首页 > 学术发表知识库 > 矩阵论文答辩问题及答案

矩阵论文答辩问题及答案

发布时间:

矩阵论文答辩问题及答案

论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。设置毕业答辩的目的就是检查学生论文的完成情况,判断学生是否用心在撰写自己的论文。此外,采取答辩的形式,可以增强学生的语言表达能力以及逻辑思维能力。毕业答辩形式以回答为主,辩论为辅,是学生与老师的一次直接交流一般老师是提问者,学生是回答者。

论文答辩—般会问的问题:1、你的毕业论文采用了哪些与本专业相关的研究方法?2、论文中的核心概念是什么?用你自己的话高度概括。3、你选题的缘由是什么?研究具有何种现实指导意义?4、论文中的核心概念怎样在你的文中体现?5、从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样?6、论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么?8、经过你的研究,你认为结果会是怎样?有何正面或负面效果?9、自己为什么选择这个课题?10、研究这个课题的意义和目的是什么?11、全文的基本框架、基本结构是如何安排的?12、全文的各部分之间逻辑关系如何?13、在研究本课题的过程中,发现了哪些不同见解?对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?

论文答辩老师一般会提的问题,因为学校不同,老师不同,问题也会不同,下面是我整理的相关信息,希望可以给大家带来参考与帮助!

1、你的论文采用了哪些与本专业相关的研究方法?

回答解析先明确指出所使用的研究方法,再结合具体内容讲述,切忌“空洞干瘪”,也不能冗长。

2、论文的核心概念是什么?

回答解析用自己的语言高度集中概括论文的核心,做到准确简洁的同时也必须做到全面。

3、你为什么选择这个论题?

回答解析结合个人原因与论文写作两个方面展开陈述,语言清晰,逻辑分明。

4、论文的主要理论基础是什么?

回答解析用准确的专业术语指出理论基础,可结合具体内容陈述。

5、研究这个课题的意义和目的是什么?

回答解析结合现实情况说明本课题的意义与目的。

6论文结论是否具有可行性与操作性?

回答解析结合具体的现实情况展开论述,语言平实,不要绝对化。

7、论文有何创新之处?

回答解析突出论文的“创新点”,通过与已有成果结论的对比说明自己论文的创新之处。

老师在拿到你的论文时,肯定就是要找问题的,无论谁的论文答辩,老师都会点出问题。这个时候,千万不要和老师顶嘴,即使你说的有理也不要硬顶。

答辩后一般老师会给你相关建议,你要准备要纸和笔,至少要给答辩老师留下很虚心的感觉,答辩结束后有礼貌的感谢老师,谢谢老师提出的意见,表明自己会认真采纳等等。答辩一般通过率很高的,即使你写的再差也会让你过。只要态度好,老师认可你这个人,论文基本也会认可了。

论文的构思情况、论文里的名词解释、论文题目选择等等,不过也有光点评不问问题的,甚至还有纯闲聊的,遇到这种教授估计好多同学做梦都会笑醒。

1、对论文指导老师进行感谢,大致内容为感谢该导师对于你的教导和对于该论文写作方法、写作技巧、写作内容等的影响和指导。

2、对在论文写作过程中对你提供过帮助的所有老师进行感谢,大致内容为感谢老师们对本论文写作提供的帮助及指导,对论文的完善提出的自己的建议或意见。

3、对在论文写作过程中帮助过你的师长、同学进行感谢,感谢他们帮助你查资料、提供相关资料等。

4、感谢你的家人及朋友,简单表达他们对于你在精神、生活以及学习方面的鼓励和支持。

矩阵相似及其应用论文答辩

最有可能问的是:1. 分块矩阵的初等变换 与 矩阵初等变换 的异同.2. 分块矩阵初等变换需注意什么. 3. 利用分块矩阵初等变换, 你得到了什么新的结论, 或对已有结论的证明有什么大的改进满意请采纳^_^

结论:特征值是相同的,行列式也是一样的,相似就合同,两个矩阵主对角线的和是一样的。如果矩阵相似,那么其代表的就是不同坐标系(基)的同一个线性变换。也就是AP=PB,其中AP是由于在自然的笛卡尔坐标系下表示的,所以前面有一个E没有写出来。也就是应该是EAP=PB,也就是EA是在笛卡尔坐标系下的坐标,P是过渡矩阵。

矩阵在物理学中的应用:

矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。

这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。

矩阵的秩论文答辩

矩阵的秩一般有2种方式定义1. 用向量组的秩定义矩阵的秩 = 行向量组的秩 = 列向量组的秩2. 用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶单纯计算矩阵的秩时, 可用初等行变换把矩阵化成梯形梯矩阵中非零行数就是矩阵的秩

将矩阵做初等行变换后,非零行的个数叫行秩将其进行初等列变换后,非零列的个数叫列秩矩阵的秩是方阵经过初等行变换或者列变换后的行秩或列秩

这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性

是基本概念,体现了矩阵行向量或列向量的相关程度

对称矩阵的性质及应用论文答辩

1、正交矩阵:正交变换e在规范正交基下的矩阵是正交矩阵,满足U*U’=U’*U=I2、实对称矩阵:对称变换e在规范正交基下的矩阵是对称矩阵,满足A’=A

实对称矩阵:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。

主要性质:

1.实对称矩阵A的不同特征值对应的特征向量是正交的。

2.实对称矩阵A的特征值都是实数,特征向量都是实向量。

3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

4.若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

扩展资料:

对称矩阵性质:

1.对于任何方形矩阵X,X+XT是对称矩阵。

2.A为方形矩阵是A为对称矩阵的必要条件。

3.对角矩阵都是对称矩阵。

4.两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

5.用<,>表示  上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈  ,  。

6.任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:

7.每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

8.若对称矩阵A的每个元素均为实数,A是Hermite矩阵。

9.一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。

10.如果A是对称矩阵,那么AXAT也是对称矩阵。

11.n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。

参考资料:百度百科----实对称矩阵

一. 定义 因为正定二次型与正定矩阵有密切的联系,所以在定义正定矩阵之前,让我们先定义正定二次型: 设有二次型 ,如果对任何x 0都有f(x)>0( 0) ,则称f(x) 为正定(半正定)二次型。 相应的,正定(半正定)矩阵和负定(半负定)矩阵的定义为: 令A为 阶对称矩阵,若对任意n 维向量 x 0都有 >0(≥0)则称A正定(半正定)矩阵;反之,令A为n 阶对称矩阵,若对任意 n 维向量 x≠0 ,都有 <0(≤ 0), 则称A负定(半负定)矩阵。 例如,单位矩阵E 就是正定矩阵。 二. 正定矩阵的一些判别方法 由正定矩阵的概念可知,判别正定矩阵有如下方法: 1.n阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。 证明:若 , 则有 ∴λ>0 反之,必存在U使 即 有 这就证明了A正定。 由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。 2.n阶对称矩阵A正定的充分必要条件是A合同于单位矩阵E。 证明:A正定 二次型 正定 A的正惯性指数为n 3.n阶对称矩阵A正定(半正定)的充分必要条件是存在 n阶可逆矩阵U使 ;进一步有 (B为正定(半正定)矩阵)。 证明:n阶对称矩阵A正定,则存在可逆矩阵U使 令 则 令 则 反之, ∴A正定。 同理可证A为半正定时的情况。 4.n阶对称矩阵A正定,则A的主对角线元素 ,且 。 证明:(1)∵n阶对称矩阵A正定 ∴ 是正定二次型 现取一组不全为0 的数0,…,0,1,0…0(其中第I个数为1)代入,有 ∴ ∴A正定 ∴存在可逆矩阵C ,使 5.n阶对称矩阵A正定的充分必要条件是:A的 n 个顺序主子式全大于零。 证明:必要性: 设二次型 是正定的 对每个k,k=1,2,…,n,令 , 现证 是一个k元二次型。 ∵对任意k个不全为零的实数 ,有 ∴ 是正定的 ∴ 的矩阵 是正定矩阵 即 即A的顺序主子式全大于零。 充分性: 对n作数学归纳法 当n=1时, ∵ , 显然 是正定的。 假设对n-1元实二次型结论成立,现在证明n元的情形。 令 , , ∴A可分块写成 ∵A的顺序主子式全大于零 ∴ 的顺序主子式也全大于零 由归纳假设, 是正定矩阵即,存在n-1阶可逆矩阵Q使 令 ∴ 再令 , 有 令 , 就有 两边取行列式,则 由条件 得a>0 显然 即A合同于E , ∴A是正定的。 三. 负定矩阵的一些判别方法 1.n阶对称矩阵A是负定矩阵的充分必要条件是A的负惯性指数为n。 2.n阶对称矩阵A是负定矩阵的充分必要条件是A的特征值全小于零。 3.n阶对称矩阵A是负定矩阵的充分必要条件是A的顺序主子式 满足 , 即奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零。 由于A是负定的当且仅当-A是正定的,所以上叙结论不难从正定性的有关结论直接得出,故证明略。 四.半正定矩阵的一些判别方法 1. n阶对称矩阵A是半正定矩阵的充分必要条件是A的正惯性指数等于它的秩。 2. n阶对称矩阵A是半正定矩阵的充分必要条件是A的特征值全大于等于零,但至少有一个特征值等于零。 3. n阶对称矩阵A是负定矩阵的充分必要条件是A的各阶主子式全大于等于零,但至少有一个主子式等于零。 注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证A是半正定的,例如: 矩阵 的顺序主子式 , , , 但A并不是半正定的。 关于半负定也有类似的定理,这里不再写出。

不同特征值的特征向量两两正交

论文答辩问题及答案回答

毕业论文答辩常见问题:你选择这个论文题材的原因是什么?论文的研究背景是什么?论文的核心观点是什么?本篇论文采用了哪些研究方法?你所研究问题是采用什么方法解决的,使用了什么解决方案?论文在哪些方面有哪些创新?等。可以结合个人的实际情况以及论文写作两个方面来进行表述。 因为学校不同,老师不同,所以论文答辩老师一般会提的问题也会不同,以下问题和回答仅供参考: 毕业论文答辩常见问题一:你选择这个论文题材的原因是什么? 我们可以结合个人的实际情况以及论文写作两个方面来进行表述,保证语言清晰,逻辑合理。例如这样回答:因为平常自身比较喜欢这方面的内容、时常关注该研究领域的相关事宜,结合了当前政治新闻和发展趋势,受导师课题影响,参与相关研究课题等。这一部分容易加分但是也容易减分,为了表现出自身的特点和优势,所以我们应该将这一部分内容表述清楚到位。 毕业答辩常见问题二:论文的研究背景是什么? 这个问题与第一个问题有异曲同工之妙,同学们也可以按照第一个问题的答案来进行回答。 毕业答辩常见问题三:论文的核心观点是什么?或者这么问:论文的主题是什么?这是答辩听审老师最常见的问的问题,而且答案很简单。用自己的话高度概括论文的核心,尽可能全面、准确、简洁的表达出来,不少于3句,不超过5句。 毕业答辩常见问题四:本篇论文采用了哪些研究方法? 首先明确指出所用的研究方法,然后结合具体内容进行讲述,也就是举例说明。 毕业答辩常见问题五:你所研究问题是采用什么方法解决的,使用了什么解决方案? 这个问题应该结合实际情况来进行说明,如果有具体的结论或方法的学生,可以分点解释说明。 毕业答辩常见问题六:论文在哪些方面有哪些创新? 这时,老师们想知道你的论文和别人的有什么不同,有什么亮点,建议同学们举例说明,分点作答,这样显得逻辑清晰、调理清楚,而且这个问题答辩老师一般都会问到,所以同学们要做好准备。 最后学术堂总结:在答辩的时候一定要迅速回应。如果是你不知道问题,你可以向老师请教,千万不要出现冷场的情况,那样你的导师会很尴尬的。答辩时一定要谦虚,虽然你的论文完成得十分出色,但是这些成果暂时的、是没有获得认可结论。

论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。设置毕业答辩的目的就是检查学生论文的完成情况,判断学生是否用心在撰写自己的论文。此外,采取答辩的形式,可以增强学生的语言表达能力以及逻辑思维能力。毕业答辩形式以回答为主,辩论为辅,是学生与老师的一次直接交流一般老师是提问者,学生是回答者。

论文答辩—般会问的问题:1、你的毕业论文采用了哪些与本专业相关的研究方法?2、论文中的核心概念是什么?用你自己的话高度概括。3、你选题的缘由是什么?研究具有何种现实指导意义?4、论文中的核心概念怎样在你的文中体现?5、从反面的角度去思考:如果不按照你说的那样去做,结果又会怎样?6、论文的理论基础与主体框架存在何种关联?最主要的理论基础是什么?8、经过你的研究,你认为结果会是怎样?有何正面或负面效果?9、自己为什么选择这个课题?10、研究这个课题的意义和目的是什么?11、全文的基本框架、基本结构是如何安排的?12、全文的各部分之间逻辑关系如何?13、在研究本课题的过程中,发现了哪些不同见解?对这些不同的意见,自己是怎样逐步认识的?又是如何处理的?

  • 索引序列
  • 矩阵论文答辩问题及答案
  • 矩阵相似及其应用论文答辩
  • 矩阵的秩论文答辩
  • 对称矩阵的性质及应用论文答辩
  • 论文答辩问题及答案回答
  • 返回顶部