数学小论文:年龄问题四年级300字今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
打的过搞的广告费沟沟壑壑好尴尬飞飞哥vvv现代风格v不会太丰富非常v比较运费搭错车滚滚滚哈哈哈吃的
这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的
有一天我和爷爷一起去商场上买东西,走到超市里,发现你买一把面条送一把面条,原来的话就是五块钱一把面条,但是现在呢两包合起来是七块钱,剩下自由发挥
数学小故事——找零钱 一家手杖店来了一个顾客,买了30元一根的手杖.他拿出一张50元的票子,要求找钱. 店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头. 顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的.店主不得已向邻居赔偿了50元.随后出门去追那个顾客,并把他抓住说:“你这个,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失.” 这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元.” 请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元.如果这个顾客行成功,那么共得了多少钱?
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。
数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。
四则运算
四则运算的意义和计数方法。
加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。
运算定律与简便方法、四则混合运算。
减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。
运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。
复合应用题
长度、面积和体积以及其同类量之间的进率。
质量单位和他们之间的进率。
1吨=1000千克 一千克=1000克。
时间单位进率、人民币进率。
1小时=60分钟 1分钟=60秒。
1块=10角。
比与比例。
正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。
图形与空间
图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。
以上内容参考:百度百科-小学数学
二年级数学小论文怎么写如下:
小学数学自学习惯培养的重要意义
1.1有利于学生数学学习能力的提高:自学习惯的培养能够充分调动学生在数学学习过程中的非智力因素,增加学生对数学学习的兴趣。良好的自学习惯能够促使学生自觉做好课前预习、课上认真听讲以及课后自觉复习等学习环节;能够促使学生在日常生活中注重数学知识与实际生活应用之间的联系,有助于学生数学应用能力的提升。
1.2有利于学生学习能力的提升:自学习惯的形成能够有效提升学生的全面学习能力,这种学习能力不仅能够在数学学习过程中发挥重要作用,而且还能够在其他科目学习和相关技能学习方面发挥重要作用。自学习惯对学生产生最深刻的影响是能够促使学生自主开展探究学习,能够自觉的根据自身的知识需要和技能提升对需求的相关知识展开探究。
1.3有利于学生的全面发展:自学习惯的培养不仅能够促使学生在日常生活、学习过程中养成良好的学习习惯,而且还能够为学生未来发展奠定良好的基础。良好的自学习惯不仅能够促使学生在学习上能够取得良好成绩,而且还能够为学生未来的工作产生重大影响。
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。一、 数学课堂上我们想操做、爱操做数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底”和“高”。由此,大家终于自己找到了平行四边形面积公式为:S=ah。二、数学课堂上我们想发言、爱发言 那是一节活动公开课,哇!后面的听课老师一大片,我们真有点紧张呢!上课前我就想即使我有了自己的想法,也不一定能表达出来。老师好像看透了我们的心思,老师幽默地说:“我们现在玩一个“过期”的游戏”,我们正纳闷呢,老师又说“过期”的游戏就是“过7”的游戏,遇到含有7的或者7的倍数都要说“过”。哦,逗得我们哈哈直笑,在非常轻松的氛围中完成了游戏,这时候我发现同学们不愿说话的也开始活跃了,原来不敢说话的也打消了顾虑。我还记得那节课老师讲的是 “时、分的认识”,学生对“时针指在2、3之间,分针指在11”时,是2时55分还是3时55分出现了不同意见,展开了被一场别开生面的争执。这时老师让我们结合自己手中钟表模型分组讨论、探索,最终得出了统一答案。
已上传,如果满意,请点“采纳“,谢谢!
二年级数学教学论文:激发学生课堂学习兴趣进入21世纪以来,我国基础教育课程改革与更新正在轰轰烈烈地展开。新课标的推出,要求我们更新观念,与改革同步。如何组织教学,怎样做才能体现“学生是数学学习的主人”,我们的角色转变为“数学学习的组织者,引导者与合作者”,怎样通过数学教学培养学生的创新意识和实践能力,成为这个学期研究的重要课题。二年级第一学期数学,在整个小学阶段占一定的重要位置。本学期数学教学的指导思想是贯彻党和国家的教育方针和新课标的精神,落实对儿童少年的素质教育,促进学生的全面发展。初步培养学生的抽象、概括能力;分析、综合能力;判断、推理能力和思维的灵活性、敏捷性等。着眼于发展学生数学能力,通过让学生多了解数学知识的来源和用途,培养学生良好的行为习惯。因此,在教学过程中应着重抓好以下几点:一、激发学生的学习兴趣兴趣,是一个人积极完成一件事物的重要前提和条件。二年级小学生年龄还比较小,稳定性较差,注意力容易分散。要改变这种现象,必须使小学生对数学课产生浓厚的兴趣,有了对学习的兴趣,他们就能全身心地投入学习中。那么,怎样才能使他们产生学习的兴趣呢?首先,“学生是数学学习的主人”。新授课,练习课更加讲究方法。新授课中,我们可以和学生建立平等的地位,象朋友一样讨论教学内容,走进小朋友的心里,使他们消除心理障碍和压力,使“要我学”转变为“我要学”。在练习课上,利用多种多样的练习形式完成练习。可以请小朋友当小老师来判断其他正确;或者通过比赛形式来完成。对于胜出的小组给予红花或星星等作为奖品,这样促进学生。其次,创设问题情境,激发学生兴趣。创设问题情境是在教学中不断提出与新内容有关的能激起学生的好奇心和思考的问题,是激发学生学习的兴趣和求知欲的有效方法,也可以培养学生解决问题能力。我在教学“时间”这部分时,由于这部分知识比较抽象,学生比较难理解,所以我在三个星期前就先告诉学生,三个星期后我们要学习时间,希望同学们多去了解。然后我有意创设一些有关时间的生活中的问题情境让大家接触,结果学生来了兴趣,在学这部分知识时再让学生通过观察、操作、猜测、交流、反思等活动中学习,学生学习的积极性很高,解决相关的问题就容易多了。二、设计符合小学生年龄特点的实践活动。二年级学生掌握的数学知识不算多,接触社会的范围也比较窄。因此,根据学生的实际情况,在教学“方向与位置”这部分时,我让学生通过判断学校的方向,再来判断教室的方向,最后再判断自己的位置方向,这样一次次、一层层地认识,加深对着部分知识的理解。多让他们实践,就能提高他们的实践能力。三、结合基础知识,加强各种能力和良好习惯的培养。在重视学生掌握数学基础知识的同时,也发展他们的智力,培养他们的判断、推理能力。例如:教学乘法口诀时,先引导学生观察找规律,再小组讨论,最后小组汇报得出结论。由于二年级的学生太小了,滋长能力比较差。所以导致教学工作有一定的难度,但我一定会努力认真的总结、反思,虚心求教,不断学习,提高自己。
在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。
数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。
四则运算
四则运算的意义和计数方法。
加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。
运算定律与简便方法、四则混合运算。
减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。
运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。
复合应用题
长度、面积和体积以及其同类量之间的进率。
质量单位和他们之间的进率。
1吨=1000千克 一千克=1000克。
时间单位进率、人民币进率。
1小时=60分钟 1分钟=60秒。
1块=10角。
比与比例。
正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。
图形与空间
图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。
以上内容参考:百度百科-小学数学
还有什么要求,具体点。
我学习数学已经有六年多了,这条学习的道路是坎坷的,是困难重重的。 记得在小学三、四年级时,我的数学成绩不证明好,总是在八十多分上下浮动,或许是因为我心里比较害怕数学对这一学科有抵触情绪。到了六年级时面对着严峻的毕业考试,我才不得不硬着头皮去认真学习数学。直到那时,我才发现,原来数学并不像我想象中的那么可怕。我也才发现,数学其实是所有科目中最有趣的一科。进入中学以后,我才真正发现了数学的神奇。它可以给我们带来无穷的乐趣。我在小学的数学基础又弄懂了许许多多的知识:代数式、有理数、整式、一元一次方程、二元一次方程组……在学习的过程中,难免会遇到一些挫折,由于自己的一点儿不慎而造成的遗憾,更是数不胜数。那些调皮的小精灵们利用你的一点儿弱点或缺陷,让你一败涂地。 在数学上,我最大的缺点是粗心。正是由于粗心,使我多次单元测试的成绩不尽人意;正是由于粗心,使我在期中考试中与年段第一名失之交臂,正是由于粗心,使我在各科的竞赛中成绩不佳……或许还有许多许多由粗心造成的遗憾,已消失在我的脑海中了。令我最苦恼的,也正是无法彻底地改掉粗心这个缺点。在这次数学期末考试中,我又重犯了粗心的毛病,马马虎虎,致使我的数学成绩比年段最好成绩低了6分之多。虽然,我知道只有改掉这个缺点,我的数学成绩才能有明显的提高,但是,至今我还无法彻底改掉这个缺点。 我相信,以我真正的实力,学好数学不是不可能的。但是,不知道为什么,课内学习数学、做作业,我还能对付。可我一拿起课外的数学书,总觉挺难的,看不懂,尤其是几何图形方面,难以弄明。
从一年级开始接触数学;从一个什么也不懂的孩子时开始接触数学;从1+1=2、1+2=3…… 开始学习数学,直至今天还在学习数学。学数学不是一两天的事,而是一条漫长的道路!在学习数学的道路上,你会不知不觉的发现学数学的乐趣,数学的奥妙,你也会发现数学在生活中无处不在!学数学就是为了能在实际生活中应用,其实,数学就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋要画图纸....... 同学们,你们肯定知道商人们批发商品吧,而且,商人们为了赚钱,会不停地把商品卖出买进,这样就能获得更多利润了。 一次,我和爸爸在文具店买东西,爸爸拿起一个7元的笔盒对我说:“如果一个商人买了50个这种笔盒,以每个8元卖给文具批发商,又以每只9元收购回来,再以每只10元卖出去,那么他是亏了还是赚了?” 我不假思索地回答道:“这么简单的题还想考我!他肯定是赚了,而且是赚了一大笔钱呢!” “那他到底赚了多少利润?”爸爸追问道。 我毫不犹豫地说:“他一个笔盒以7元买进,8元卖出,9元买进,10元卖出,一共可得利润(8+10)—(7+9)=2(元)。就是说一个笔盒就可以赚得2元,50个笔盒按这种方式买进卖出,共得利润100元。他是个很精明的商人。” “不错!”爸爸微笑着说。“也可以这样算:买进时用了(7+9)×50=800(元)。卖出时得了(8+10)×50=900(元)。则这个商人赚了900—800=100(元)。”不过,爸爸话锋一转,“你知道为什么要问你一个这么简单的问题吗?” “不知道。”我摇摇头,惊奇地说。 “一般来说,计算一道题有很多种方法。只要思考方式和推理过程是对的,结果就是一样的。计算和预测利润或损失就是用卖出商品得到的钱减去买入花的钱,结果是正数,就是赚了;结果是负数,就是亏了。就像刚才那个笔盒,如果商人用7元买走笔盒,用6元卖给另一个人,他就亏了1元。而商人用8元卖给另一个人后,他就赚了1元。” “这就是说,生活中数学的影子无处不在,在商场里、交易所里都要广泛运用到数学。”我恍然大悟。 在六年的小学生涯里我学到了许多许多,及将需要我探讨是初中、高中、大学……的知识,我一定要努力学习!
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘! 无意间在《初中生数学报》上看到一个很有意思的故事。故事的大概意思是讲3个人住旅馆,原本是3人每人10元住一间房,后来店长说今天优惠降价5元,然后服务员为使三人便于分配,就取走了2元,退还给每人1元,但是3×9+2=29(元),每人出九元,再加上取走的2元却是29元。可是30-29=1(元)那剩下的1元到哪里去了呢?看到这个故事我马上眼前一亮,来了兴致,就在想对啊那1元跑到哪里去了呢?刚开始的时候我确实被文章中的算式搅乱了思维,想了很久也想不明白到底那1元跑到哪里去了呢?真是太奇怪了。于是我整理了一下头绪:原本是30元,降至25元,30-25=5(元)其中降了的5元再被服务员取走2元,剩下的3元再退还给3人。那么我们来仔细想想,为什么我们大家刚开始时都错了呢?因为我们没有理清题目的意思,逻辑关系出现了混乱,所以会出现错误。看到题目我们要多想想每个事物之间的联系,而不是混乱的加在一起或是别的。总之要多思考。 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小"!
可以自己删减删减。 数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷12.5,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效
5555555
“数学小论文”是让学生以 日记 的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。下面是我整理的关于小学六年级的数学小论文,供大家参阅,希望对你的学习有帮助!
小学 六年级数学 小论文
“数学来源于生活,也服务于生活。”数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学,例如算单元平均分、统计校园电费……等等数不胜数,和我们的生活息息相关。
有一次,我和爸爸妈妈去购物,买过年吃的糖。超市里糖的花样可多了,有脆皮糖15.80元一斤,牛皮糖10.50元一斤,牛奶糖8.00元一斤,酥酥糖23.9元一斤,巧克力糖21.9元一斤……但主要分为散称和包装。爸爸妈妈问我:“儿子,你希望买什么糖呢?”我望着玲琅满目的“糖果世界”,不知如何抉择是好,但我自幼喜好巧克力,所以我就选了巧克力糖。这时妈妈又给我出题了,他说:“那儿子,你说我们是买散称的呢,还是买包装的呢?”这我就摸不着头脑了,立即心算起来:散称的巧克力糖21.9元一斤,包装的则58.9一盒。散称的巧克力糖一包才10克,包装的巧克力糖一盒就有1000克呢!不过,单单看重量还不能决出胜负,就让我仔细算算——其实算这个并不难,直接用1000克=1千克 1千克=2斤 58.9÷2=29.45(元) 29.45元>21.9元 所以散称比包装更划算!我高兴的把我得出的结果告诉妈妈,妈妈高兴的点了点头,夸我爱动脑筋,因此我也就成为了妈妈的"小会计"。
在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个生动的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:
大河上有一座东西向横跨江面的桥,人通过需要五分钟。桥中间有一个 亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫 他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法, 终于通过了大桥。
我初看这道题,一点头绪也没有,难不成坐船过去?这是不可能的。难道走了一会往回走?唉,这好像行得通……
我经过反复的计算,先想到了走到2分59秒的时候把头转回去,看守的人就会让我往回走,这样不就过去了吗?后来又想了一会,得出只要在走了2分30秒至2分59秒的时候往回走(最好不要到2分59秒的时候走,因为可能你还没转过头来,看守的人就发现了。),就可以成功过桥。
大家肯定都会说这么容易的题谁都会做,我拿出来吹嘘什么?不,这样子你就错了,我并没有在炫耀自己,我是在告诉大家数学在于联系生活思考,在于全心全意去领悟,而不是拿着别人的成果炫耀。
小学数学论文可以怎么写
数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现结合笔者的教学实际谈谈数学小论文的几种具体写法。
1.一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。
2.用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。
3.生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。
4.课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。
5.数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇 心得体会 ,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。
6.数学童话。主要指学生发挥丰富的 想象力 ,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。