大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
大学数学文化教学研究优秀论文
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。下面是我整理的大学数学文化教学研究优秀论文,欢迎大家分享。
大学数学文化教学研究论文
大学数学是由高等数学、线性代数、概率论与数理统计等课程所组成的基础学科。传统意义下的大学数学教学是传授数学知识和技能,培养学生用数学方法和思维分析问题、解决问题。但普遍而言,很多学生对于一些知识点,不知道怎么学、为什么学以及学了如何用。教师的教学方法始终以灌输式为主,缺乏以问题为导向的教学实践,等等。因此,如何激发学生学习数学的兴趣,是大学数学教学的一个重点和难点。而数学文化对于大学数学教学来说是一种十分有效、不可或缺的工具。本文研究的正是解决这一问题的方法之一———数学文化。认识到其在大学数学教学中的重要作用,并将数学文化与大学数学教学合理结合,不但能有效地激发学生学习数学的兴趣,增强大学生的学术专业水平,更能够提升大学生的数学文化素质。数学文化的内涵不仅表现在知识本身,还寓于它的历史。通过对数学文化的学习,不仅可以激发学生的学习兴趣,也有利于学生对数学概念、数学方法和数学原理的理解与认识的深化。在此过程中,可以使学生在接受数学专业训练的同时,获得人文科学方面的修养,提高学生的人文素质。数学文化中的数学史可以引导学生学习数学家的优秀品质,坚持真理,不畏强权,努力追求,使学生正确认识学习过程中遇到的困难,树立学习数学的兴趣和信心;数学文化中蕴含的美可以培养学生的美学修养,感受数学的简洁美、统一美,形成对数学良好的情感体验,提高学生的数学素养和审美素质。
一、数学文化教育渗透于大学数学教学中的重要性
1.有利于活跃课堂气氛,激发学生的学习兴趣。学生跨入大学校门,不适应高等数学的思想方法。这就要求高校数学教师在传授知识的同时,培养他们的兴趣。如果用历史回顾和名家轶事来点缀教学一定会使学生远离数学的抽象、复杂,再适时地将数学的概念与方法贯穿其中,能够将内容由抽象变具体,使枯燥的数学教学变得生动活泼,从而使学生热爱数学,激发其学习的兴趣。
2.有助于体会数学本身的美著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,数学中处处充满着简洁美、奇异的美、对称的美、抽象的美。比如对称美:12×12=144,21×21=441;13×13=169,31×31=961;102×102=10404,201×201=40401。再比如,0.618…它被中世纪学者、艺术家达芬奇誉为“黄金数”,他也被德国天文学家、物理学家、数学家开普勒赞为几何学中的两大“瑰宝”之一(另一个为“勾股定理”)。事实上,无论是古埃及的金字塔,还是古雅典的巴特农神庙以及今日的巴黎的埃菲尔铁塔,这些世人瞩目的建筑中都蕴涵着0.618…这一黄金比值(它显然展示着数学美感)。而数学中更为一般的对称,则体现在函数图像的对称性和几何图形上。前者是运用在建筑、美术领域后给人以无穷的美感,后者则为我们探求函数的性质提供了方便。爱因斯坦说过:“这个世界可以由音乐的音符组成,也可以由数学的公式组成”。数学文化则是数学美的主要表现形式。数学是无国界的,大部分学生对于数学的公式和符号心生畏惧,但这些数学公式和符号的实质是一种数学语言的表现,如同音乐的韵律一般。数学是一种理性的美,音乐是感性的美。在教学过程中,介绍数学中的美学,将增加数学本身的魅力,提高学生的学习兴趣,从而使学生真正的喜欢上数学,最终提高教学效率,提升大学生自身的数学素养。
3.有助于数学知识的掌握数学教学中充满了对公式的推理和应用,教学过程重视严密性、逻辑性和系统性。因此,需要培养学生的逻辑思维能力,而这种能力的培养要求给学生传授专业的数学知识,并且加以练习。但是,在课程教学过程中,部分教师很少讲数学精神以及数学思想等一系列数学文化给学生听,甚至一些数学专业的大学生都对数学学科发展史以及一些著名数学家这一系列的数学文化内容知晓甚少。笔者认为,许多数学知识体系的'建立都是通过不断进步最终形成的较为完善的体系。可很多学生只知其然,不知其所以然的模式导致只是为学习而学习,却不知道这些公式的原理。故了解知识背后的数学文化,能够使学生避免成为填鸭教学的受体,真正地成为数学魅力的感受者和学习者。
二、如何将数学文化渗透于大学数学教学中
大学数学教学的主要任务是让学生掌握数学的概念、思想和方法,在课堂教学中,要有目的地再现数学历史情景。如讲导数概念时可讲授微积分的创立过程,要用问题式、启发式和发现式等方式使学生有意识地分析数学家们原来的创造思维活动脉络,体会数学思想的整体连贯性,不能简单的回顾历史。这样才会全面深刻地理解极限概念,从而对以后用极限作为基础的微积分学、级数论等会更容易接受,大学数学也就变得具体、简单了。具体地,
1.高校教师加强对数学文化的认识如果一个大学数学老师在课堂上只侧重于理论的证明、推导,数学的概念,定理证明的过程,而不是概念的由来,也不是发现定理的过程,这对于学生对知识的全面掌握和理解是十分不利的。因此大学数学教师应该转变数学教育观念,把数学教学看成一种文化系统,利用数学文化的教育来启蒙学生的思想,让学生了解数学知识和方法背后的数学文化价值。比如,高等数学中微积分的教学,应该介绍微积分产生的发展史和思想史,而后是讲授概念、定理及相关方法,最后是介绍其具体的应用价值。
2.运用多媒体技术辅助数学文化教学多媒体通常是指录像带与录像机、幻灯片与幻灯机、投影片与投影机、光盘与VCD、CAI课件与计算机,等等。“课件”是通过计算机将文本、图形、声音、图像、动画、视频等多种媒体进行综合处理制作而成的、用于课堂教学的软件。多媒体是现代化教育技术的重要组成部分,它可以丰富和优化传统教学方法。借助现代教学手段,数学文化可以更好地与教学过程相结合,提高资源的利用率,使大学数学教学活动焕发青春、充满活力。比如,在介绍定积分概念时,我们可以溯源到牛顿的“分析学”,计算任意曲线下图形的面积。此时,可以利用多媒体课件制作动态的图形分割,而后近似求曲边梯形的面积,利用数学软件再现此过程无疑是生动形象的,很有利于学生从直观上理解这种基于积分思想的求面积的方法,同时使学生感受到了纯数学与现代科技相结合的巨大魅力。
三、结语
在大学数学教学过程中突出数学的文化功能,可以提高数学教学的效率,扩展学生的视野,加深学生对数学知识的理解,使学生在学习数学知识与思想方法的同时,进一步了解数学、喜欢数学、爱上数学,最终达到事半功倍的效果。
自主构建知识初中数学教学研究论文
【摘要】
随着我国教育事业的进一步发展,教育部门对课堂教学质量提出了进一步要求,对于课堂主体与课堂教学目标等,也做出了明确规定。结合实际情况,对以学生自主构建知识为核心初中数学教学顺利进行的有效途径进行分析,以期为今后的各项工作提供宝贵经验。
【关键词】
自主构建知识;数学教学;提问
初中数学学科具有一定的抽象性与难度,若是学生缺乏对相关知识的正确理解,将会直接影响到数学学习质量。因此,初中数学教师需要在尊重学生主体地位的前提下,鼓励学生自主构建知识,使得学生在这一过程中可以深入了解数学知识,为培养其自主学习能力、良好的思维模式奠定有利基础。
一、鼓励学生提问
问题是促使学生进行思考的根本动力与源头,只有在发现问题以后,学生才会从心里引起重视,并充分开动脑筋进行思考,有助于培养学生良好的思维能力与自主学习能力。这就需要初中数学教师在进行课堂教学的过程中,加强对学生的引导,引导学生及时发现各种问题,对此教师可以通过启发诱导、设置疑问、类比分析等方式来展示问题,使得学生可以在教师正确的引导下,对问题进行思考。值得注意的是,教师在这一过程中还需要充分激发学生的学习兴趣,虽然问题设置可以在一定程度上引起学生的好奇心,但是若是学生缺乏足够的兴趣,将会影响到学生思考效果。因此,初中数学教师可以通过为学生创设情境的方式,来吸引学生,刺激学生思维,从而达到引导学生思考数学问题的目的。与此同时,为了使学生在今后的数学学习过程中,提高自主学习能力,教师还需要针对学生的问题意识进行培养,让学生将学习、阅读、课堂中的无法理解的内容以问题的形式提问,以培养其问题意识,而教师则是可以让学生通过小组合作探讨的方式,让学生对问题进行思考与探索,加强学生之间的交流与沟通,为进一步提高其自主学习能力奠定有利基础。
二、鼓励学生自主发现问题并进行探索得出结论
新时期,传统教学模式已经无法满足现下教育部门对于初中课堂教学的要求,同时要求教师必须尊重学生的主体地位,且要以培养学生的个人能力、开发学生思维为目标而开展各项工作,这就需要初中数学教师及时改变教学方式、教学模式等,以适应当前教育需求。为了帮助学生实现自主构建知识,教师在实际教学的过程中,需要充分发挥自身引导作用,鼓励学生勇于提问、发现问题,并充分利用自身所掌握的数学知识对问题进行自主探索,使得学生可以通过自己思考,来学习相关知识,并深化对于数学知识的理解。例如,教师在为学生讲授《点、线、面之间的位置关系》这一部分内容时,可以通过话语对学生进行引导:“在我们生活中,点、线、面是非常常见,那么在你们的生活中会遇到哪些与点、线、面相关的事物呢?”由此来引起学生的思考,在学生指出这些存在于生活中的点、线、面时,教师又可以引导学生对这些事物的特点进行概括,从而总结出有关点、线、面位置关系的相关性质,让其在思考与探索中得出结论,培养其思维能力与自主学习能力,从而实现自主构建知识。
三、引导学生得出结论后进行反思,实现自主构建知识
在学生通过思考与自主探索得出结论以后,并不意味着教学环节就此结束,教师还需要结合学生的实际情况、思维情况等方面,引导学生进行反思,做到学与思之间的相互结合。通过引导学生进行反思,有助于进一步加强学生对相关数学知识的理解,而学生也可以对自己从提问、思考、探索、得出结论的整个过程进行思考,以便于学生及时发现自身问题。为了使学生今后的努力方向更加明确,初中数学教师应根据实际情况,对学生进行全面、综合性的评价,在肯定其思想上闪光点的同时,指出学生在思考、探索过程中存在的偏差,促使学生在今后思考的过程中加以改正,对于培养学生良好的思维能力、自主学习能力等方面具有重要意义。此外,通过对整个过程进行反思,还可以帮助学生发现知识之间的内在联系,从而为其构建完成的知识脉络奠定有利基础。
四、结束语
综上所述,在时代发展的过程中,传统教学模式无法适应当前国家教育部门对于学生各方面的要求,且教学手段的滞后性也会在一定程度上限制人才培养有效性的进一步提升,而中学作为培养学生思维能力、自主学习能力的重要阶段,对于学生今后学习与发展具有重要影响。这就需要初中数学教师充分利用课堂教学时间,引导并帮助学生实现知识的自主构建,深化学生对于各项数学知识理解,并在知识之间建立起联系,从而有效提高课堂教学质量。
参考文献:
[1]马贤.初中数学自主学习能力的培养[J].学周刊,2017,(28):99.
[2]党晓红,徐大贵.初中数学教学中学生自主学习方式初探[J].中国校外教育,2017,(07):61.
[3]肖瑶.中学数学教学中培养学生探索和自主学习的能力[J].现代妇女,2014,(02):116.
作者:沈爱华 单位:江苏省连云港市海庆中
《小学数学教育》不是核心期刊,期刊级别: 省级期刊
小学数学教育
是由辽宁省教育厅主管、中国教育学会小学数学教学专业委员会主办的小学数学期刊。 《小学数学教育》是中国教育学会小学数学专业委员会会刊。该刊创办以来,密切配合基础教育的中心工作和中国教育学会小学数学专业...
兴趣数学吧……………………………………
《数学与管理:小学版》、《现代中小学教育》。。可供参考,期刊之家可部分期刊投稿,在线沟通就可以做初步了解。
国内关于教育小学,教育小学这三方面公认的核心期刊有:教育研究,高等教育研究,中国教学,高教探索,北京教育评论,教育理论与实践,高等工程教育研究,中国教学高教探索,教育学报,江苏高教教学,教育学教育科学,外语教学理论与实践,学前教育研究,中国特殊教育等。
基础一点的《小学教学设计》数学版,理论强一点的《中小学数学》小学版
小学数学新教师,订哪些杂志好呢?有很多小学数学方面的杂志,在此介绍几本:刊物名称 刊物编号中小学数学(小学版)2-225《小学数学教育》8-299《中小学数学》2-225《小学数学教师》 4-312《教学月刊》(小学版数学)4-152《小学教学设计》 22-56《小学教学参考》 48-39
我也赞成《小学数学》
你可以去培优智能看,上面有免费论坛资料,也有智能化教学方式免费查看。非常适合小学数学教师
小学数学答辩题及参考答案 01 A、义务教育阶段数学课程的基本出发点是什么? 基本出发点是促进学生全面、持续、和谐的发展。B、数和数字有什么不同? 用来记数的符号叫做数字。常用的数字有四种:阿拉伯数字、中国小写数字、中国大写数字、罗马数字。现在国际通用的数字是阿拉伯数字,他共有以下十个:1、2、3、4、5、6、7、8、9、0。数是由数字组成的。在用位置原则计数时数是有十个数字中的一个或几个根据位置原则排列起来,表示事物的个数或次序。数字是构成数的基础,配上其他一些数字符号,可以表示各种各样的数。 02 A、《标准》明确指出:学习数学不仅要考虑数学自身的特点,更应遵循什么? 更应遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲生经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获的对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进一步的发展。 B、分析并解答下面的文字题 105减去78的差乘15,积是多少? 可以从问题入手分析,要求“积是多少”就要知道两个因数,一个因数15,另一个因数是105减去78的差,所以现求差后求积,即:(105-78)×15 03 A、 请你谈谈义务教育阶段的数学课程应突出体现什么? 义务教育阶段的数学课程应突出的体现基础性、普及和发展性,使数学教育面向全体学生,实现: ??人人学有价值的数学; ??人人都能活的必需的数学; ??不同的人在数学上得到不同的发展。 B、下面各题的商是几位数,确定上的位数有什么规律?(除数是一位数的除法) 2016÷4 7035÷5 4543÷8 90180÷9 上面各题的商依次是三位数、四位数、三位数、五位数。根据除法法则可找出如下规律:一位数除多位数,如果被除数的前一位小于除数,那么商的位数就比被除数少一。如果被除数的前一位大于或等于除数,那么商的位数就和被除数同样多。 04 A、《数学课程标准》在学生的数学学习内容上有何要求? 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现方式应采用不同的表达方式,以满足多样化的学习要求。 B、根据下面的文字题,从下面各式中选出正确算式,并将其余的算式正确的叙述出来。 252与173的和乘以8,再除以2,商是多少? (1)(252+173)×(8÷2) (2)(2)(252+173×8)÷2 (3)(3)(252+173)×8÷2 (4)(4)252+173×8÷2(5)(3)式正确 (1) 式:252与173的和乘以8除以2的商,积是多少? (2) 式:252加上173乘以8的积,再除以2,商是多少? (3)式:252加上173乘以8除以2,和是多少? 05 A、《数学课程标准》在学生学习数学的方式上有何? 有效的数学学习活动不能单纯的依赖模仿记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。由于学生所处的文化环境、家庭背景和自身思维方式不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。 B、举例说明整除和除尽有什么关系? 整除一定是除尽,而除尽不一定是整除。 如:8÷4=2 说8能被4整除 2÷0.2=10 因为0.2是小数,不是自然数,只能说2能被0.2除尽,或0.2能除尽2,不能说整除。 07 A、《标准》要求对数学学习的评价要关注些什么? 对数学学习的评价要关注学生学习的结果,更要关注他们的学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。帮助学生认识自我、建立信心。 B、“整数改写成小数,只要在小数后面添写0就行了。”这种说法对不对?为什么? 不对。整数改写成小数,必须先在小数后面点上小数点,然后再添写0,如果不点小数点,只在整数后面添写0,就把原来的数扩大了10倍、百倍??数值就改变了。所以这种说法是错误的。 08 A、请谈谈现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。 B、在研究近似数时,为什么2和2.0不一样?在研究近似数时,一定要注意精确到那一位。2是精确到个位,2.0是精确到十分位;2.0比2精确。从四舍五入法得到的近似数来考虑,2和2.0不一样。近似数2是由不小于1.5,小于2.5之间的数精确到个位得到的;而近似数2.0是由不小于1.95,小于2.05之间的数精确到十分位得到的;近似数2.0的取值范围比近似数2的取值范围小,所以近似数2.0比2更精确。 09 A、《数学课程标准》将九年的学习时间具体划分为那几个学段? 分为三个阶段:第一学段(1—3年级) 第二学段(4—6)年级 第三学段(7—9年级) B、写出关于小数的两种分类方法。 (1)按整数部分来分类:小数分为纯小数和带小数。 (2)按小数部分的位数来分类:有限小数、无限小数纯循环小数 混循环小数 不循环小数 10 A、《标准》明确了义务教育阶段数学课程的总体目标,并从四个方面作了进一步阐述,请说出这四个方面。 知识与技能;数学思考;解决问题;情感与态度。 B、教学“分数意义”时为什么要强调“平均”二字? 分数是从测量和等分中得到的,而且只有把物体分成相等的份数,才能得到确定的数。所以在教学“分数意义”时,要强调“平均” 分。分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。学生在叙述时,如果忽落了“平均”二字,也就是说学生只看到了“分”的一面,而忽落了怎样分的一面,这样表示的数可能就不是分数了。而强调“平均分”是把分数限定在“等分”这一范围中进行的,这样表示的分数才叫做分数。所以教学时,要强调“平均”二字。 11 A、请说出《标准》中刻画数学活动水平的过程性目标动词。《标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词。 B、分数与除法有什么关系? 分数与除法有以下关系:m÷n=m/n(m、n都是整数且 n≠0)分数与除法比较,分数中的分子相当于除法中的被除数,分母相等于除法中的除数,分数线相等于除号,分数值相等于除得的商。分数与除法的区别是分数是一个数,而除法是一种运算。它们是两个不同的概念。 12 A、请说出《标准》中刻画知识技能的目标动词。 《标准》中使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词。 B、质数、质因数和互质数三个概念有什么区别?(1)质数是一个数,如2是质数,7是质数。 (2)质因数虽然也指一个数,但它针对一个合数而言的。例如:7是28的质因数。 (3)互质数不是指一个数,而是指公约数只有一的两数,例如:5和7是互质数,8和9是互质数。 13 A、《标准》将学习内容分为那四个学习领域? 分为:数与代数、空间与图形、统计与概率、实践与综合应用。B、举例说明为什么一个数的各位上的数的和能被3或9整除,这个数就能被3或9整除? 下面以8235为例来说明。 8235=8000+200+30+5 =8×1000+2×100+3×10+5 =8×(999+1)+2×(99+1)+3×(9+1)+5 =8×999+8+2×99+2+3×9+3+5 =8×999+2×99+3×9+(8+2+3+5) 因为最后一步的前一部分(8×999+2×99+3×9)一定能被3(或9)整除;且与8235无关。所以说,一个数8235各位上数的和8+2+3+5,如果能被3或9整除那么这个数8235就能被3或9整除;如果不能被3或9整除,那么这个数就不能被3(或9)整除。 14 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的数感。你人为数感在教材中主要表现在哪些方面? 主要表现在:理解数的意义;能用多种方法表示数;在具体情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决而选择适当的算法;能估计运算结果,并对结果的合理性作出解释。 B、在分数和比的性质中强调0除外,为什么没有在除法商不变的性质中提出0除外? 因为在分数和比的性质中提到的是分子与分母和前项与后项都乘以或都除以相同的数(0除外),特别强调0除外,就是因为0也是数;而除法商不变的性质中提到的是被除数和除数同时扩大或同时缩小相同的倍数,商不变,倍数不能是0,因此不必提出0除外。 15 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的符号感。你认为符号感在教材中主要表现在哪些方面? 主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。B、同分母分数相加为什么分母不变,分子相加? 分数的计数单位,是把单位“1”平均分后得到的新单位;它随着分母的变化而变化。分母不同的分数,分数单位也不同;同分母分数,分数单位是相同的。分数的分子时表示分数的个数,而不表示每一分的大小,同分母分数相加,即要把几个分数单位与另几个分数单位和并在一起就是分子相加;显然分数单位没有变,即分母不变。例如:2/7+3/7=(2+3)/7 即2个1/7加上3个1/7,等于5个1/7。16 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的应用意识。你认为应用意识在教材中主要表现在哪些方面? 主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实生活中有着广泛的应用,面对实际问题时能主动尝试着从数学的角度运用所学的知识和方法寻求解决问题的策略;面对新的数学知识时,能主动的寻找实际背景,并探索其应用价值。 B、体积、容积、容量有什么异同? (1)定义不同。体积是物体所占空间的大小;容积、容量是器皿所能容纳物体的体积。 (2) 测量方法不同。计算物体的体积要从物体外面来量,计算容器的容积,容量要从容器的里面来量。如果计算容器构成物体得体积,里外两面都要量。 17 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的推理能力。你认为推理能力在课程内容中主要应表现在那些地方? 主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰地有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论与质疑。 B、侧面积与表面积有什么区别? 侧面积 表面积表面积就是指物体表面面积的大小,实际上是指物体与空气接触面的大小,侧面积是指物体侧面面积的大小。 18 A、谈谈你对《标准》知识技能目标中“灵活运用”一词的理解?能综合运用知识,灵活、合理的选择与运用有关的方法完成特定的数学任务。B、比值与化简比有什么区别? 求比值是求出前项是后项的几倍(或几分之几),方法是前项除以后项,结果是一个数值;化简比是指化成最简整数比,方法是用比的性质,结果得到一个比。 19 A、谈谈你对《标准》过程性目标中“体验”一词的理解? 参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。B、下面这样求最小公倍数是否正确?为什么?2 60 18 24 3 30 9 1210 3 4 ∴60、18和24的最小公倍数是:2×3×3×10×4=720 不正确。因为用短除法求三个数的最小公倍数,必须除到三个数两两互质为止;而题中仅除到三个得数互质就停止了,这时其中的10和4两个得数还有公约数2,所以题中求的不是最小公倍数。 20 A、请简单谈谈义务教育阶段的数学学习,学生能够达到的总 目标。1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。 2、初步学会用数学思维的方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。 3、体会数学与自然及人社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。 4、具有初步的创新精神和实践能力,在情感与态度和一般能力方面都能得到充分的发展。 B、学生作业中出现“1/3+3/4=4/7”教师应如何处理? 学生出现这个错误的原因是对异分母加减法没有真正理解。这就要求教师引导学生分析1/3和3/4的分数单位不同,教学时,可以画图使学生直观地看到1/3分数单位和3/4的分数单位是不同的。因而不能直接相加减,首先要统一分数单位,统一分数单位的方法是通分;通分之后也只是把分子进行相应的加、减运算,而分母不变(即按分母加减法的法则进行计算)。 21 A、请简单说说你对“数学思考”这一课程目标的理解。 答:1、经历运用数学符号和图形描述现实世界的过程,建立初步数感和符号感,发展抽象思维。 2、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。 3、经历运用数据描述信息、作出推断的过程发展统计观念。 4、经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理的、清晰的阐述自己的观点。 B、 刚入学的小学生在写10以内的数时易犯什么样的错误?常会出现如下错误:①把上、下、左、右的位置搞错; ;②写数字的笔画不到位,拐弯处不圆滑;③笔画错误,如把8写成;④笔顺错误,如写8时,笔顺写成 ;⑤数字各部分的比例掌握的不好。 为了使学生正确的书写数字,教学时首先引导学生观察字形:①使学生认识到:0、1、2、3、6、7、8、9这些数字都是一笔写成的,4、5两个数字有两笔写成。②1、4、7是由直线条组成,3、0、6、8由直线条和曲线条组成。其次,科学的教授写数字的一般步骤:看示范书写讲笔顺,描虚线,独立书写。还可以利用口诀说明数字的形状,5像小称勾,8像麻花,6像小口哨,9像气球带飘绳?? 22 A、请简单说说你对“情感与态度”这一课程目标的理解。1、能积极参与数学学习活动,对数学又好奇心和求知欲。 2、在数学活动中获得成功体验,锻炼克服困难的意志,建立 自信心。 3、初步认识数学与人类社会的密切联系及对人类历史的发展作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。 4、形成实事求是的态度以及进行质疑和独立思考的习惯。B、在一年级讲数的组成时,为什么不能说0和几组成几?在一年级讲数的组成时,是指一个数里含有多少个自然 单位。因为0不是自然数的计数单位,且不含有计数单位,所以讲数的组成时都不包括0。 23 A、统计与概率研究的内容有哪些? “统计与概率”主要是研究现实生活中的数据和客观世界中的随机现象,它通过对数据的收集、整理、描述和分析以及对事件发生的可能性的刻画,来帮助人们做出合理的推断和预测。B、比和比分有什么区别? 比是两个数相除,当然是除数不能为0的。因此,比的后项也是不能为0的。比是指两个数的比(倍比)。 比分是指一场比赛的结果,反映胜负的得分情况。得分的后项可以是0,也可以不是0。 24 A、你如何认识《标准》中的四个学习领域之间的关系?“数与代数”、“空间与图形”、“统计与概率”三部分,是实践与综合应用的基础。“实践与综合应用”将帮助学生综合应用已有的知识和经验,经过自主探索和合作交流,解决与生活密切联系的,具有一定挑战性的综合性的问题,以发展他们解决问题的能力,加深对“数与代数”、“空间与图形”“统计与概率”内容的理解,体会各部分内容之间的联系。B、怎样教学“小数的意义”? 答:教学“小数的意义”时,大体可以从以下三个方面进行:① 通过讲解小数的产生是学生了解小数的意义。② 从小数与分数的关系来讲解。 ③从对整数和小数的数位顺序表的掌握中进一步理解小数 的意义。这里要向学生讲清: ①整数和小数的基本单位都是“1”。不论表示整数还是表示 小数个位必须表示出来。 ②各个数位的位置及小数点的作用。③各个数位的计数单位及单位间的进率关系。 25 A、新课程对教师的角色要求是多方面的。请简单谈谈教师角色的转变主要有哪些? 1、由传统的知识传授者向新课程条件下的知识传授者的变化。 2、教师成为学生的促进者。 3、教师成为研究者。 B、教学“11——20各数的认识”时,学生常把12误写成21,为了防止学生出现这种情况,你怎样处理? 在教学时,要着中强调数位的意义。可根据低年级学生的特点,把书上的方格图做成教具,通过左右两边放的方格数量来说明。另外,还要通过学生操作学具来进一步巩固数位的初步认识。 26 A、 教师是促进学生自主学习的“促进者”。请谈谈“促进者” 这种角色的特点。(1)积极的旁观。(2)给学生以心理上的支持。(3)注重培养学生的自律能力。B、怎样教学万以内数的读法和写法? 教学万以内数的读法和写法的关键是熟记数位,所以教学中一定要牢牢地把握这一关键。教学万以内数的读法和写法时,必须让学生理解数位的概念,熟记各数位的计数单位及其位置。在组织学生进行读数和写数练习时,要特别注意学生对中间和末尾有0的数的读法和写法的掌握情况,及时纠正学生出现的错误。 27 A、《标准》在内容标准中仅规定了学生在相应的学段应该达到的( )水平,同时,并不规定内容的呈现( )和( ),教材可以有多种编排方式。 基本水平;顺序;形式。B、怎样教学简单的“有余数的除法”? 这部分内容的重点是使学生掌握试商的方法,并能迅速的进行计算。以43÷5为例,学生在试商时容易出现的错误有:商7余8,也有的商9。造成这种错误的根本原因使学生对“余数一定比除数小”没有引起足够注意,因此教师在教学时,一定要反复强调并讲清“余数一定要比除数小”的道理。另外,要设计针对性强的练习题,培养学生试商的能力。 28 A、小学常用的教学方法有哪些? 1、讲授法 2、谈话法 3、讨论法 4、观察演示法 5、实验法 6、参观法 7、练习法 8、复习法 9、指导小学生自学法B、0表示没有吗?到了小学高年级关于0的教学,可以讲到什么程度? 0除了表示一个物体也没有之外,还有许多重要作用: ①表示数位。写数时如果空位,必须用0占位; ②表示起点。如直尺的刻度是从0开始的; ③表示界限。如数轴上0表示正数和负数的分界; ④表示精确度。如3和3.0,这两个数大小相等,精确度却不同。 ⑤用于编号。如车牌号00487,这个车牌号为487,并表明最大号为五位数。 29 A选择教学方法的依据是什么? 选择教学方法应从以下几方面去考虑:1、从教学内容出发。2、从学生的年龄特点和实际出发。3、从教室的教学特点和经验出发。B、教学时怎样帮助学生建立和理解好单位“1”?教学时要抓住以下四个环节: ① 通过实例说明单位“1”是可分的任何事物,它不仅可以表 示一个东西,一个计量单位,也可以表示一个物体。 ②单位“1”中的数量可以使任意的。 ③结合教材中的集合图,让学生进一步明确,用分数表示的部分与单位“1”的关系,说明单位“1”和部分是可以转化的,关键是看把谁看作单位“1”。 ④让学生进行找单位“1”的练习。 30 A、教学工作的全过程包括那几个环节: 教学工作的全过程包括五个环节:即:一、备课;二、 上课;三、课外作业的布置与评改;四、课外辅导;五、成绩的考核与评定。B、红星村修一条公路,原计划每天修20米,30天修完,结果提前6天完成,实际平均每天修多少米? 一名学生是这样例方程解答的: 解:设实际平均每天修X米,根据题意得: X=20×30÷(30-6) X=600÷24 X=25 你如何评价? 用方程解题。从思维角度说,能起到化难为易的作用, 但是,如果仅将“X=”放在一个算术式子的一边,使其成为形式上的方程,实质上还是用算术解法,这样不但没有发挥方程解题的优势,而且还会使本来较繁的算术解法,再添一些麻烦。教学时必须引导学生寻找其它解法,不能简单的一说了事。
论文答辩的是为了检查学生对所写论文题目的掌握程度和理解程度。那么怎么对学生的答辩进行评价呢?下面和我一起来看看数学函授本科答辩评语怎么写的吧!
答辩小组通过对该论文的审核,认为该论文选题具有研究价值,作者具有一定的阅读参考资料的能力,基本完成了毕业论文任务书所规定的内容,行文流畅,答辩时能较正确地回答问题。本文尚存在全篇结构不够合理、介绍多与论述等缺陷。经答辩小组讨论,答辩成绩定为。
答辩小组通过对该论文的审核,认为该论文立意较好,有研究价值。作者具有一定的阅读参考资料的能力,基本完成了毕业论文任务书所规定的内容,行文流畅,答辩时能较正确地回答问题。本文尚存在全篇结构不够合理、介绍多与论述等方面的不足。经答辩小组讨论,答辩成绩定为。
答辩小组通过对该论文的审核,认为该论文选题具有一定的研究价值。作者具有一定的阅读参考资料的能力,基本完成了毕业论文任务书所规定的内容,行文流畅,答辩时能较正确地回答问题。本文尚存在全篇布局不够合理、介绍多与论述等缺陷。经答辩小组讨论,答辩成绩定为。
答辩小组通过对该论文的审核,认为该论文立意较好,作者具有一定的阅读参考资料的能力,基本完成了毕业论文任务书所规定的内容,行文流畅,答辩时能正确地回答答辩小组提出问题。本文尚存在个别语言表述欠妥、观点不够条理清晰等缺点。经答辩小组讨论,答辩成绩定为。
答辩小组通过对该论文的审核,认为该论文立意较好,作者具有一定的阅读参考资料的能力,基本完成了毕业论文任务书所规定的内容,行文流畅,答辩时能正确地回答答辩小组提出问题。本文尚存在个别语言表述欠妥、观点不够条理清晰等缺点。经答辩小组讨论,答辩成绩定为。
答辩组认为,该同学在毕业论文写作过程中,态度端正,论证严谨,论文写作规范,论文写作水平较高,运用理论分析问题和解决问题的能力较强,答辩应对沉着,回答流利准确。故该同学的毕业论文达到了本专业培养目标要求,建议授予 本科学士学位。
篇二:数学函授本科答辩评语怎么写
指导教师评语:本文选题的角度较为新颖,文章脉络清晰,文笔流畅,基本观点 明确。文章目前仍存在的主要问题:学生没有完全深入和消化所查 找的资料,论据不够充分有力。
评阅教师评语:此文首先值得肯定的是选题的立意较好。也是较有研究空间的论 题。论文在有限的篇幅里,也基本能叙述清楚.该专题属于业内 . 研究程度及第一手资料、文献都积累较多的领域,注意充分吸收 已有研究成果以支持自己的分析、研究。 论述清楚,论点鲜明,论据充实,结构合理,文笔流畅。存在不足在于缺 少自己的新的观点,多为总结今人研究之成果,但作为一名本科生也属可贵。
答辩小组评语: 立意较好,也很有研究价值。但此题构架和内容都比较庞大,也需要较强较 成熟的独立研究能力,因此,对于本科生来说,难度不小。如果作者能多吸取和 借鉴前人的研究成果,并加强对文献的阅读和分析,则更能帮助其在论题的论证 上,理顺逻辑,顺畅思辨。在论文陈述上,还需大胆、自信,这样才能提高临场 语言的提炼能力,对问题的应变能力。
指导教师意见 优 秀
答辩小组意见 该生能在规定时间内熟练、扼要地陈述论文的主要内容, 回答问题时反映敏捷,思路清晰,表达准确。答辩小组 经过充分讨论,根据该生论文质量和答辩中的表现,同 意评定论文为优秀。
指导教师意见 良 好
答辩小组意见 该生能在规定时间内比较流利、清晰地阐述论文的主要 内容,能恰当回答与论文有关的问题。答辩小组经过充 分讨论,根据该生论文质量和答辩中的表现,同意评定 论文成绩为“良好”。
指导教师意见 中 等
答辩小组意见 该生能在规定时间叙述论文的'主要内容,对提出的问题 一般能回答,无原则错误。答辩小组经过充分讨论,根 据该生论文质量和答辩中的表现,同意评定论文成绩为 中等。
指导教师意见 及 格
答辩小组意见 该生能在规定时间内能陈述论文的主要内容,但条理不 够明确,对某些主要问题的回答不够恰当,但经提示后 能作补充说明。答辩小组经过充分讨论,根据该生论文 质量和答辩中的表现,同意评定论文成绩为及格。
学生一:
在五分钟的陈述中,该生介绍了论文的主要观点、论文的内容与结构,以及论文的写作过程,条理比较清晰,语言无大错,但有时得看讲稿,因此显得准备不足。对教师提出的第一
个问题,该生只是在教师的启发后才做出了基本正确的回答。对教师提出的第二个问题,该生的回答基本正确,但无形中暴露了将tragic faith写作tragic fate并非笔误。对第三个问题,该生的答辩令人满意,但有少量语言错误。在语音、语调方面,该生存在若干问题。流利程度不及同一答辩组中的其他同学。答辩组经过认真讨论,仍然同意通过该生的毕业论文,但要求该生纠正论文中尚存的部分语言错误。
学生二
在五分钟的陈述中,该生介绍了论文的主要观点、内容与结构,以及为此进行的研究。陈述简明扼要,显示对所研究的问题有一定的认识。对教师提出的第一个问题,该生的回答准确无误;对有关资料来源的问题,该生作了如实的回答,但在论文中的许多地方,她却没有标明数据的出处,这不能不说是一个重大缺陷。对第三个问题的回答显然不够切题,可能没听清老师口头提出的问题。该生的答辩语言流利,但语音、语调存在一定的问题。答辩组经过认真讨论,一致同意通过该生的毕业论文,但要求该生纠正论文中尚存的某些错误。
学生三 该生流利地陈述了写作该论文的目的、理论与实践意义,阐述论文的主要观点与内容,以及介绍了论文的写作过程。逻辑思路清晰,语言流利。对教师的第一个问题,该生只是教师的启发后才作出基本正确的回答。对于第二个问题,回答得简明扼要,层次分明、答辩令人满意。对于第三个问题,回答的不够确切,存在明显错误……。……,该生的答辩语言流利(流利不及其他同学),……。答辩组经过认真讨论,一致同意(仍然同意)通过该生的毕业论文,但要求其纠正论文证尚存的某些……./对论文作……修改。
学生四
该生较好地陈述了写作该论文的目的、理论与实践意义,阐述了论文的主要观点与内容,以及介绍了论文的写作过程。思路清晰,但对该论文逻辑结构的认识不够深刻。陈述简明扼要,显示对所研究的问题有一定的认识。但在阐述中多次看讲稿,显得准备不足。对教师提出的第一个问题,该生的回答准确无误;对有关资料来源的问题,该生作了如实的回答,但在论文中的一些单位地方,他却没有标明数据的出处,……。对第二个问题的回答显然不够切题,可能没听清老师口头提出的问题……。对第三个问题,该生的答辩令人满意,但有少量语言错误,……。答辩组经过认真讨论,一致同意通过该生的毕业论文,但要求该生纠正论文中尚存的某些错误。
教学论文答辩
最重要的技巧就是一定要牢牢的掌握自己论文的整个框架以及牵扯到的相关的知识,在整个答辩的过程中,对于框架的掌握是第一位的,因为只有掌握了整体的框架,你才能够知道这个论文到底是从哪里入手进行分析,动用了哪几个方面的知识,最终又是从哪个方面来进行总结的,也就是说只有这样才能够最终的把握好整篇论文的写法。
一、切忌敷衍塞责,应该认真准备
【案例一】一些教师对撰写论文比较重视,但对论文答辩不够重视,马虎从事。不同的论文答辩,会有不同的要求,有的要求脱稿,有的要求制作课件进行介绍,有的可以边看论文边讲。有一次,我在当评委时,一位教师不知怎的,把论文题目《情境教学法在高中思想政治课堂中的运用》说成了《高中思想政治课情境教学法的运用》。有的要求制成课件,个别教师连课件都没做,拿着纸在讲。
凡事预则立,不立则废。参加论文答辩的教师不能掉以轻心,必须认真对待,做好准备,对论文内容要深刻理解和全面熟悉。论文答辩的目的是为了进一步审查作者是否自己独立完成论文,有无抄袭;进一步考查和验证作者对所写论文论题的认识程度和当场论证的能力;进一步考察作者对所涉及的专业知识掌握的深度和广度等情况;针对论文中存在的一些问题,评委给出一些可行性的建议,进而可以提升教师科研的水平和论文的质量。教师要准备摘要、讲稿、答题及技术等。对于字数较长的论文,要准备写一个较详细的摘要和提纲,把字数浓缩到3000字以内,写出论文的写作动机、主要观点、材料、方法、结论等。考虑一些可能被问到的问题:如,你为什么要选择这个题目,该选题有哪些理论意义和现实意义?论文的基本思想和重要观点是什么,你是从哪些方面进行论证的?在写作中你参考了哪些文献?你的论文有什么创新和特色,存在哪些问题等等。
二、切忌照本宣读,应该有的放矢
【案例二】有一次,在某市教学大比武论文答辩会上,一位教师在介绍《论高中爱国主义教育的必要性及对策》时,从头到尾读了一遍。由于这位教师读得比较流利,语速较快,能在10分钟内把这篇论文读完。接着,评委问了两个问题:“文章中涉及的高中爱国主义教育现状和对策有没有必然的联系?高中生和初中生的爱国主义教育有什么不同?”
论文答辩的第一部分是介绍自己的论文,而不是读论文。这位参赛选手就犯了照本宣读的大忌。介绍的内容包括写作背景和意义、文章的观点、结构、论证过程、论据材料、结论,要做到概括简要,言简意赅。
三、切忌平平淡淡,应该重点突出
【案例三】在一次论文答辩会上,一位教师在介绍《浅析如何提高理科班思想政治教学的有效性》时,分三个方面进行介绍:1. 论文写作的原因。2. 论文的结构有五点:教师自身要重视教学,提升综合素质;引导理科生树立正确的学科观;尊重理科生的个性,建立良好的朋友关系;创新教学方法,激发理科生学习兴趣;减轻理科生作业负担。3. 取得的成效。然后,评委问了两个问题:文章内在的'逻辑关系,你是如何处理的?文章中提到的五个方面做法是否适合文科思想班政治教学?
另一位教师在介绍论文《施“寓盐于汤”之策,达高效课堂之果》时,不仅介绍了这篇论文写作的背景,结合自身教学实践谈了对预设的“角度”与生成的“程度”、思维的“深度”与提问的“热度”的看法,而且还介绍了自己写这篇论文的心得体会。然后回答评委的提问:课堂预设要达到哪些目标?
在这两位教师的论文介绍中,第一位教师的介绍显得平淡,第二位教师的介绍有特色。俗话说:“削繁去冗留清被,画到无时是熟时”,要尽量做到词约旨丰,一语中的。要突出重点,把自己在论文中的新观点或新的突破、最具特色和有亮点的部分,写作时最大收获、最深体会表述出来。
四、切忌答非所问,应该切中要害
【案例四】一位教师在介绍论文《思想政治课堂教学中的“生动”和“主动”》时阐明了自己的观点:“生动”使思想政治课堂教学越来越吸引人,一扫原先给人一种“枯燥乏味”的印象;但似乎又陷入另一种“枯燥乏味”,给人一种毫无生命力的形式主义之嫌。无视“主动”的“生动”是无效的。在课堂教学实践中,他努力尝试着实现“生动”和“主动”的统一。在10分钟内的介绍中,他能够脱稿讲清文章的结构、思路及主要观点,应该是不错的。接着,评委问道:“生动”和“主动”如何界定?教师答道:“主动”是突出学生情况。后面答不下去了。评委追问:“生动”难道不突出学生情况吗?参辩老师哑然无语。
在这个案例中,由于参辩教师事先在写作时没有真正搞清“生动”和“主动”的区别,或者没有听清楚,在回答评委的问题时,有点离题。主动是相对于被动而言,是指不待外力推动而行动。生动是指具有活力而且感动人的。
在评委提问时,参辩教师要认真聆听,并做好记录,仔细推敲评委所提问题的实质和要害。如果对所提问题没有搞清楚,可以请提问老师再重复一遍。如果对所提问题的有些概念不清,可以请教提问老师,或者把自己对问题的理解说出来,征求提问老师的意见,弄清问题的意思后,再作回答。只有这样,才能答到要害上,避免答非所问。
五、切忌强词夺理,应该实事求是
【案例五】一位教师在介绍论文《反思性学习在高考思想政治复习中的运用策略》后,评委针对参考文献提出如下的问题:文章中四方面的参考文献(1.《新课程与学习方式的变革》;2. 罗洪儿,《对教学反思问题的探讨》2006;3. 熊川武,《反思性教学》2004.华东师范大学出版社;4.网络资源《如何上好复习课》、《建构主义理论学习摘记》)对写作有何作用?这位老师答道:“扩大知识面,提供一个理论的支撑。”评委又问道:“你能否结合《新课程与学习方式的变革》这本书,谈谈如何提供理论的支撑?”“在新课程下,三大学习方式自主、合作、探究发生了变化。”“该书的作者是谁?写于何时?”“作者是一位专家,大概写于2003年吧!”“你认为你文章中的这些参考文献的写法规范吗?”“当然规范,网上也是这样写的,我看人家论文的参考文献也是这样写的。”
论文答辩有“问”有“答”,还可以有“辩”。提问老师所提的问题中,有的是基础知识性的问题,有的是学术探讨性问题。对于后一类问题,是非正误尚未定论,与所提问老师的观点相左时,可以据理力争。但对于前一类问题,是要参辩者作出正确全面的回答,不具有商榷性。这位参辩老师对参考文献格式的写法这一基础性问题的回答有点强词夺理。因为提问老师前面所提到的“《新课程与学习方式的变革》这本书的作者是谁?写于何时?”参辩老师答不出来,至少说明参考文献格式写法有问题。所以,对于自己没有搞清楚的问题,应该实事求是的回答,表示今后好好去研究,切不可狡辩。
六、切忌自卑傲慢,应该文明礼貌
【案例六】在当评委的这几年里,我感觉大部分教师在参加论文答辩时,均注重自己的仪态与风度。但有的教师从未经历过这种场面,感到胆怯,缺乏自信心。有的老师认为自己的论文曾在省级获奖或在刊物上发表,当自己的观点与提问老师观点相左时,态度有点傲慢自负,有理不饶人。这两种情况都会影响答辩的成绩。
论文答辩的过程是学术交流和探讨的过程。参辩人应把它看成是向专家学习和接受指导的好机会。孙中山先生曾说过:“其所具风度姿态,既使全场有肃然起敬之心,举动格式又须使听者有安静详和之气”。参辩人应尊重评委老师,言行举止要文明礼貌,谦逊大方。特别在自己难以回答评委所提出的问题,或和提问老师的观点相左时,更应如此。
教育学毕业论文答辩自述范文
尊敬的各位老师,亲爱的同学们:
大家上午好!
我是20XX学前的李燕,我的毕业论文题目是《浅谈幼儿数学学习兴趣的培养》。我的指导老师是曾老师,在我论文写作期间,曾老师给予了悉心的指导,这才使得我的论文能够如期的顺利完成。在此,我向曾老师表示衷心的感谢。
下面,我将这次论文的任务,目的,意义,所选用的资料文献,写作基本思路,以及文章中我个人的一些新的观点与理解向各位老师作汇报:
这次论文的主要任务是仔细搜集有关当前幼儿数学教育和幼儿数学学习兴趣培养方面的资料,运用所学的学前心理学、学前教育学、幼儿数学教育等理论,结合自身幼儿教育实践对当前幼儿数学学习兴趣培养过程中存在的主要问题和幼儿数学学习兴趣培养的策略方面的资料,写出一篇合乎学士学位论文质量的文章。我选择《浅谈幼儿数学学习兴趣的培养》这一课题进行研究原因在于,我所去过的几所幼儿园中,幼儿数学学习现状并不尽人如意。集中教学中,幼儿的数学学习兴致并不高,情绪不愉悦。皮亚杰曾经说过:“所有智力方面的工作都要依赖于兴趣,兴趣是点燃智慧的火种。”试想,幼儿早期的数学学习兴趣开发慢了一步,学习兴趣都没有了,又怎能做到让幼儿现在或者是将来的全面发展呢?因此,我选择《浅谈幼儿数学学习兴趣的培养》的意义在于:有助于幼儿更好地适应下一阶段的学习。培养幼儿的好奇心,探究欲。激发幼儿思维的主动性,最终培养幼儿的学习兴趣。而我选用的资料主要有黄谨编写的学前儿童数学教育,张俊编写的幼儿园数学教育等文献,还在网上也收集了一些资料。
具体来说,我的论文是由幼儿数学学习兴趣培养的意义,幼儿数学学习兴趣培养过程中存在的问题,幼儿数学学习兴趣培养的策略这三部分构成的。第一部分由学习兴趣的含义,幼儿学习兴趣的特点,幼儿数学学习兴趣培养的意义构成。第二部分主要写了四个方面的问题,家长方面,幼儿园方面,幼儿园教师方面,幼儿自身发展所带来的问题。第三部分主要从四个方面着手,1是让幼儿在游戏操作中培养起对数学的学习兴趣。2是让幼儿在自我发现中培养起对数学的学习兴趣。3是幼儿教师通过讲解演示来提高幼儿数学的学习兴趣。4是融入美术元素来提高幼儿数学的学习兴趣。
通过本次的论文写作,一方面使我掌握了论文写作方面相关的技巧,另一方面也使我在培养育儿数学学习兴趣这一课题上有了新的认识与理解。但是由于我自身存在的知识储备方面的缺陷,使得文章中的相关论点还不够成熟,甚至存在错误观点的情形。对此,我热切希望能够得到各位老师的指导。
谢谢!
《谈课堂上的互动、合作学习》、《发掘教材潜能,开拓学生思维》、《浅谈教学设计对课堂成效性的影响》
想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考