首页 > 学术发表知识库 > 大学物理电学论文

大学物理电学论文

发布时间:

大学物理电学论文

在前段时间里,有个现象。在路边的一个饭店门口的电线杆上,沾满了棉絮,事情只在一段电线上粘附。我好奇,找原因。看见饭店的排风扇对着电线杆吹。想啊!风与空气摩擦产生电子得失,而且有堆积现象,大自然中风与树叶摩擦是不是和这原理一样,那为什么树叶没有电子堆积而吸附灰尘那?对负离子模块的观察得出结论。负离子模块距离铁物品近时,铁质表面堆积的电荷表现为静电,应该为负静电。铁质物品有了吸附力,关键是吸附的物品有逃逸现象,您可以运用您所学知识来分析研究下这现象。

去听老师讲和同学的积极发言,我认为这样的学习才是最好的~2. 多思多问,不要知其然而不知其所以然 学习物理关键在于多思考,搞清楚其中的原理。学习物理不是简单的套用公式,进行数字推导;物理重要的是要掌握扎实的基础知识。要对基本物理概念、物理规律清楚弄清本质,明白相关概念和规律之间的联系,明白物理公式定理、定律在什么条件下应用,而不能简单地以做习题对基本概念和基本规律的学习和理解,如果概念不清做题不仅费时间费精力,而且遇到的矛盾或困惑就越多.做习题的目的是为了巩固基本知识,从而达到灵活运用。所以上课时是最重要的时间段,也许你上课不过听了一个小时,也比你可惜啊一个人啃书本强得多~3. 预习和复习是学习物理的必经步骤 与学习任何课程一样,学习大学物理也要牢牢抓住课前预习、课堂听讲、做好笔记、课后复习(包括完成作业)和考前复习这几个主要环节。课前预习就是粗略浏览将要学习的内容,目的在于明确课堂上必须重点解决的问题;课堂听讲就是要学习老师引出物理概念的目的、建立物理模型的思路、描述物理现象的方式、演绎物理原理的程序、解释物理定律的思想、分析物理问题的过程、解决物理问题的方法。在课堂上最重要的是学习物理思想和物理方法,同时以提纲的形式记录老师授课的全过程,重点记录课本上没有的内容和自己觉得重要的东西, 以备查阅。课后复习(包括完成作业)就是所谓的“把书读厚”,既要全面回顾课堂听讲的过程和所学内容,又要凭借记忆和查阅课本,把提纲式课堂笔记补充为详细笔记,并写下自己的思考体会,还要理清知识重点、难点以及解决某类物理问题的步骤和技巧,更要在完成作业的过程中巩固所学知识、解决发现存在的问题。考前复习就是所谓的“把书再读薄”,此时的重点不在于记忆概念、定律和结论,而在于理清课程体系和知识框架、独特的研究方法和思想模式、常见问题的处理流程和技巧、常用的数学知识,当然还要查漏补缺。 以上就是本学期来,我学习物理的心得和体会,当然肯定还有什么不足或者需要补充的地方,而我也会不断总结,边学习边体会,在物理的这片天空下闯出自己的一2/13页块地~篇二:大学物理学习心得体会-787 大学物理学习心得 从初中正是开始学习物理到现在已经接触物理近七年了,这期间对物理这门学科有了一定的认识和了解。同时,我们对如何学好物理也都有自己的方法和心得。 《大学物理》是我们工科必修的一门重要基础课,但由于我们现在所学的《大学物理》涵盖内容广泛,包括力学、热学、量子力学以及相对论,并且对高等数学、线性代数等数学基础要求较高,使得大家对这门课的学习感到很困难。而且《大学物理》并没有像大学英语、计算机基础等基础课一样有相关的水平考试,其考试结果并没有成为大学生就业的参考标准之一,因此没有引起大学生的足够重视。因上述原因,大学物理很难调动学生的学习积极性。 任何一门课程的学习都离不开课堂与课后学习这两个环节。但由大学的教育现状可知,部分人没有认真听课,在课堂上的学习效率比较低下。这个是个人兴趣问题,并不是在短期内能解决的,但我们十分有必要提高我们的听课效率。那么如何达到高效呢,我们听课的时候要围绕着老师的思路,跟着老师的问题提示思考,同时又能提出一些自己不太明白的问题。对于老师的一些分析,课本上没有的,及时提笔注释在书上相应的空白地方,便于自己看书时理解。 课堂上认真听讲,课后,我们在完成作业之前应该先仔细看书回顾一下课堂内容,再结合例题加深理解,然后动笔做作业。同时,在课后复习时,我们应注意几个问题,首先就是基本概念、基本公式的学习,这个直接看课本就行了,但要注意公式的推导过程和应用范围, 最好就是把重要公式自己推导一次加深印象。然后就是做题巩固记忆,先看一下例题还是有好处的,即使有不少例题很简单,但都是经典题目,虽然不难但基本体现了课本知识的应用。做适量课外的题目对加深公示的理解也有很大的帮助。遇到不懂的题目可以在课下的时候问一下老师,同时我觉得与同学交流一下也有很好的效果,可以知道别人的思路与自己有何不同,进而比较各种方法的优缺点,达到双赢的效果。除此之外,我认为可以借助一些其他教材或辅导资料来扩展我们的视野,不同的教材分析3/13页问题的角度可能不同,而且有些教材可能更符合我们的思维方式,便于我们加深对原理的理解。 课堂把握重点与细节,课后下功夫通过各种途径来巩固加深理解。与此同时,提高学习大学物理的兴趣是很重要的。大学物理是一门实验学科,多看一下实验不但对相关概念有更多感性认知,而且还能提高对物理学习的兴趣和热情。虽然由于实验条件的限制,不可能在课堂上看到实验,但我们可以充分地利用网络资源,了解一下实验过程和结果。了解一下物理学史和最新物理的成果也能提高我们的兴趣。 要学好大学物理,还要培养用高等数学来思考、处理物理问题的能力。如果硬要把中学物理和大学物理做一个比较的话,我要说,中学解决“恒”的问题,如物体在恒力作用下的运动,恒力的功等等;大学物理处理“变”的问题,如变力的冲量,变力的功等等。从数学角度来说,中学物理使用初等数学解题,而大学物理趋向于用高等数学解题。不少学生不适应这种变化,还停留在原来的认识水平上。他 们只习惯于把中学的思维、方法生搬硬套到新的物理情境中,不善于变换认识角度,不善于改变解决问题的方式。尽管老师反复强调,但仍有不少同学仍按照原来的思路去分析、处理问题,这时思维定势带来的消极影响,给物理学习带来了障碍。数学不仅是一种计算工具,更是对物理现象进行抽象、概括的表现手段。在大学物理中,许多概念和规律都是用高等数学的形式表达出来的。 我们还要调整好我们的学习态度,积极进取,不要松懈。从我们的学习状态等非智力因素看,许多同学进入大学后往往有松一口气的想法,甚至高呼60分万岁,加之对大学物理与中学物理的质的飞跃认识不足,一旦觉醒过来,已经欠账太多,尽管有的同学加倍弥补,也收效甚微,他们会因心理平衡受到破坏而是去学习的信心。有的同学有一个模糊的认识,就凭我中学物理的水平,大学马虎一点,及格总不成问题,就放松了对自己的要求。结果怎样,期末考试不及格,补考还是不及格。 思想上不重视,主观上不努力,上课不认真听讲,课后抄作业之风盛行。像这样,想学好大学物理是不可能的,想及格都难。 总的来说,要学好大学物理也不是一件难事,我们只要做好三件事:一是认真读书,高清物理概念。如三大守恒定律的条件和应用,高4/13页斯定理、安培环路定理的意义等等。二是认真做好习题。课本上的习题都是精心设计的,它可以帮助你理解、掌握所学内容。三是多阅读相关辅导资料,尤其是《大学物理学习指导》,该书内容全面,信息量大,题目典型,它是我们的良师益友。在这本书上花点时间,你是不会后悔的。四是心态上积极进取,不松不懈,严格要求自己,在思想上给与足够的重视。 以上基本是我在大学物理学习过程中的心得体会。篇三:大学物理学习感想 班级:姓名:学号:转眼之间,已经学习大学物理这门课将近一年的时间了,回首这一年的学习经历,感触颇多。 对于我们这些理工科的大学生来讲,物理不是一门陌生的课程,我们从初中开始接触物理知识,高中又学了三年的物理,这可能有助于大学物理的教学,因为我们已具有一定的物理基础知识,也可能不利于大学物理的学习,因为大学物理和中学物理在教学方法、学习方法等各方面有许多不同,我们已习惯于中学物理的教学方法和学习方法,已经形成了一定的思维定势,将对大学物理的教学和学习带来负面影响。 在高中时候,物理的学习更多的的是为了做题,很多题目有自己固定的解题步骤、方法,往往我们可以以一概全,掌握一个问题从而掌握一系列的问题,很多时候我们不用有什么想法,只是单纯的代入公式中就可以把题目解出来,稍微难点的题目也只是有点技巧性的思路或者计算方法,从这些学习中很难学习到思想性的东西,高中物理老师的教学方式就是让同学们很好的掌握解决各种物理问题的同一方法,锻炼同学们更有速率和效率的解决问题。 而在步入大学物理的学习后,我发现大学物理和高中物理有着很大意义上的差异,大学物理老师的教学更大程度上是对学生的引导,由于课时比较少无法更加详细的展开讲解,所以老师更多的是物理思想、物理方法的介绍,更多的问题留给我们自己在课下自己

大学物理论文2000字电磁学

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

电磁学的实践研究 (仅供参考)电磁现象是自然界存在着的一类极为普遍的现象,它涉及到常广泛的领域。人类对电磁现象的观察与了解虽然可以追溯到十分遥远的古代,但是真正对它们进行比较系统的研究却是从16世纪下半叶才开始的,而且只限于定性的研究阶段,直到18世纪后,得力于社会生产力的发展,人类在自然科学领域展开了积极的实验探索,逐步建立了较为系统的自然科学体系,电磁学的发展也有了很好的基础。与此同时,电磁学的发展反过来双大大地促进了社会管理部门力的进一步释放,可以说,电磁学的发展是自然科学发展的必然结果,也是自然科学进一步发展的前提,是社会生产力发展的结果,也是社会进步的巨大推动力。一、电磁现象的本源──物质的电结构人类很早就知道摩擦过的琥珀能吸引轻小物体的现象。人们发现有很多物质都能由于相互摩擦而带电,并且带电物体之间存在着相互排斥或相互吸引的作用。大量的实验研究还表明,摩擦后的物体所带的电荷只有两种,同种电荷相斥,异种电荷相吸。美国物理学家富兰克林(B.Franklin,1706~1790)把它们分别命名为正电荷和负电荷。近代物理学的理论和实验证明,通常所见的各种物体(实物)由原子、分子所组成的,而原子则由带正电的原子核和围绕原子核运动的带负电的电子组成。原子核由带正电的质子和不带电的中子组成。质子的电量和电子的电量等值异号。在正常状态下,原子内的电子总数等于原子核内的质子总数,因而宏观物体或者物体的任何一部分包含的电子总数和质子总数是相等的,所以不显电性。某一质料的物体分别与其他一些质料不同的物体摩擦时,得到或失去电子的情况是不同的,在与某些质料的物体摩擦时可以得到电子,而在与另一些质料的物体摩擦时则要失去电子不.仅仅是摩擦起电,我们所观察到的所有电现象和磁现象,都是基于物质具有上述的电结构以及其中的带电粒子的相互作用及其运动而产生的,所以我们说,物质的电结构是自然界电磁现象的本源。二、电磁过程是构成自然界各种纷繁复杂过程的基本过程之一1820年,奥斯特(H.C.Oersted,1771~1851)发现了电流的磁效应,它的逆效应──电磁感应定律也在1831年被法拉第发现,人类开始认识到电现象和磁现象之间存在着联系。电磁感应定律和电流的磁效应为制造更加有效的电源和动力机提供了科学依据,展现了电磁现象的规律在技术上可以获得重要应用的崭新前景。在法拉第等人工作的基础上,19世纪50年代到60年代,英国物理学家麦克斯韦(J.C.Maxwe11,1831~1879)建立了电磁学的理论体系,得到了今天以他的姓氏命名的电磁场方程组,并推论电磁作用以波的形式传播。从这一理论中得出的电磁波在真空中的传播速度与光在真空中的实际测定的传播速度相同,促使他预言光是电磁波。电磁过程不仅渗透到物理科学的各个领域,成为研究各种物理过程的必不可少的基础,同时,它也是研究化学和生物学一些基元过程的基础。今天,人们已深切地感受到,无论是人类自身的生活,还是科学技术活动以及物质生产等各种纷繁复杂的过程,都不可能离开电磁过程。并且人们深信,在人类社会的未来,电磁理论的绚丽之花仍将盛开。三、电磁场是物质世界的重要组成部分电磁感应定律和场的观念为电磁现象的统一理论准备了条件,而其大功告成者则是英国卓越的物理学家麦克斯韦。麦克斯韦在把握住电磁现象本质后,舍弃了电磁以太模型,明确提出了“电磁场”的概念。他写道:“我所提议的理论可以称为电磁场理论,因为它必须涉及电或磁物体附近的空间”。通过对麦克斯韦方程组的求解,可以研究电磁场的运动状态、电磁场的能量和动量以及电磁场可以独立于场源而存在和传播等问题,这就表明电磁场不仅仅是一种描述电磁现象的方法和手段,而且和实物一样,是物质存在的一种形式,即电磁场是物质世界的重要组成部分。四、电磁作用是自然界的基本相互作用之一人类对自然界各种物质之间的相互作用的研究由来已久,但把这种研究引上科学舞台的则是17世纪牛顿对万有引力的研究。一切具有质量的物体之间都存在的吸引力称为万有引力,它是一种长程力,在所有基本相互作用中它是最弱的。由于它与质量有关,因而在微观粒子相互作用的研究中通常可以忽略不计,但在天体物理研究中,引力却起着决定性的作用。倘若不存在引力,地球上的物体都将飞离地球,地球和其它行星也都将飞离太阳。甚至太阳和星系也将不复存在,那是一个怎样的“世界”呀?带电物体或具有磁矩的物体之间的相互作用称为电磁作用,它的规律总结在麦克斯韦方程组和洛伦兹力公式之中。电磁作用也是一种长程力,其强度要比引力大得多,而且也是目前人类研究得最为清楚的一种力。原子核和电子结合成原子,原子结合成分子,分子结合成凝聚态物质都是靠电磁作用。宏观的摩擦力、弹性力、粘滞力以及各种化学作用实质上也都是电磁作用的表现。因此可以想见,如果没有电磁作用,不要说原子、分子以及凝聚态物质将不复存在,就是以化学作用为基础的生命体,包括人类自身也都将化为乌有!后来,物理学又在原子核衰变过程中发现一种仅在微观尺度上起作用的力程甚短的弱相互作用;在质子、中子以及其它一些亚核粒子的相互作用中发现一种力程也较短的强相互作用力。近代物理学认为,这四种基本相互作用决定了物质世界中的一切过程。与此同时,构建一种能够对各种相互作用给予统一说明的理论,也是近代物理学继续研究的方向

电磁学是物理学的一个分支。电学与磁学领域有著紧密关系,广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。 主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。电磁学或称电动力学或经典电动力学。之所以称为经典,是因为它不包括现代的量子电动力学的内容。电动力学这样一个术语使用并不是非常严格,有时它也用来指电磁学中去除了静电学、静磁学后剩下的部分,是指电磁学与力学结合的部分。这个部分处理电磁场对带电粒子的力学影响。电磁学的基本理论由19世纪的许多物理学家发展起来,麦克斯韦方程组通过一组方程统一了所有的这些工作,并且揭示出了光作为电磁波的本质。电磁学的基本方程式为麦克斯韦方程组,此方程组在经典力学的相对运动转换(伽利略变换)下形式会变,在伽里略变换下,光速在不同惯性座标下会不同。保持麦克斯韦方程组形式不变的变换为洛伦兹变换,在此变换下,不同惯性座标下光速恒定。二十世纪初迈克耳孙-莫雷实验支持光速不变,光速不变亦成为爱因斯坦的狭义相对论的基石。取而代之,洛伦兹变换亦成为较伽利略变换更精密的惯性座标转换方式。静磁现象和静电现象很早就受到人类注意。中国远古黄帝时候就已经发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始於16世纪。1600年英国医生威廉·吉尔伯特(William Gilbert,1544~1603)发表了<论磁、磁饱和地球作为一个巨大的磁体>(Demagnete,magneticisque corporibus et de magnomagnete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。书中他也记载了电学方面的研究。

有关电场的大学物理论文

论文的内容是什么?是对书的评价吗?如果是,说出你的教材的出版社和编者的姓名。

大学毕业论文写的是<< 电动助力转向系统中传动机构的运动学和动力学分析与比较>>,如果只是一般性论文,建议写<<生活中的物理 >>,<<世纪之交谈物理学发展的方向>>,<<物理学前沿问题探索>>之类的较广泛的题目,这样比较容易,相关资料也比较好找

狠啊,直接把小论文题给发了

元认知( Metacognition)是弗拉维尔70年代提出的,此后关于元认知的研究越来越多,这些研究主要集中于阅读理解、记忆和问题解决三大领域,其中问题解决中的元认知研究是九十年代才开始的。研究表明学习能力强的学生元认知水平较高,元认知策略可以修补知识水平的欠缺以及补充、完善问题。 本文采取与具体学科相结合的方式,从物理学科的特点出发,从元认知的实质出发,探讨元认知在物理问题解决过程中的作用以及如何对其有效开发。 一、元认知在物理问题解决中的作用 1976年弗拉维尔对元认知的定义:一个人所具有的关于自己思维活动和学习活动的知识及其实施的控制,是任何调节认知过程的认知活动。 1979年Kluwe认为:元认知是明确专门指向个人的认知活动的积极的、反省的认知加工过程; Schraw & Dennison( 1994)定义:元认知是关于个人对自己学习反省、理解、控制的一种能力。元认知概念包括三方面的内容:元认知知识、元认知体验、元认知监控三种成分。三者相互作用,相互联系,其中元认知监控是元认知中的核心成分,它是学习成功的关键。 1. 元认知对物理问题解决的目标进行修正。[1] 元认知使得解题过程具有明确的目标指向性,使解题者的心理活动都朝着目标靠拢。目标是问题解决者主观经验的知觉,它既是问题解决的开始,也是问题解决的归宿,它对问题解决的进程进行指导。解题中问题解决者要监控其解题计划,制订切实可行的目标,致使物理问题解决得以顺利进行。 2. 元认知操作驱动物理问题解决的策略。解决物理问题需要一定的策略。策略是在思维模式的作用下反应出来的,它影响着物理问题解决的效率。问题解决者在解题过程中通过以下方式进行认知操作。(1)激活思维并制定策略,即以目标为出发点,将物理材料放入已有的知识背景中,在操作系统的作用下激活认知结构。在元认知基础上,根据材料系统在认知结构中的相似性,寻求物理认知结构中的“相似点”,把问题改组为适合原有知识的形式,或把以前知识通过经验加工成适合现有问题的形式,从而制订解题策略;(2)改组和实施策略,即通过对问题解决进程的反馈,面对问题,有多种解题方法,问题解决者要进行自我评价,实质上就是对问题解决策略的评价,如果发现目标确信无疑而又达不到或不能顺利达到目标时,则将怀疑其策略,有必要对策略进行调整。 3. 元认知增强解题者在物理问题解决中的主体意识。鉴于物理学科的特点,一般解决物理问题有一定的困难,这就要求解题者能自我激活,发挥自我作用,排除障碍,产生问题解决的欲望。而元认知在整个问题解决过程中存在着内反馈的调节。(1)通过元认知知识,使解题者能审清题意,对问题的类型、难易程度、所用的知识有初步了解,使其能主动选择有效解题策略;(2)元认知体验的自我启发作用,调动非智力因素参与,产生“知”与“不知”的认知体验和情感体验,产生一些新的思路和方法,对原有的思维进行扩充,可以克服障碍,调动解题者的积极性和自信心;(3)元认知的监控作用,体现在解决问题的整个阶段,解题的前计划,解题过程中的监测,解后的评价、反思。 二、通过物理问题解决对学生进行元认知开发 学生的元认知能力往往在解题过程中体现,并在解题过程中培养出来,龚志宁(1999)研究发现元认知策略导致学困生成绩低于优生。有人曾经对比优生与物理学困生解题过程研究中。发现元认知能力的高低一定程度决定物理成绩高低。为了让学生“学会学习”,我们应加强学生物理问题元认知能力的培养。 1.激发学生的自我意识和培养学习动机。元认知能力的发展以一定的心理发展水平为基础,元认知在学生自我意识产生之后才发展起来。如果没有自我意识,学生不能对自己正在操作的认知对象进行积极的计划、监测、评价、反思。自我意识是以主体及其活动为意识对象,对人的认知活动起着监控作用。在解题学习中,人的自我意识是对自己在问题感知、表征、思考、记忆和体验的意识,对自己的目的、计划、行动以及行动效果的意识。 2.剖析思维过程,加强思路教学。以往教师解题只注重解题过程本身以及解题的结果,而忽略学生元认知作用的过程。元认知是认知的认知,元认知时刻在发挥作用,要提高学生的元认知水平,应该让学生体会教师的元认知发挥过程。遇到一个新问题时,向学生示范自己如何分析、寻找有效策略,最终解决问题的整个过程。有时教师也会进入死胡同,但有能力排除障碍。有时教师也犯错,但他运用元认知监控可以修正问题…总而言之,展示教师思维过程,将教师自身过程的自我监控、自我调节展现给学生。[2] 3.传授解题的元认知策略 (1)善于利用波利亚“自我提示语” Polya波利亚在他的解题理论著作中所给出很多提示语,都是属于元认知的范畴。在解题时经常自觉地运用这些提示语,是提高解题元认知能力的有效途径。如果问得合适,就可能引出好的答案,引出正确的想法。他的基本模式为: 第一步——阅读题意,表征问题;第二步——拟定计划,执行步骤;第三步——评价和反思 (2)同学之间相互质问(Inquiry)和争论(Argument) 质问是学生常采用的方法。学生对一些问题常常被动的接受,争论很少受到重视,但它与询问一样重要,(下转第194页)(上接第184页)通过争论对问题的理解能力比被动地接受强四倍,对一些思考型强的、有多种解法的问题,留给学生讨论,让学生说出自己的解题思路。为什么那样做?原因是什么?为什么选择这种方法?让同学之间相互质疑和争论,每个人对自己和他人的做法进行深入思考和反思,使学生对自己所解的题目有更深层的含义。 4.加强不良结构问题的教学 结构不良问题(ill-structured problem)相对结构良好问题(well-structured problem ),学生经常面对的是结构良好问题,目标定义明确,提供多种解题方法,而结构不良问题比较模糊,问题不明确,具有不清楚的目标和多样的解题方法,同时又属于开放型题目,对问题很难得到明确的方法。学生对知识不能迁移,而教育者往往对这方面重视不够。国外有这方面的研究,表明经过结构不良问题的训练,学生的元认知解题能力有很大提高。 总之提高学生物理问题解决的元认知水平非一朝一夕所能实现的,需要师生共同协作。教师应把学生的元认知能力培养纳入自己的教学目标中,在问题教学中,不断渗透元认知知识和策略的训练内容。调动学生的主体意识,注意元监控的实施,只有这样,学生的元认知水平在物理问题解决中得到开发。 同学您好:当您看到这篇文章的时候,您可能是高一的新同学,也可能是正在积极备考的高三同学或知识青年,身份不同,情况不同,但愿望是相同的,那就是学好高中物理。怎样学好物理知识,高中课本的绪论中有一段精彩的话,值得一读。课本的编者提出三点:(1)做好物理实验。(2)学好物理概念和规律。(3)做好练习。这是非常正确的。物理学一词源自希腊文physis,意即自然所以在欧洲古物理学一词是自然科学之总称。物理学是一门研究物质的基本结构和物质最普遍的运动形式和规律的科学,是以实验为基础的科学。整个物理学发展史告诉我们,人类的物理知识来源于实践。通过课堂上老师做的演示实验,同学们在实验室里做的分组实验,都能使我们获得感性知识,从而准确地建立物理概念,验证物理规律和加深对物理规律的理解,增强观察物理现象和分析问题的能力,了解科学实验的方法。学好物理概念和规律学好物理概念,就要深刻理解这些物理量所揭示的物理本质。这里深刻理解是指对每一个物理量应该说得出下述几点:它的物理意义是什么?所谓物理意义是指引入这个物理概念是拿来描述物质的什么性质的。例如电场强度是描述电场这种物质的力的性质的;动量是描述物体运动状态的。(2)它是怎么定义的,定义式和决定式的数学表达式是怎样的。(3)它是矢量还是标量。因为矢量和标量的运算不同,弄清物理量是矢量还是标量不单单是一个有无方向的问题。(4)它的单位是什么。(5)它与定义式和决定式中的其他物理量的关系如何。例如电场强度E与定义式中的电场力F,检验电荷的电量q无关;密度ρ与质量m,体积ν无关;导体的电阻R与导体的长度l成正比,与横截面积成反比,比例常数就是电阻率ρ等等。(6)它与相似相近的其他物理量的区别.例如温度、热量、比热、热能、内能的区别;电势、电动势、电势差、电压、电压降的异同等等。学好物理概念还包括正确理解物理关系。例如,静止、物体的平衡、力的平衡一样吗?以对平衡力与一对作用力反作用力都是等值反向的,但其不同点有哪些?(至少说出三点)。等等.物理规律除用文字表述外,常用代数式表达。学好物理规律就应了解这个规律是如何通过实验总结出来的,表达式中每一项的物理意义是什么,其中的正负号表示什么,等式的左部和右部各表示什么意思,这条规律的适用范围、适用条件又是什么。中学生中乱套公式的现象是常见的,只有了解了公式的适用条件才能正确选用公式,克服乱套公式的毛病。例如,υt=υ0+at 在中学阶段只适用于匀变速直线运动,平抛运动是匀变曲线运动不能用。再例如选用动量守恒定律时,首先要看研究系统所受的外力的合力是否等于零,这样才能决定能不能用动量守恒定律建立方程。物理概念和规律的表述有三种,一是语言文字,二是公式符号,三是图象。图象表述在物理学中占有重要地位,应克服那种只重视公式表述,轻视语言描述,忽视图象表述的倾向,在学习物理时,应当注意同时进行着三方面的学习和训练。万丈高楼平地起,打好基础是关键。只有深刻理解、掌握基本概念、基本规律后,才谈得上解决问题的能力。听课、读书、观摩例题是围绕一个“懂”字,只有自己练才能解决一个“会”字。那么,怎样做物理习题就有助于我们学好知识、增长才干呢?做物理习题的正确思维是什么呢?笔者认为可归纳为八个字:现象、概念、规律、方法。具体来说是面对一个物理习题,首先要认真审题,审题是成功之本,弄清楚这个题目描绘的是一个什么样的物理现象,并弄清所述现象的变化过程(即物理过程),用示意图表达出来。中学生不爱用图表表述问题,这是应该自觉纠正的。力学问题有受力图、光学问题有光路图、电学问题有电路图、热学问题有过程图。能正确画出物理习题的示意图,问题就解决了三分之一。第二,思考这种物理物理现象应该用什么物理概念去描述,这些概念哪些已知,哪些未知,哪个是待求的答案。第三,思考这些概念之间的有机联系是什么,这就是正确选择物理规律了,此时应再考虑所选规律的适用范围和适用条件,这样就可以确认有几个规律]可用了。第四,由于解一个物理题往往有好几条规律可用,所以要进一步考虑用哪一条规律最简单,并考虑用什么数学方法最简捷。解物理题采用数学工具是“不择手段”的,哪个简捷用哪个,往往几何法比代数法简便。但应明确哪种方法也不是万能的,综合应用才是捷径。经验告诉我们,正确选用了物理规律上不能解决问题,困难往往是出在数学上。通过现象、概念、规律、方法这种思路解出题目的所求答案后,还应估计一下答案的合理性。综上所述要学好物理知识,离不开重视和做好实验、学好概念和规律,做好习题这三条。世界上没有天上掉馅饼的地方,也没有报治百病的药。学习是一种艰苦诚实的劳动,一分耕耘,一分收获。

物理学史电磁学论文

物理学史作为阐述物理学发展历程的学科,蕴涵着丰富的素质教育资源。正如我国著名物理学家钱三强曾经说过的:“物理学发展史是一块蕴藏着巨大精神财富的宝地,这块宝地值得我们去开垦,这些精神财富值得我们去发掘。如果我们都能重视这块宝地,把宝贵的精神财富发掘出来,从中吸取营养,获得效益,我相信对我国的教育事业和人才培养都会大有益处的。”如今,随着物理学史知识和教学普及工作的深入发展,物理学史的教育功能已越来越受到国内外教育工作者的关注,将物理学史引入物理教学中也成为物理教育改革的重要举措之一。但与此同时,物理学史教学也存在不少的困难和问题,在实践层面上探索物理学史融入物理教学的行之有效的途径仍是一个亟待解决的问题。一、物理学史和物理教育融合的客观依据(一)传统课程的弊端现代认知理论认为,知识是价值负载的(value-laden)。施瓦布(J.J.Schwab)曾写道:“任何给定时期的科学知识都并非建立在一切事实的基础之上,而是建立在经过选择的事实的基础之上——而这种选择是建立在探究的概念原则的基础之上的。”因此,“科学知识的教学要跟产生该知识的研究过程联系起来。”传统的物理教学往往过于强调学科体系,过于专注于专业知识的系统传授,不注重知识由此获得的探究过程。这种课程严重阻碍了学生对学科实质结构的理解,更背离了科学教育面向真实科学的初衷。物理学史集中体现了人类探索和逐步认识物理世界的现象、规律和本质的历程。任何一个具体的物理知识或理论体系都是在众多研究成果的基础上建立起来的,常常需要科学研究者们几十年甚至上百年的努力才能迈出有意义的一步。因此,物理学的发展史包含着丰富的认识论和方法论因素,以及物理思想和物理观念深刻的变革。同时,物理学的发展过程还包含着丰富的情感体验,体现着认识过程中理论与实践、继承与突破、理性与非理性的辩证统一,具有丰富的“教书育人”的教育因素。通过物理学史教学,让学生不仅可以学到具体的科学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生能更准确地理解科学概念,更好地理解科学的发展,更全面地认识到科学的整体性。从这个角度上看,物理学史应成为物理教学中不可缺少的组成部分。(二)物理学史融入物理教学符合学生的认知规律建构主义认为,学习是主体对知识主动建构的过程,学生是认知信息的加工者、认知结构的建构者,而不是外部刺激的被动接受者和知识的灌输对象。教育重演论(Recapitulation theory of education)中也指出:“现代学生的学习过程是对人类文化发展过程的一种认知意义上的重演,即现代人的认知发展是对其祖先认知水平长期演化过程的浓缩。”教师是学生自主建构的帮助者、促进者和引导者,教师的主要作用是为学生的探索提供桥梁和阶梯,诱导学生自己去分析问题、探究问题并获取知识。物理教师安排教学活动要从学生已有的认知结构出发,教学过程要力图适应这一要求。物理学的发展规律与人的认知规律具有一致性,因而物理学史可以为教师把握好学生的认知规律提供很好的借鉴作用。“教学中的难点常常是科学发展史上难以攻克的科学难题;教学中的重点,也正是科学发展史上关键性的突破和物理学大师们伟大贡献的精华之点。”物理教学从物理学史的角度入手,可以把文化的传授和学习转化成历史上文化创造者与今天文化学习者之间的对话,让学生在相应的文化背景中“身临其境”,从而构建合理的知识体系,主动学习和建构知识。二、促进物理学史和物理教学融合的教学原则(一)适度的原则物理教学的主要任务是使学生系统地掌握物理学知识,发展智力,培养能力,提高品德修养。物理学史引入教学是由于物理学史具有丰富的教育功能,引入时必须围绕物理教学任务展开。目前的物理教材大多是按照逻辑体系编排的,侧重于物理理论的知识结构;物理学史则主要是按照历史发展的顺序编排的,二者有一定区别。我们要把历史的发展过程融入教学中,但不能用对物理学史的学习来代替对物理学本身理论的学习,不能在物理课堂上夸夸其谈,舍本求末,走入本末倒置的歧途。物理学史引入教学一定要坚持适度的原则,这样才能有效地发挥它的教育功能。(二)贴近的原则引入史料是为了更好地使学生理解物理知识,教学中要从学生的学习基础出发,引入的史料必须深入浅出,尽量不含学生尚未掌握的概念和原理。将一些物理学史中学生无法理解的、深奥的推理过程灌输给学生。这不仅起不到好的效果,反而会加重学生的学习负担,无法真正发挥物理学史的教育功能。(三)充分的原则引入史料时不应只是仅仅把它作为活跃课堂气氛的“糖衣”,将知识简单地“故事化”“庸俗化”处理,这是对物理学史不负责任、没有意义地滥用。一定要清楚引入的目标,有针对性地展开阐述,充分利用好引入的知识。(四)灵活的原则将物理学史引入教学中形式要灵活。灵活不仅包括引入的内容,也包括引入的时机和方式等。既可系统引入,也可分散引入;既可以在课堂上引入,也可以让学生在课外查找资料;既可以围绕知识点进行演绎,也可以针对知识面进行总结。总之,只有在有限的时间内做到重点突出、点面结合、详略得当,才能达到最佳的效果。(五)延伸的原则在教学中引入史料时不应单纯追求服务于课堂教学的某一知识点或面,而要将课堂上引入的史料作为一个切入点,营造一种“意味无穷”的教学心理境界,使学生带着更多、更新的内容兴趣盎然地进入新一轮的探索,把问题带到课外,有利于学生养成“终身学习”的好习惯。三、物理学史融入物理教学的具体方法(一)利用物理学史引入新课,激发学生兴趣“兴趣是最好的老师”,引入物理学史可以增强学生的学习兴趣。上新课之前,可根据教学内容搜集有关史料作为预习材料,以图文并茂、形象生动的表现手法展示给学生。在课堂上应尽快地把学生学习的积极性调动起来,吸引学生的注意力,形成探究的愿望,潜移默化地使其学习动力得到加强。(二)初学阶段教学中穿插史料,帮助学生理解物理知识学生学习新知识时引入的重点应放在帮助学生理解规律、降低学习难度上。可采取“演绎—对比”的方式将物理学史内容引入到理论的讲解中来,即适时地从概念、规律中引出假说,然后演绎其发展体系,将历史融汇到概念、思想或理论的提出和发展中,通过对各种假说异同的分析和比较,帮助学生理解规律。例如,在学习牛顿运动定律时,学生虽然在中学里学过也用过,但由于他们在中学里要应付考试,学习的重点一般都在做习题上,教学中一定要将学生的注意力吸引到理论本身上来。例如,可从惯性定律出发,引出其建立的曲折过程。从亚里士多德的“推动论”到中世纪时布里丹、阿尔伯特、奥里斯姆等人的“冲力理论”,到伽利略类似惯性原理的说法,到笛卡尔的惯性定律,再到牛顿将惯性定律以第一原理的形式正式确立下来。并在其间穿插介绍各种假说提出的历史背景、存在的困难、新旧理论之间的矛盾等,通过比较它们之间的异同,可以帮助学生理解三大定律的内涵以及其作为力学体系基础的重要作用,这样客观上可以起到帮助学生理解物理规律、减轻学习难度的作用。(三)理解加深阶段深化史料,抓住关键环节重点剖析此时学生头脑中对内容已有一定认识和理解,因此,重点可放在加强科学思维、方法教育方面。即对隐含在物理知识中的科学方法进行点拨、渗透,充分发挥物理学研究过程动态知识体系的价值。以毕奥—萨伐尔定律为例。18世纪牛顿力学的知识基础使得人们开始猜测电力和磁力是否也像万有引力一样遵守平方反比定律。在磁力研究方面,英国科学家米切尔明确提出了“磁力按磁极距离的平方的增加而减少”的观点。之后,毕奥和萨伐尔通过长直电流对磁极作用的实验,得出电流对磁极的作用力与磁极到长直电流导线的垂直距离成反比的结果,后在法国数学家拉普拉斯的帮助下,通过数学运算,分析得出了电流元激发磁场的准确公式,即毕奥—萨伐尔定律。以上研究过程中恰当的类比、巧妙设计的实验、适时引入的数学工具对规律的建立无不起着至关重要的作用。(四)知识升华阶段补充材料,启发学生此时重点应放在物理原理、思想和其在知识、哲学、世界观等方面的应用上。一段知识的学习结束后,可以以历史为线索,将内容梳理一遍,让学生对知识体系及其发展史有个整体的认识,带领学生从经典物理学的概念、思想方法、观念等逐步过渡到现代物理学,这样客观上可以起到促进教学内容现代化的作用。让学生充分了解到物理学作为自然科学基础的意义所在,增强学习的兴趣和信心;另外,将物理学大师们在探索世界奥秘道路上表现出的怀疑、求实、进取、创新、严谨、思辨、自强、爱国等优秀品质和科学素养对学生进行有效的强化和渗透,使学生从中受到熏陶和领悟,引导学生用物理学思想去指导学习、工作和以后的人生,培养创造性人才,这些从某种意义上讲比学生学到知识本身更加重要。比如电磁部分知识讲完后,可以以电磁学的发展史为线索将内容概括总结一下。从公元前基本电、磁现象的发现,到1600年吉尔伯特将它们转变为科学,到1750年米切尔、1785年库仑分别提出电力、磁力服从平方反比定律将电、磁学带入定量研究阶段,到1800年伏打发明电堆使电学由静电走向动电,再到1820年奥斯特发现电流的磁效应,打破了电、磁之间的界限。电磁相似性的发现带动了19世纪二三十年代电磁学突飞猛进的发展。后来,安培对电磁作用力的研究、1831年法拉第发现电磁感应现象进一步证实了电磁现象的统一。到最后1865年麦克斯韦将法拉第的电磁近距作用和安培的电动力学规律结合在一起,概括出描述电磁规律的方程组,建立了电磁场理论,并预测了光的电磁性质,实现了物理学史上第二次大综合。电磁理论为相对论的建立奠定了坚实的基础。它为光速不变性提供了理论依据,爱因斯坦也正是在研究麦克斯韦电动力学的不对称性时发现问题,进而建立狭义相对论的。相对论是现代物理学的基石,对物理学、天文学、哲学等的发展都起到了不可估量的作用。这样带领学生回顾之后,整个电磁学内容在学生头脑中会成为一个脉络清晰的整体,其间从经典知识到现代物理的过渡在历史的引导下也显得非常自然。科学家们工作的价值值得后人景仰,同时,科学家追求真理时表现出的坚忍不拔的意志、百折不回的决心、吃苦耐劳的品格和无所畏惧的献身精神等也让人为之赞叹。这些会潜移默化地影响到他们科学的世界观和人生观的建立,使他们终生受益。(五)充分发挥学生的积极能动作用,鼓励学生自觉投身物理学史学习,丰富精神生活物理课堂时间是有限的,教学内容也有一定的局限性。我们可以利用课外时间采取多种形式加强对学生的引导,激发他们的学习热情。传统教学中近现代物理知识涉及不多,但其中的革命性成果,如相对论打破了经典力学的时空观,量子力学打破了可控测量过程的梦想等对于开阔学生思维是极其有益的,可以开设专题讲座的形式介绍给学生。另外,开展专题讨论活动,如我们在学校2006级计算机系班级中开展了“引入物理学史加强大学生科学素质培养教育”的活动。由教师为学生提供研究题目、参考内容和指导,要求学生撰写相关的小论文。这样既培养了学生搜集和整理资料的能力,也在一定程度上提高了他们研究问题的能力。四、物理学史融入物理教学应特别关注的问题(一)物理教师应把物理学史素养提高到基本素养高度上来物理学史中整合了物理学科的知识体系,为教学提供了宏观、中观、微观的背景。通过对物理学史的学习,可以帮助教师发现物理学发生、发展和演化的规律,揭示相应认识论、方法论的变革,并对物理学发展的基本趋势产生一定的预测。教师只有对物理学有了整体的把握并用历史的眼光去看待、组织教学内容,才能避免教学中知识的“片段化”。“学史可以明智”,对学生如此,对教师亦是如此。(二)进一步探索适合二者结合的教学模式我们现在采取的教学模式相对比较传统,影响了物理学史教育功能发挥的效率。近年来,西方一些科学教育专家以建构主义为指导思想,倡导将科学史、科学哲学和科学社会学引入科学教育,形成所谓的HPS教育模式,将学生的观念与科学史中科学家的观念相互交融,建构科学观念。为此,必须重构知识体系,将科学史、科学社会等知识引入课堂,从而实事求是地反映人们对自然科学活动和自然科学知识性质的新认识,呈现自然科学知识发展中的矛盾、竞争和斗争,使学生对自然科学知识与社会的关系能有全面而深刻的认识。我们要借鉴国外这些先进的教育理念,进一步探索适合我国学生具体情况的教学模式。物理学史应该成为物理教学不可分割的一部分,它可以极为有效地激发学生的学习兴趣,使学生更好地掌握知识、发展能力和养成德行。

这个你去网上搜吧,贴出来估计你也不方便看

一、力学1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。7、17世纪,德国天文学家开普勒提出开普勒三大定律;8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。11、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。二、电磁学12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。18世纪中叶,美国人富兰克林提出了正、负电荷的概念。1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。三、热学27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。四年后,帕斯卡的研究表明,大气压随高度增加而减小。1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。四、波动学22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。五、光学25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。26、1801年,英国物理学家托马斯�6�1杨成功地观察到了光的干涉现象。27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。31、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。32、激光——被誉为20世纪的“世纪之光”。六、波粒二象性33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。七、相对论38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。狭义相对论的其他结论:①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。③相对论质量:物体运动时的质量大于静止时的质量。41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。八、原子物理学42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。47、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。 望采纳 谢谢

大学物理电磁学论文专业参考文献

这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射参考文献〔1〕文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

自己上百度找,不过最好自己写,这里有一参考:摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

  • 索引序列
  • 大学物理电学论文
  • 大学物理论文2000字电磁学
  • 有关电场的大学物理论文
  • 物理学史电磁学论文
  • 大学物理电磁学论文专业参考文献
  • 返回顶部