函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
应该是先求导吧
若得到ac-b^2=0,还不能得到是否有极值的结论。
先求导,然后使导函数等于零,求出x值,接着确定定义域,画表格。最后找出极值。
注意:极值是把导函数中的x值代入原函数。
求解函数的极值:
寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
我想楼主是高二理科生吧,本人今年毕业,对于数学也可以吧! 三角函数值域(最值)的几种求法有关三角函数的值域(最值)的问题是各级各类考试的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等常用方法。掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。一、 合理转化,利用有界性求值域例1、求下列函数的值域:(1) (2)(3) (4) 解析:(1)根据 可知:(2)将原函数的解析式化为: ,由 可得:(3) 原函数解析式可化为: 可得:(4)根据 可得:二、单调性开路,定义回归例2、求下列函数的值域:(1) (2)(3) (4)三、 抓住结构特征,巧用均值不等式例4、四、易元变换,整体思想求解五、巧妙变形,利用函数的单调性六、运用模型、数形结合,还有些小技巧,降次,辅助角公式变换,还有单调性求法,希望能帮到你哦!望采纳!纯手打。
首先利用勾股定理:b^2=c^2-a^2求出b的长度,然后利用正弦定理b/(sinB)=c/(sin90)得出sinB的值,最后得sinB=((c^2-a^2)开根号)/c,就能求得所需的值。
扩展资料:
直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。
纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。
第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。
参考资料:百度百科--正弦定理百度百科--勾股定理
(1)统一成一个角,转化为较简单的角函数,再结合角的范围,求极大和极小值。(2)或者用基本不等式,这个简单但是有些难想,而且一般只能求一个极值,
第一个可以提取2,然后y=2*(1/2cosx-√3/2sinx)=2sin(π/6+x);第二个,与第一题相似,先转化成为sinx的函数,然后再根据给出的定义域求值;第三个,y=√3/2sin2x姬恭灌枷弑磺鬼委邯莲-sin²x=1/2*(√3sin2x-2sin²x)=1/2*(√3sin2x+cos2x-1)然后求对这个式子进行转化求值:√3sin2x+cos2x,与第一题类似(不妨把2x看作变量t);第四个,有两个限定的式子9-x²>=0和1-2cosx>0,然后分别计算出结果,在取两个结果的交集,就是定义域了
函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。
求导,使之为0....或用泰勒级数或Maclaurin级数展开.
首先利用勾股定理:b^2=c^2-a^2求出b的长度,然后利用正弦定理b/(sinB)=c/(sin90)得出sinB的值,最后得sinB=((c^2-a^2)开根号)/c,就能求得所需的值。
扩展资料:
直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。
纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。
第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。
参考资料:百度百科--正弦定理百度百科--勾股定理
有5种方法,如下:
(1)利用洛必达法则与等价无穷小代换对抽象函数的00型极限可得结论:设当x→x0时f(x)与g(x)为无穷小,g(x)~(x-x0)β,取k为正实数,使得fk(x)=A(x-x0)α+o[(x-x0)α]。
其中A〉0,α≥2,β〉0为实数,则有limx→x0f(x)g(x)=1.该方法对求常见的00型极限都适用.当使用洛必达法则求li mx→x0f(x)g(x)很复杂时,使用该方法可简化计算.
(2)因式分解法,约去零因式,从而把未定式转化为普通的极限问题。
(3)如果分子分母不是整式,而且带根号,就用根式有理化的方法,约去零因子。
(4)考虑应用重要极限的结论,从而把问题转化,可以很容易求解。
(5)如果满足等价无穷小代换条件,那么就可以用代换无穷小的方法求解。
扩展资料:
极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,
都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
(1)函数在 点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在 点导数的定义,是函数值的增量 与自变量的增量 之比 ,当 时的极限。
(3)函数在 点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列 的极限来定义的。
(5)广义积分是定积分其中 为,任意大于 的实数当 时的极限,等等。
运算法则:设 , 存在,且令 ,则有以下运算法则:
加减:
数乘:
(其中c是一个常数)
乘除:
( 其中B≠0 )
幂运算:
参考资料:极限(数学术语)_百度百科
求函数的极限,需要分析函数在极限点处的行为。这可以通过使用定义、极限定义、或者某些特殊函数的性质来完成。例如,对于函数 f(x),假设我们想要求出它在 x=a 处的极限。我们可以使用以下方法:定义法:对于任意 ε > 0,都存在 δ > 0,使得当 0 < |x - a| < δ 时,|f(x) - L| < ε。这意味着,当 x 足够接近 a 时,f(x) 就会足够接近 L。极限定义:当 x 足够接近 a 时,f(x) 就会足够接近 L。这是极限的定义,但是它并不告诉我们如何去计算极限。特殊函数的性质:对于一些常见的函数,例如幂函数、对数函数、三角函数等,我们可以使用它们的性质来求解极限。例如,对于函数 f(x)=x^2,我们可以使用定义法求出它在 x=0 处的极限:设 L=0,对于任意 ε > 0,我们可以设 δ=ε。当 0 < |x - 0| < δ 时,|f(x) - L| = |x^2 - 0| = |x^2| = x^2。由于 x^2 > 0,所以 x^2 < ε,当 x 足够接近 0 时,f(x) 就会足够接近
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限1.1数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.1.2数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=a.2.关于函数极限2.1x→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=A.2.2x→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=A.3.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.
极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:
根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)