,术后1年随访肌力仍未完全恢复。 ④继发性腰椎管狭窄。3.6 尚未解决的问题3.6.1 胶原酶用量问题 目前报道盘外注射胶原酶用量基本一致,都为1200u;但盘内注射用量尚未完全统一,各家报道有400u、600u、1200u三种规格。另外,椎间盘病变程度与所用胶原酶剂量问题尚未达成统一标准。3.6.2 有关造影剂使用问题 目前盘外注射一致使用造影剂进行定位,而盘内注射定位时是否非要使用造影剂问题并未达成一致,各家观点不一。临床上有单纯靠腰椎正、侧位定位的,也有在此基础上注射造影剂行椎间盘造影定位。另外,造影剂是否对胶原酶的溶解作用产生影响这一问题仍未见有系统研究报道。3.6.3 副作用和并发症问题 如何有效地预防和治疗胶原酶注射产生的副反应及并发症,目前尚未达成一致的方案。另外,对所有治疗的病例进行系统、完整的CT及X线复查结果方面,仍未见有完整、准确的临床报道。 综上所述,只要严格掌握适应症以及正确熟练的操作方法,胶原酶注射溶解术不失为一种有效的治疗方法。且疗效与手术治疗无明显差异。它住院时间短、操作较简单、并发症少、痛苦小、病人负担较轻且安全有效,即使失败也不影响再次手术,为腰椎间盘突出症增加了一种可供选择的治疗方法。相信随着胶原酶基础研究的不断深入及临床应用的进一步开展,胶原酶注射法必将成为继传统保守治疗之后首选的治疗方法,值得临床推广应用。参考文献1 Mixter WJ,Barr JS.Rupture of the intervertebral disc with involvement of the spinal canal.New Eng J Med,1934,211:2102 Hirsh C.Studies on the pathology of low back pain.J Bone Joint Surg,1959,41B:2373 Smith L.Enzyme dissolution of the nucleus pulposus in human.JAMA,1964,187(2):1374 Sussman BJ.Intervertebral clisolysis with collagenase.J Natal Med Assoc 60(may),1968:1845 Bromely JW,Varma AO.Santoro AJ,et al.Double-blind evaluation of collagenase injection for herniated lumbar disc.Spine,1984,22:1326 孙 磊,宁志杰,王培杰,等.胶原酶椎间盘内注射后的形态观察.中国矫形外科杂志,1997,4(5):3947 Sussman BJ.J NeuroSurg,1975,42:389~3958 张昌疑.主编.生物化学.第2版.人民卫生出版社,1984:85~1169 Smith EL.Connectiro tissue.In:Principles of biochemistry.New York:Mc Graw-Hill,1983:22310 王执民,王义清,吴智群,等.注射胶原酶治疗腰椎间盘突出症的临床应用研究.实用放射学杂志,1997,13(8):458~46011 宋文阁,傅志俭,马 玲,等.硬膜外腔侧隐窝穿刺的研究.中华麻科学杂志,1998,18(4):25012 Weinstein JN,Lehman TR,Hejna W.Chemonucleolysis versus open discectomy-a ten year follow-up study.Clin Orthop,1986,206:5013 刘 伟,杨 华,雷云坤,等.注射用胶原酶治疗腰椎间盘脱出症疗效及影像学分析.云南医药,1999,20(1):29~3014 杨述华,杜靖远,罗怀灿,等.化学溶核术治疗椎间盘突出症的临床研究.中华骨科杂志,1996,16(7):415~41715 谢国华,蒋慧娟.胶原酶盘内注射治疗腰椎间盘突出症.江苏中医,1999,20(2):3216 高 翔,李加坤.胶原酶注射治疗腰椎间盘突出症.中国厂矿医学,1999,1:7~817 汤华丰.丁鑫昌.髓核化学溶解(胶原酶)治疗腰椎间盘突出症30例近期随访报道.中华骨科杂志,1989,9(2):88~9018 鞠作金,吴旭东,赵勇进.胶原酶溶解术治疗腰椎间盘突出症严重并发症1例.骨与关节损伤杂志.1997,12(6):325

碳纤维科研领域最新研究进展论文

增强与增韧是两个方向。碳纤维增韧陶瓷基复合材料在制造过程中会受到制造工艺以及加工条件的影响,形成结构缺陷和加工缺陷,由于这些缺陷的存在,使得复合材料的性能具有一定的离散性。尤其是作为商用航空发动机的核心部件材料,首要考虑的就是安全性和可靠性。因此,在目前性能考核数据比较短缺的情况下,需进行大量的基于环境的考核试验和性能评价。未来发展方向主要包括:1.通过合理的结构设计,可使复合材料获得最优的综合性能;2.通过调整超高温陶瓷的组成和含量可以实现材料在不同温度段的烧蚀、氧化防护性能;3.通过调节材料空隙结构、碳纤维预制体含量和结构以及超高温陶瓷的分布,可以实现不同密度、强度和热物理性能的材料的制备。可参考苏纯兰等的论文——《碳纤维增韧陶瓷基复合材料的研究进展》.佛山陶瓷, 2020,30(02):10-21.

适用于诸多领域,国内企业在技术上取得突破。1、“材料之王”碳纤维各项性能优势显著,适用于诸多领域。2、国内企业在技术上取得突破,碳纤维国产替代未来可期。3、欧美日企业很早就开始研发碳纤维技术,并将技术与产业发展相融合,具备先发优势,占据很大一部分的市场份额,对高端碳纤维的市场更是形成了垄断。

最近,苏州大学材料与化学化工学部的汪胜教授发表了一篇题为“钯纳米粒子修饰纳米多孔碳作为高效的氢气传感器”的论文。在这项研究中,汪胜教授和他的团队使用钯纳米粒子修饰纳米多孔碳,并将其用于制造高效的氢气传感器。这种传感器可以快速且准确地检测到氢气,具有高灵敏度和较低的检测限值。与传统的氢气传感器相比,这种传感器具有更快的响应时间和更高的稳定性。据研究人员介绍,这种高效的氢气传感器具有广泛的潜在应用,例如工业生产中的氢气检测、水处理、化学反应等领域。此外,在环境保护和能源领域中,这种传感器也有很好的发展前景。汪胜教授的研究成果得到了国内外同行的高度评价,有望为氢气传感器的研发和应用提供重要的参考和指导。

行业主要上市公司:吉林化纤(000420);中复神鹰(688295);光威复材(300699);精功科技(002006);中简科技(300777);吉林碳谷(83677)等。

本文核心数据:中国碳纤维产能;中国碳纤维产量;中国碳纤维需求量

行业概况

——定义

碳纤维(CF)是指含碳量大于90%的纤维材料,可以用粘胶、聚丙烯腈以及沥青等有机纤维在高温下碳化制取。高强、高模CF主要由聚丙烯腈长丝在1000℃以上高温碳化形成,它与树脂、金属、陶瓷、碳、玻璃等复合后具有模量高、强度高、重量轻、抗疲劳、耐腐蚀等特性,广泛应用于航天、航空、军工、航海、化工、电子、建筑以及体育休闲等领域,是军民两用的高技术纤维。

当前,各国大多按照习惯对碳纤维进行分类,分类方式大致有以下三种:

(1)按照原料分类:聚丙烯腈(PAN)基;沥青基(各向同性、中间相);胶黏基。

(2)按照制造条件和方法分类:碳纤维(800-1600℃);石墨纤维(2000-3000℃);氧化纤维(预氧丝200-300℃);活性碳纤维;气相生长碳纤维。

(3)按力学性能分类:通用级(GP);高性能(HP);期中包括中强型(MT)、高强型(HT)、超高强型(UHT)、中模型(IM)、高模型(HM)、超高模型(UHM)。碳纤维在应用时多是作为增强材料而利用其优良的力学性能,因此使用中更多地是按其力学性能分类,一般认为纤维的拉伸强度低于1400MPa,拉伸模量小于140GPa,则此种属于通用级碳纤维范畴。在高性能碳纤维范畴中,对中强、中模、高强、高模、超高强、超高模等并无严格的区分指标。

——产业链剖析:产业链涉及领域广泛

碳纤维的生产工艺复杂,从碳纤维纺丝、预氧化、碳化到复合材料成型再到终端的应用需要经历复合且很长的过程。碳纤维复合材料被广泛应用于航空航天、风电叶片、汽车、体育休闲、混配模成型、电缆芯、建筑建材、压力容器、船舶、碳碳复材、电子电器等多个领域。

行业发展历程:行业处在快速发展阶段

我国的碳纤维行业起步于20世纪60年代,几乎和日美等国家同时起步,但由于相关知识储备不足、知识产权归属等问题,发展缓慢。同时,日本、美国等国家对碳纤维核心技术形成垄断,我国碳纤维生产技术和装备水平整体落后于国外,在较长的一段时间内发展止步不前,无法满足国家重大装备等高端领域的需求。

2000年以来,国家加大对于碳纤维领域自主创新的支持力度,将碳纤维列为重点研发项目。伴随着国家政策的大力扶持,国内碳纤维行业在技术上取得重大突破,产业化程度快速提升,应用领域不断扩大,地区上目前已形成以江苏、山东和吉林等地为主的碳纤维聚集地。

行业政策背景:政策加持,支持碳纤维产业的发展

国家政策作为产业发展的催化剂,近年来,国家持续发布相关政策推动碳纤维健康有序发展。从国家的政策可以看出,国家把碳纤维作为新材料进行推广和应用,持续引导国内碳纤维发展,计划形成若干家家具有国际竞争力的碳纤维大型企业集团及若干创新能力强、特色鲜明、产业链完善的碳纤维及其复合材料产业集聚区。未来随政策的支持,我国碳纤维行业相关技术将接近国际水平。

行业发展现状

——供给:中国成为全球最大产能国

我国碳纤维工业的起步可以追溯到1962年,到目前为止已发展57年,仅比世界碳纤维起步晚3年;但无论是研发成果还是制造工艺,我国同发达国家相比还存在一定差距。

2021年,中国大陆地区首次超过美国,成为全球最大产能国,产能达到6.34万吨,占全球总产能比重超过30%。

在产量方面,2021年由于国内碳纤维产能加速扩张,同时开工率保持稳定,新装置相继投产,带动产量增长。2021年我国碳纤维产量达到2.43万吨,同比增长30.03%。

——需求:风电叶片为最大需求领域

总体来看,早年间在全球碳纤维供应不足的情况下,美国、日本等国家对中国实行出口限制,导致中国碳纤维需求长期被抑制。近几年由于国内技术突破,刺激了对碳纤维的使用。近年来我国碳纤维需求量呈不断增长趋势,2017-2021年,我国碳纤维需求量呈不断上升趋势,2021年中国碳纤维需求量6.24万吨,同比增长27.7%。

2021年,国内碳纤维需求量占比前三的领域依次是风电叶片、体育休闲和碳-碳复材,分别占比36%、28%、11%,其他领域的需求占比均不足10%。在海上风电叶片大尺寸的发展趋势下,预计风电叶片领域碳纤维的需求将持续增加。

行业竞争格局

——区域竞争格局:江苏省和广东省是主要碳纤维消费省份

从碳纤维市场消费金额来看,江苏省和广东省是消费大省,消费占比分别为35.4%和21.4%;其次为山东,消费占比为18%;其他省份消费占比均不超过6%。

——企业竞争格局:吉林化纤、中复神鹰为行业龙头企业

目前,我国碳纤维第一梯队企业有吉林化纤、中复神鹰,该类企业碳纤维原丝产能在2.5万吨以上,碳纤维产能在1万吨以上;第二梯队企业有江苏恒神、光威复材,该类企业碳纤维原丝产能在1万吨以上,碳纤维产能在0.5万吨以上;第三梯队企业有太铜铜料、兰州蓝星,该类企业碳纤维原丝以及碳纤维产能在0.5万吨左右;第四梯队企业为行业内的其他中小制造企业。

行业发展前景及趋势预测

——市场走向良性健康发展道路

现今,碳纤维行业总体技术尚不成熟稳定,产品质量及性价比相对较低。不过,随着我国高端碳纤维技术的不断突破以及生产向规模化和稳定化发展,企业布局逐渐向高附加值的下游应用领域延伸,我国碳纤维行业将逐步实现进口替代,企业盈利能力有望逐步恢复,市场走向良性健康发展道路。

尤其是在国务院正式发布的《中国制造2025》中,对我国制造业转型升级和跨越发展作了整体部署,明确了建设制造强国的战略任务和重点,选择10大优势和战略产业作为突破点,力争到2025年达到国际领先地位或国际先进水平。

——碳纤维新产品向高稳定、高端化方向发展

前瞻产业研究院预计,碳纤维行业将出现如下发展趋势:

以上数据参考前瞻产业研究院《中国碳纤维行业市场前瞻与投资战略规划分析报告》。

氧化锆纤维的应用场景研究论文

ZrO2是原子晶体。二氧化锆(化学式:ZrO2)是锆的主要氧化物,通常状况下为白色无臭无味晶体,难溶于水、盐酸和稀硫酸。一般常含有少量的二氧化铪。化学性质不活泼,且具有高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂,亦是人工钻的主要原料。能带间隙大约为5-7eV。物理性质:性状: 白色重质无定形粉末。无臭。无味。溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。有刺激性。相对密度5.85。熔点 2680 ℃。沸点4300 ℃。硬度次于金刚石。化学性质:成斜锆石型的ZrO2 是黄色或棕色单色斜晶体不溶于水、盐酸和稀硫酸,溶于热浓氢氟酸、硝酸和硫酸。与碱共熔生成锆酸盐。化学性质非常稳定。用于制高级陶瓷、搪瓷、耐火材料。可由锆英石与纯碱共熔,用水浸出锆酸钠,与盐酸作用成二氯氧化锆,再煅烧而制得。应用领域:1、用于制金属锆和锆化合物、制耐火砖和坩锅、高频陶瓷、研磨材料、陶瓷颜料和锆酸盐等主要用于压电陶瓷制品、日用陶瓷、耐火材料及贵重金属熔炼用的锆砖、锆管、坩埚等。2、耐火材料氧化锆纤维是一种多晶质耐火纤维材料。由于ZrO2物质本身的高熔点、不氧化和其他高温优良特性,使得ZrO2纤维具有比氧化铝纤维、莫来石纤维、硅酸铝纤维等其他耐火纤维品种更高的使用温度。3、燃气轮机等离子喷涂二氧化锆热障涂层在航空及工业用燃气轮机上的应用已有很大进展,在一定限度内已经用于燃气轮机的涡轮部分。4、陶瓷材料因为氧化锆的折射率大、熔点高、耐蚀性强,故用于窑业原料。此外氧化锆可用于白热煤气灯罩、搪瓷、白色玻璃、耐火坩埚等的制造。X射线照相。研磨材料。与钇一起用以制造红外线光谱仪中的光源灯,厚膜电路电容材料,压电晶体换能器配方。

氧化锆纤维 含量的高熔点多晶纤维,也属于气凝胶纤维。

就是用来测量氧气浓度 烟囱里面的

锆元素没有辐射,氧化锆肯定也没有(仅限于纯的)。锆石就不一定了,因为有的会含有微量的辐射性的元素钍、镭等,所以要么买天然的处理过辐射的,要么买人工合成的肯定没辐射

钴基合金应用领域研究论文

钴的物理、化学性质决定了它是生产耐热合金、硬质合金、防腐合金、磁性合金和各种钴盐的重要原料。钴基合金或含钴合金钢用作燃汽轮机的叶片、叶轮、导管、喷气发动机、火箭发动机、导弹的部件和化工设备中各种高负荷的耐热部件以及原子能工业的重要金属材料。钴作为粉末冶金中的粘结剂能保证硬质合金有一定的韧性。磁性合金是现代化电子和机电工业中不可缺少的材料,用来制造声、光、电和磁等器材的各种元件。钴也是永久磁性合金的重要组成部分。在化学工业中,钴除用于高温合金和防腐合金外,还用于有色玻璃、颜料、珐琅及催化剂、干燥剂等。据英国《金属导报》报道,来自硬质金属部门和超合金方面对钴的需求较为强劲。另外,钴在电池部门消费量增长率最高。国内有关报道讲,钴在蓄电池行业、金刚石工具行业和催化剂行业的应用也将进一步扩大,从而对金属钴的需求呈上升趋势。单独钴矿床一般分为砷化钴矿床、硫化钴矿床和钴土矿矿床三类。钴除单独矿床外,大量分散在夕卡岩型铁矿、钒钛磁铁矿、热液多金属矿、各种类型铜矿、沉积钴锰矿、硫化铜镍矿、硅酸镍矿等矿床中,其品位虽低,但规模往往较大,是提取钴的主要来源。综合矿床伴生钴的评价指标尚无统一规定,一般选冶性能好的矿石,含钴品位大于0.01%。钴精矿的品位0.2%便有价值,如果金属矿床规模大、矿石综合回收效好,钴有多少算多少。钴硫精矿按化学成分,精矿分为六个等级,均按干矿品位计算。 制取合金金属钴主要用于制取合金。钴基合金是钴和铬、钨、铁、镍组中的一种或几种制成的合金的总称。含有一定量钴的刀具钢可以显著地提高钢的耐磨性和切削性能。含钴50%以上的司太立特硬质合金即使加热到1000℃也不会失去其原有的硬度,如今这种硬质合金已成为含金切削工具和铝间用的最重要材料。在这种材料中,钴将合金组成中其它金属碳化物晶粒结合在一起,使合金具更高的韧性,并减少对冲击的敏感性能,这种合金熔焊在零件表面,可使零件的寿命提高3~7倍。航空航天技术中应用最广泛的合金是镍基合金,也可以使用钴基合金,但两种合金的“强度机制”不同。含钛和铝的镍基合金强度高是因为形成组成为NiAl(Ti)的相强化剂,当运行温度高时,相强化剂颗粒就转入固溶体,这时合金很快失去强度。钴基合金的耐热性是因为形成了难熔的碳化物,这些碳化物不易转为固体溶体,扩散活动性小,在温度在1038℃以上时,钴基合金的优越性就显示无遗。这对于制造 高效率的高温发动机,钴基合金就恰到好处。在航空涡轮机的结构材料使用含20%~27%铬的钴基合金,可以不要保护覆层就能使材料达高抗氧化性。核反应堆供热汞作使热介质的涡轮发电机可以不检修而连续运转一年以上。据报道美国试验用的发电机的锅炉就是用钴合金制造的。钴是磁化一次就能保持磁性的少数金属之一。在热作用下,失去磁性的温度叫居里点,铁的居里点为769℃,镍为358℃,钴可达1150℃。含有60%钴的磁性钢比一般磁性钢的矫顽磁力提高2.5倍。在振动下,一般磁性钢失去差不多1/3的磁性,而钴钢仅失去2%~3.5%的磁性。因而钴在磁性材料上的优势就很明显。钴金属在电镀、玻璃、染色、医药医疗等方面也有广泛应用。用碳酸锂与氧化钴制成的钴酸锂是现代应用最普遍的高能电池正极材料。钴还可能用来制造核武器,一种理论上的原子弹或氢弹,装于钴壳内,爆炸后可使钴变成致命的放射性尘埃。 制取颜料钴不仅是制造合金钢的重要金属,而且是各种高级颜料的重要原料。据17世纪保存下来的文件记载,沙俄为了购买昂贵的钴颜料曾花费了巨额资金,这种钴颜料叫“戈卢贝茨”,是“蓝色”的意思。克里姆林宫的大厅和安眠大教堂等许多宏伟大厦的墙壁上涂的蓝色颜料,就是这种“戈卢贝茨”。中世纪时,威尼斯的玻璃工匠用钴颜料制造出各种精致的蓝色玻璃杯,不久就风靡世界各国。威尼斯的工匠们为了使自己的玻璃杯在市场保有无可争辩的竞争力,对玻璃杯的制造工艺和钴颜料的配方严守秘密。为了杜绝泄漏技术情报,威尼斯政府把所有的玻璃厂都搬迁到一个小岛上,不经允许,谁也不准参观这个地方。但是,有一个叫乔吉奥·贝莱赖诺的学徒因不愿意忍受岛上的枯燥生活,还是从岛上逃跑了,后来逃到德国,在那里他自己开了一个玻璃杯生产工厂,但他并没能逃脱灾难。一天,有人放火把他的工厂烧个精光,还把他这个从岛上逃出来的工厂主“放了血”,差点丢了性命。可见,威尼斯人把钴颜料的秘密看得何等重要。 500多年前,中国大量生产的景泰蓝也是用蓝色的钴颜料烧制的。明代景泰年间生产的这种金属艺术品至今还享誉世界。据说还有不少国外的情报人员千方百计想得到景泰蓝的配方和烧制工艺。钴的一些化合物,在不同状态和温度时,具有变化莫测的颜色。据记载,16世纪著名的化学家兼医生帕拉塞尔萨斯常爱表演他的拿手戏法,每次都博得看客的热烈掌声。他先把一幅上面画有覆盖着积雪的树木和小山的冬季风景的油画拿给观众看,待他们欣赏够了之后,他就在众目睽暌之下把油画中的冬天“变”成了夏天:树上的积雪一下不见了,变成了成簇的绿叶;白色积雪的山丘则变成了长满绿草的山坡。观众无不赞叹,可就是不知其中的奥秘。其实,这是帕拉塞尔萨斯利用氯化钴这种钴的化合物变的一个魔术。原来在室温下,氯化钴可以制成一种白色的溶液(溶液中含有一定数量的镍和铁),帕拉塞尔萨斯就用这种溶液作画,在画干了后,只要稍微加热,氯化钴就会变成非常漂亮的绿色。帕拉塞尔萨斯表演时,先把氯化钴溶液涂在他的魔画上,然后趁观众欣赏画面而没有注意他的瞬间,麻利地将一支蜡烛悄悄地放在油画背后加热它,于是,氯化钴受热后就变成绿色,使人目瞪口呆的季节变化也就发生了。 钴是维生素B12组成部分,反刍动物可以在肠道内将摄入的钴合成为维生素B12,而人类与单胃动物不能将钴在体内合成B12。还不能确定钴的其它的功能,但体内的钴仅有约10%是维生素的形式。已观察到无机钴对刺激红细胞生成有重要的作用。有种贫血用叶酸、铁、B12治疗皆无效,有人用大剂量的二氯化钴可治疗这类贫血。然而,这么大剂量钴反复应用可引起中毒。钴对红细胞生成作用的机制是影响肾释放促红细胞生成素,或者通过刺激胍循环。还观察到供给钴后可使血管扩张和脸色发红,这是由于肾释放舒缓肌肽,钴对甲状腺的功能可能有作用,动物实验结果显示,甲状腺素的合成可能需要钴,钴能拮抗碘缺乏产生的影响。 钴元素能刺激人体骨髓的造血系统,促使血红蛋白的合成及红细胞数目的增加。大多以组成维生素B12的形式参加体内的生理作用。钴刺激造血的机制为:①通过产生红细胞生成素刺激造血。钴元素可抑制细胞内呼吸酶,使组织细胞缺氧,反馈刺激红细胞生成素产生,进而促进骨髓造血。②对铁代谢的作用。钴元素可促进肠粘膜对铁的吸收,加速贮存铁进入骨髓。③通过维生素B12参与核糖核酸及造血物质的代谢,作用于造血过程。④钴元素可促进脾脏释放红细胞(血红蛋白含量增多,网状细胞、红细胞增生活跃,周围血中红细胞增多),从而促进造血功能。

钴基合金,是一种能耐各种类型磨损和腐蚀以及高温氧化的硬质合金。即通常所说的钴铬钨(钼)合金或司太立(Stellite)合金(司太立合金由美国人Elwood Hayness 于1907年发明)。钴基合金是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧等合金元素,偶尔也还含有铁的一类合金。根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。按使用用途分类,钴基合金可以分为钴基耐磨损合金,钴基耐高温合金及钴基耐磨损和水溶液腐蚀合金。一般使用工况下,其实都是兼有耐磨损耐高温或耐磨损耐腐蚀的情况,有的工况还可能要求同时耐高温耐磨损耐腐蚀,而越是在这种复杂的工况下,才越能体现钴基合金的优势。一般钴基高温合金缺少共格的强化相,虽然中温强度低(只有镍基合金的50-75%),但在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。碳化物强化相 钴基高温合金中最主要的碳化物是 MC﹑M23C6和M6C在铸造钴基合金中,M23C6是缓慢冷却时在晶界和枝晶间析出的。在有些合金中,细小的M23C6能与基体γ形成共晶体。MC碳化物颗粒过大,不能对位错直接产生显着的影响,因而对合金的强化效果不明显,而细小弥散的碳化物则有良好的强化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,从而改善持久强度,钴基高温合金HA-31(X-40)的显微组织为弥散的强化相为 (CoCrW)6 C型碳化物。在某些钴基合金中会出现的拓扑密排相如西格玛相和Laves等是有害的,会使合金变脆。钴基合金较少使用金属间化合物进行强化,因为Co3 (Ti﹐Al)﹑Co3Ta等在高温下不够稳定,但近年来使用金属间化合物进行强化的钴基合金也有所发展。钴基合金中碳化物的热稳定性较好。温度上升时﹐碳化物集聚长大速度比镍基合金中的γ 相长大速度要慢﹐重新回溶于基体的温度也较高(最高可达1100℃)﹐因此在温度上升时﹐钴基合金的强度下降一般比较缓慢。钴基合金有很好的抗热腐蚀性能,一般认为,钴基合金在这方面优于镍基合金的原因,是钴的硫化物熔点(如Co-Co4S3共晶,877℃)比镍的硫化物熔点(如Ni-Ni3S2共晶645℃)高,并且硫在钴中的扩散率比在镍中低得多。而且由于大多数钴基合金含铬量比镍基合金高,所以在合金表面能形成抵抗碱金属硫酸盐(如Na2SO4腐蚀的Cr2O3保护层)。但钴基合金抗氧化能力通常比镍基合金低得多。 早期的钴基合金用非真空冶炼和铸造工艺生产。后来研制成的合金,如Mar-M509合金,因含有较多的活性元素锆、硼等,用真空冶炼和真空铸造生产。

钴是一种重要的战略金属,钴及其合金在电机、机械、化工、航空航天等领域有着广泛的应用。制造合金时,钴的含量为75%~80%,化学、电子工业中使用的化合物占20%~25%。镍基耐高温合金或含钴合金钢可以作为燃气轮机的叶片、叶轮、导管、喷气发动机、火箭发动机、导弹组件,以及化工设备中的各种高负荷耐热部件,以及原子能工业的重要金属材料。能够耐高温、硬研磨的钴基耐磨合金用于制造采掘设备、航海柴油机、航空发动器排气阀等。此外,钴也可以和碳化钨一起生产硬质合金。钴系永磁合金的重要组成成分之一,其磁力线密度较高,阿尼科系高导磁率合金钴含量占钴25%。低膨胀系数合金也是钴的理想材料。

例如,含有17%、29%、53%、0.2%的钴合金,其膨胀系数与玻璃相同,可熔焊在玻璃中,用于电器、无线电、照明等。含有钴的蓝色玻璃具有很高的红透性,用于火焰分析。含有钴的玻璃也用于光学滤镜和眼科学治疗装置,钴也可以作为玻璃去色剂。氧化钴是一种釉面颜料,加入5%氧化钴,制成深蓝色。加入钴后,陶瓷中和黄色变为白色,得到了优质的白色制品。各种有机酸钴盐作为聚合物合成催化剂。例如,乙酸钴作为人造纤维催化剂,萘酸钴作为涂料干燥剂,Co-Mo-Al催化剂用于加氢和脱硫。

钴盐是人体必需的微量元素之一。缺钴会导致牛、羊食欲下降、发育迟缓和减少奶量。含有钴的维他命2能够预防人类恶性贫血病。能发出γ射线的同位素60 Co,可用于物理化学研究和医学。手术也使用钴。

司太立合金的典型牌号有:Stellite1,Stellite4,Stellite6,Stellite8,Stellite12,Stellite20,Stellite31,Stellite100等。在我国,主要对司太立高温合金研究比较深入和透彻。与其它高温合金不同,司太立高温合金不是由与基体牢固结合的有序沉淀相来强化,而是由已被固溶强化的奥氏体fcc基体和基体中分布少量碳化物组成。铸造司太立高温合金却是在很大程度上依靠碳化物强化。纯钴晶体在417℃以下是密排六方(hcp)晶体结构,在更高温度下转变为fcc。为了避免司太立高温合金在使用时发生这种转变,实际上所有司太立合金由镍合金化,以便在室温到熔点温度范围内使组织稳定化。司太立合金具有平坦的断裂应力-温度关系,但在1000℃以上却显示出比其他高温下具有优异的抗热腐蚀性能,这可能是因为该合金含铬量较高,这是这类合金的一个特征。热处理司太立合金中的碳化物颗粒的大小和分布以及晶粒尺寸对铸造工艺很敏感,为使铸造司太立合金部件达到所要求的持久强度和热疲劳性能,必须控制铸造工艺参数。司太立合金需进行热处理,主要是控制碳化物的析出。对铸造司太立合金而言,首先进行高温固溶处理,温度通常为1150℃左右,使所有的一次碳化物,包括部分MC型碳化物溶入固溶体;然后再在870-980℃进行时效处理,使碳化物(最常见的为M23C6)重新析出。堆焊司太立堆焊合金含铬25-33%,含钨3-21%,含碳0.7-3.0%。,随着含碳量的增加,其金相组织从亚共晶的奥氏体+M7C3型共晶变成过共晶的M7C3型初生碳化物+ M7C3型共晶。含碳越多,初生M7C3越多,宏观硬度加大,抗磨料磨损性能提高,但耐冲击能力,焊接性,机加工性能都会下降。被铬和钨合金化的司太立合金具有很好的抗yang化性,抗腐蚀性和耐热性。在650℃仍能保持较高的硬度和强度,这是该类合金区别于镍基和铁基合金的重要特点。司太立合金机加工后表面粗糙度低,具有高的抗擦伤能力和低的摩擦系数,也适用于粘着磨损,尤其在滑动和接触的阀门密封面上。但在高应力磨料磨损时,含碳低的钴铬钨合金耐磨性还不如低碳钢,因此,价格昂贵的司太立合金的选用,必须有专业人士的指导,才能发挥材料的最大潜力。国外还有用铬,钼合金化的含Laves相的司太立堆焊合金,如Co-28Mo-17Cr-3Si和Co-28Mo-8Cr-2Si。由于Laves相比碳化物硬度低,在金属摩擦副中与之配对的材料磨损较小。

  • 索引序列
  • 尼龙纤维的应用领域研究论文
  • 酶纤维研究应用论文
  • 碳纤维科研领域最新研究进展论文
  • 氧化锆纤维的应用场景研究论文
  • 钴基合金应用领域研究论文
  • 返回顶部