在物流配送领域,如何快速、准确的获得用户信息并及时开展业务,高效、合理的完成配送服务,成为决定物流企业市场竞争力的重要因素。下面是我为大家整理的物流配送管理系统论文,供大家参考。
物流配送系统干扰管理模型研究
物流配送管理系统论文摘要
摘要:物流配送在我国信息化时代是非常需要的,因此有着非常重要的地位。物流配送系统就是一个经济行为的系统,它为人们在物流上面提供了方便。关于物流配送系统干扰管理模型,国内外都有一定的研究。本文从物流配送系统的概念、一般方式、具体模型来作了探讨工作。
物流配送管理系统论文内容
[abstract] the logistics distribution in our country's information age is very need, so has a very important position. The logistics distribution system is an economic behavior of the system, it for the people in the logistics provided above to a convenient. About logistics distribution system interference management model, and have certain research at home and abroad. This paper, from the concept of logistics distribution system, general way, the specific model to work were discussed
关键词:物流配送;系统;干扰管理;研究;
中图分类号:F253
一、物流配送系统
(一)概念
物流配送系统是一个经济行为的系统,它是通过其收集广泛的信息来实现以信息为基础的物流系统化,其作用是不可忽视。物流配送系统的主要机能分为两种,一种是作业子系统,另一种是信息子系统。作业子系统的范围比较广,包括的内容也比较多,例如输送、保管、加工等机能,其主要目的是保证物流配送达到快速的运作,使工作效率提高。信息子系统相比作业子系统来说范围是比较小的,其内容包括订货、发货、出库管理等,它的主要目的除了提高其工作效率以外,还能使工作更加效果化。信息子系统还有一点对于顾客来说是非常有用的,那就是可以以比较低的成本以及优良的顾客服务来完成商品实体,然后从供应地再到消费地,是一种非常有利于顾客的活动。
(二)一般方式
物流配送在我国占有非常重要的地位,它一般有两种配送模式,一种是及时配送,另一种是准时配送,这两种配送模式的应用是非常广泛的,因为两种模式都要有一个共同点,那就是都满足了用户的特殊要求,以此来进行供货以及送货的工作。即时配送和准时配送的供货时间非常的灵活和稳定,基于这种情况,对于用户的生产者和经营者来说,库存的压力就发生了变化,也就是出现库存缩减的情况,有时还会取消自己的库存。
二、物流配送系统干扰管理模型
(一)国内外的研究
关于干扰的研究在20世纪70年代就已经开始了,但是其干扰管理模型是在同个世纪90年代才提出来的,在提出来的概念中,把干扰管理给局限化了,把系统扰动控制在最小数值,还指出了干扰管理的另一种含义,它是属于运筹学的某个应用领域,其发展的潜能在一定程度上来说是非常大的。
我国的学者也对干扰管理作了一些研究,研究表明干扰管理的实质就是使事件回到最初的状态,其突然出现的事件就是一种偏离,而这种偏离是微小的,并没有对其产生一些重要的影响,所以通过及时的管理 方法 是可以修正的。学者还将干扰管理与应急管理的不同点分列出来,使人一目了然。
在现阶段,国内外关于干扰管理的模型的研究具有片面性,侧重于模型以及算法,虽然涉及的领域非常的多,但是也具有一定的局限性,片面性在一定程度上也是有的,比如说在车辆调度领域,特别是物流配送这一方面,相对来说起步是比较晚的,但是后续的研究并没有停止。
(二)原因
1.总所周知,客户如果对一个企业充分信任的话,就能使企业的长期的拥有这些客户,也就是固定客户会增多,随着旧客户的口碑相传,新客户也会随之而来,企业就会得到更多的赢利。下文所讲到的数学模型建立的目标是最小化的,因此就可以就可以用这一条件来反映对客户满意度的扰动。
2.物流配送的运营商最关心的必然是运作成本,因为其运作成本是整个物流配送的核心,所以根据这种情况来看,要想节约其运作成本的话,就可以调整其干扰方案。
3.干扰管理在生成新的配送方案后,其车的路线也将发生变化,因为频繁的更改其路线,其交通费必然会增加,超过了原本的预算,其效率也会受到影响。另一方面,因为路线频繁的更改,司机原本已经熟悉的路线又变得陌生起来,必将会影响司机的工作心情。依据干扰管理的思想来看,新方案和原方案相比的话,两者间的偏差值应该是最小的,所以路径的变动量也会最小。在本文中,提出的模型(下文将提到)是以三个维度来度量其扰动的,其模型是属于多目标的。
(三)数学模型的建立
数学模型的建立,是例子是非常多的。本文只是以需求量变动为干扰事件这一个例子来进行数学建模,其原因有以下几点内容。
1.需求量变动在一些企业中是必然会发生的干扰事件,特别是在成品油销售的企业。因为油品的存放存在一定的危险,容易造成火灾事故,如果除去加油站,其他成油品销售一般为服务行业,比如说餐饮、酒店等,因为这些行业所存储的油不能太多,所以只能小批量的、多数次的来购买,根据这样一种情况,需求量必然会发生变化。据有关资料调查,需求量变动量最大的干扰事件就是该类企业。
2.需求量变动的问题在国内外学术界的关注度是非常高的,国内外许多著名学者都对需求量变动问题作了探讨。根据一些新闻、期刊以及文献我们就可以看出,物流配送需求量变动的研究已经在很久以前就有相关资料了。此类干扰事件在1987年时就作了有关研究,比如说不确定性需求的动态车辆指派问题模型。
3.关于物流配送的车辆其路径问题的种类也是非常多的,本文主要通过对有时间窗的车辆路径问题作了相关研究。此类问题有一个特别明显的特点,就是客户对货物所送达的时间非常的严格,因此其要求也更加高了。下面我们举一个例子来详细的讲解一下这个问题,让其更加的清晰明了。假如其问题范围和条件分别为:只有一个配送中心,并且其配送中心有足够的同质物质材料,车辆也足够,但是有一个问题就是其车辆必须以配送中心为始源地和终点,而且每一辆车必须从只能访问一个客户,如图1(a)所示.如果出现需求量的突发事件,车辆就必须在出发之前就要把物品载满。假如说在开始设定的计划中,并没有对需求量不足做出一些应急 措施 ,如果客户的需求量突然增加,如图1中的客户点7,而且增加的需求量还超过了剩余车辆的载货量,也就是说其车辆也出现供应不足的情况,此时它就需要其他车辆来进行援助工作,如图l(b)所示。
三、结束语
随着我国经济的迅速发展,人们开始追求方便化,所以物流配送工作对于人们来说变得越来越重要。但是在物流配送的过程中,必定会出现突发状况,也就是出现干扰的情况。比如说客户需求量变动、车辆出现故障等,这些干扰事件经常会使原本计划出现失败的情况,然后顾客就对其不满,矛盾也会随着时间而加深。在现阶段,物流配送系统干扰管理模型的研究有些片面化,在前面我们也提到过,主要因为全都集中在单一要素变动引发的干扰事件上,在真正的物流配送过程中,存在变动的情况更多,因此,物流配送系统干扰管理模型的问题还有待进一步的研究,以此来完善此系统,让其更加贴近生活,实用性也变得更强。
物流配送管理系统论文文献
[1]王旭坪,杨德礼,许传磊.有顾客需求变动的车辆调度干扰管理研究[J].运筹与管理.2009(04)
[2] 孙丽君,胡祥培,于楠,方艳.需求变动下的物流配送干扰管理模型的知识表示与求解[J].管理科学.2008(06)
[3] 杨文超,王征,胡祥培,王雅楠.行驶时间延迟的物流配送干扰管理模型及算法[J].计算机集成制造系统.2010(02)
[4] 朱晓锋,蔡延光.物流配送的优化模型及算法在连锁企业中应用[J].顺德职业技术学院学报.2011(01)
[5] 胡祥培,于楠,丁秋雷.物流配送车辆的干扰管理序贯决策方法研究[J].管理工程学报.2011(02)
矩阵算法在物流配送管理系统中的应用
物流配送管理系统论文摘要
摘要: 本文针对物流配送中心运营过程中如何合理制定配送线路的问题,以邻接矩阵为基础,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。
物流配送管理系统论文内容
Abstract: In this paper, for the problem how to develop reasonable distribution lines in the process of logistics and distribution center operations, based on adjacency matrix, by the computation of adjacency matrix to get graph reachability matrix and judge whether can find forward path from the source node to goal node, and finally complete the search of the shortest path.
关键词: 车辆路径问题;配送;物流;最短路径
Key words: vehicle routing problem;distribution;logistics;shortest path
中图分类号:TP39 文献标识码:A 文章 编号:1006-4311(2013)10-0163-02
0 引言
目前我国的快递行业蓬勃发展,使得物流配送中心的业务量不断增加,业务的复杂程度也已不断提高,这都对物流配送中心的科学管理水平提出了新的要求,高效、合理、安全、快速的配送是物流系统顺利运行的保证,而配送线路安排是否合理也是配送速度、成本、效益的保证。正确、合理地安排配送线路,可以达到省时、省力,增加资源利用率,降低成本,提高经济效益的目的,从而使企业达到科学化的物流管理。
本文以邻接矩阵模型为基础,提出了一种新的最短路径算法,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。
1 有向图的可达矩阵
假设有一个n个节点(d1,d2……dn)建立的有向图,每条有向边上都有各自的权值,若节点di和dj之间有条有向边,则其权值表示为Wij。如果我们要求节点d1到节点dn的最短路径。那么首先应该建立基于该有向图的邻接矩阵M:Mij=0表示节点di和dj之间没有直接有向通路,若Mij=1表示节点di和dj之间存在直接有向通路。
那么矩阵M2中所有为1的元素的坐标所代表的就是通过一次“中转”可以达到贯通的节点对。以此类推M3中所有为1的元素的坐标就是通过两次 “中转”可以达到贯通的节点对;Mn所有为1的元素的坐标就是通过n-1次“中转”可以达到贯通的节点对。
所以我们可以得出:M1+M2+M3+……+Mn得到的矩阵T即为原有向图可达矩阵,Tij=0表示节点di和dj之间没有有向通路,若Tij=1表示节点di和dj之间存在至少存在一条有向通路。
对于大规模稀疏矩阵,由于存在大量的值为0的元素,若按常规意义来存储,既会占用大量的存储空间,又会给查找带来不便。所以只要存储值为非0的元素即可。这在计算机中很好实现,只要建立含有两个整数域的结构体变量即可。
2 路径搜索算法
2.1 初步设想 由矩阵乘法的性质可知,Mx=Mx-1*M。若M■■≠0,则说明节点d1通过x-1次“中转”可以到达节点dj。那其中这x-1个节点都是哪些?它们又是什么顺序呢?把这两个问题搞清楚我们就找到了一条从节点d1经x-1次“中转”到达节点dj的通路。
接下来我们观察矩阵Mx-1的第一行,若M■■≠0,且Mij≠0,则说明:节点d1存在经x-2次“中转”到达节点di的通路,且节点di和dj之间存在直接有向通路。这样我们就找到了节点d1到节点dj通路的最后一次“中转”di,即d1,……,di,dj是一条有向通路。我们可以根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。
这在计算机中实现也很容易,只要把找节点di和dj之间的最后一次“中转”的方法编写好,采用计算机中的递归调用就能很好地解决这个问题,计算机会自己自动完成整个操作。
2.2 节点的选取 有一个问题我们需要注意:在我们观察矩阵Mx-1的第一行时可能有多个节点di,使得M■■≠0,且Mij≠0。基于我们是想找到有向图中的最短路径,所以每一次选取节点应该选择一个到节点dj最短的节点作为最后一次“中转”。这一过程是通过查看另一权值矩阵W,找到值最小的Wij来确定di的。
2.3 待查节点集 上面说到,我们找到了节点d1到节点dj的x-1次“中转”的最后一次“中转”di,即d1,……,di,dj是一条有向通路。根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。
每一次查找之前,与待查节点有直接通路的节点都应加到考察的范围,同时上一次确定的最终通路上的节点也应从待查范围中删除,而加入最终通路的节点集中。
2.4 需要考虑的两种情况 按照上面方法是会找到一条从d1到节点dj的一条有向通路,但是一定是最短路径吗?我们先考虑两个情况:①如果在已经找到一条从d1到节点dj的有向通路的前提下,再重复以上过程再找一条从d1到节点dj的有向通路,那么有可能新找到的通路上的所有权值之和要比之前找到的通路上的权值之和小,在这种情况下,应放弃原来通路。记下新找到的通路把它作为“当前”的最短路径。②如果在查找的过程中,已经确定节点dy是在已找通路上的节点,即存在节点d1到节点dy的通路,也存在节点dy到节点dj的通路,并且dy是上一节点的最近邻接点。但在查找下一步节点d1到节点dy的通路的最后一次“中转”dz的过程中发现:所定通路上节点dy的上一节点通过其他方式到节点dz的长度要比经过节点dy中转到节点dz的长度要短,即通过dy相当于“绕路”。因为根据2.1中所阐述的方法找到的节点dz一定是待查节点中到节点dy路径长度最短的节点。若存在“绕路”现象,那么通过节点dy到其他的未差节点都会“绕路”。因而在这种情况下应该从已经确定的有向通路中把节点dy删除,恢复上一节点为当前节点,重新查找其除dy之外的最后一次“中转”。 2.5 搜索算法 首先根据实际情况建立有向图,并根据有向图建立有向图的邻接矩阵M,以及根据各有向边的权值建立矩阵W。然后根据矩阵乘法求出M2,M3,……Mn。这可以通过循环完成。之后的步骤就是设定待查节点,由于算法是从终点向起点查找的,所以应该先把与终点dj构成直接通路的节点作为待查节点。建立完待查节点集后,首先按照深度优先进行搜索,按照上面所说的递归算法查找第一条有向通路。然后以此条通路为基准,进行广度优先搜索,寻找新的通路,查找过程仍然是采用上述的递归算法,但是要考虑到2.4中的两种情况。需要指出的是:广度优先搜索过程可能是一个反复执行的过程,直至最终找到节点d1到节点dj的最短路径。
3 实例
某物流公司业务员要从v0到地点v2投递货物,路线如图1所示,业务员想在此过程走的路线最短,时间最快。他应该走哪条路线?
由上面有向图建立的邻接矩阵M以及有向边权值矩阵W如图2所示,由于M是一个稀疏矩阵,按照上面方法所述形成的节点数对(0,1),(0,3),(1,2),(3,2),(3,4),(4,1),(4,2)。按照矩阵乘法计算出M2、M3、M4、M5。由它们产生的节点对如下所示:M2(0,2),(0,4),(3,1),(3,2),(4,2);M3(0,1),(0,2),(3,2);M4(0,2)。我们据此可得到该有向图的可达矩阵T的节点对:(0,1),(0,2),(0,3),(0,4),(1,2),(3,1),(3,2),(3,4)(4,1),(4,2)。
现在我们求节点v0到v2的最短路径。查看矩阵T可知存在(0,2)的节点对,所以从V0可以到达V2。再按照上述规则以及结合矩阵W,找到M2存在(2,0)节点对,M中存在(1,2)和(0,1)节点对,即M■■= M12* M01, M■■、M12、 M01都不为0。所以找到一条通路即:v0、v1、v2,其路径长为19。
按照上述方法,我们还可以找到通路:v0、v3、v2和v0、v3、v4、v2,但是由于它们的路径长分别为19和20,不产生对通路v0、v1、v2的替换,所以在此不再详述。继续按着上述方法查找通路时会发现:M■■≠0,且存在M■■≠0,M12≠0,继续查找又会发现存在M■■≠0,M41≠0,进一步查找又会发现存在M03≠0,M34≠0,所以最终找到通路:v0、v3、v4、v1、v2,由于其路径长为18,所以按照上述原则对原通路v0、v1、v2进行替换,又由于已查找该有向图中所有通路,所以确定最短路径为v0、v3、v4、v1、v2,由于其路径长为18。
4 结论
本文针对物流配送系统中的投递等事务中路线优化的问题,提出了一种新的对最短路径算法的尝试,采用逆向标号,对待查节点进行优化选取,有效的利用了第一次计算的有用信息,避免重复计算,使得该算法搜索设计上要比以往算法节省时间,对于最短路径问题可以快速求解。虽然增加了邻接矩阵的乘法计算,但由于是稀疏矩阵,不会增加太多的计算量。本算法是具有实际意义的,可以在成本降低方面给出积极、高效的意见和解决方法,从而降低物流中的流通费用。
物流配送管理系统论文文献
[1]肖位枢.图论及其算法.北京:航空工业出版社,1993.
[2]任亚飞,孙明贵,王俊.民营快递业的发展及其战略选择.北京:中国储运,2006.
[3]周石林,尹建平,冯豫华.基于邻接矩阵的最短路径算法.北京:软件导报,2010.
[4]蔡临宁.物流系统规划—建模实例分析.北京:机械工业出版社,2003.
有关物流配送管理系统论文推荐:
1. 配送管理论文
2. 物流配送毕业论文范文
3. 浅谈仓储与配送管理论文
4. 物流管理专科毕业论文范文
5. 浅谈服装物流管理论文
6. 快递末端物流配送的风险分析与防范措施研究论文
Dijkstra( 迪科斯特拉 )算法是用来解决单源最短路径的算法,要求路径权值非负数。该算法利用了深度优先搜索和贪心的算法。 下面是一个有权图,求从A到各个节点的最短路径。 第1步:从A点出发,判断每个点到A点的路径(如果该点不能直连A点则距离值为无穷大,如果该点能和A直连则是当前的权值),计算完之后把A点上色,结果如下图: 第2步:从除A点之外的点查找到距离A点最近的点C,从C点出发查找其邻近的节点(除去已上色的点),并重新计算C点的邻近点距离A点的值,如图中B点,若新值(C点到A点的值+C点到该点的路径)小于原值,则将值更新为5,同理更新D、E点。同时将C标记为已经处理过,如图所示涂色。 第3步:从上色的节点中查找距离A最近的B点,重复第3步操作。 第4步: 重复第3步,2步,直到所有的节点都上色。 最后就算出了从A点到所有点的最短距离。 leetcode 743题
// dijsktra.cpp : 定义控制台应用程序的入口点。//#include "stdafx.h"#define N 12#include 参考RFC2328 去看下OSPF详解吧。。。 对于写论文是很头疼的事,真的就像无头苍蝇一样,当时找的诚梦计算机毕业设计帮忙搞定的,自己轻松好多。 最佳答案检举 模型一:利用“图”的知识,将送货点抽象为“图”中是顶点,由于街道和坐标轴平行,即任意两顶点之间都有路。在此模型中,将两点之间的路线权值赋为这两点横纵坐标之和。如A(x1,y1),B(x2,y2)两点,则权值为Q=|x2-x1|+|y2-y1|。并利用计算机程序对以上结果进行了校核。经典的Dijkstra算法和 Floyd算法思路清楚、 方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性. 所以本研究在利用动态规划法的基础上引入扑食搜索法的原理,提高辆车的装载率,从而减少车辆的需求,达到降低成本的目的.模型二:根据题意(B题),建立动态规划的数学模型。然后用动态规划的知识求得最优化结果。根据所建立的两个数学模型,对满足设计要求的送货策略和费用最省策略进行了模拟,在有标尺的坐标系中得到了能够反映运送最佳路线的模拟图。最后,对设计规范的合理性进行了充分和必要的论证。快递公司送货策略1 问题的提出在快递公司送货策略中,确定业务员人数和各自的行走路线是本题的关键。这个问题可以描述为:一中心仓库(或配送调度中心) 拥有最大负重为25kg的业务员m人, 负责对30个客户进行货物分送工作, 客户i 的货物需求为以知 , 求满足需求的路程最短的人员行驶路径,且使用尽量少的人数,并满足以下条件:1) 每条配送路径上各个客户的需求量之和不超过个人最大负重。2) 每个客户的需求必须满足, 且只能由一个人送货.3)每个业务员每天平均工作时间不超过6小时,在每个送货点停留的时间为10分钟,途中速度为25km/h。4)为了计算方便,我们将快件一律用重量来衡量,平均每天收到总重量为184.5千克。处于实际情况的考虑, 本研究中对人的最大行程不加限制.本论文试图从最优化的角度,建立起满足设计要求的送货的数学模型,借助于计算机的高速运算与逻辑判断能力,求出满足题意(B题)要求的结果。2 问题的分析2. 1根据题意(B题)的要求,每个人的工作时间不超过6小时,且必须从早上9点钟开始派送,到当天17点之前(即在8小时之内)派送完毕。表一列出了题中任意两配送点间的距离。表一:任意两点间的距离矩阵因为距离是对称的,即从送货点i到送货点j的距离等于从j到i的距离。记作:di,j.表二给出了产品的需求,为了完成配送任务,每个人在工作时间范围内,可以承担两条甚至更多的配送线路。表中给出了送货点编号,快件量T,以及送货点的直角坐标。表二对于上述的路线确定和费用优化问题,应用如下启发从公司总部配出一个人,到任意未配送的送货点,然后将这个人配到最近的未服务的送货点范围之内的邻居,并使送货时间小于6小时,各送货点总重量不超过25kg。继续上述指派,直到各点总重量超过25kg,或者送货时间大于6小时。最后业务员返回总部,记录得到的可行行程(即路线)。对另一个业务员重复上述安排,直到没有未服务的送货点。对得到的可行的行程安排解中的每一条路径,求解一个旅行商问题,决定访问指派给每一条行程的业务员的顺序,最小化运输总距离。得到可行解的行程安排解后退出。上面的方法通过以下两种方法实现:(1) 每一个行程的第一个送货点是距离总部最近的未服务的送货点。用这种方法,即可得到一组运行路线,总的运行公里数,以及总费用。(2) 每一个行程的第一个送货点是距离总部最远的未服务的送货点。然后以该点为基准,选择距它最近的点,加上约束条件,也可得到一组数据。 然后比较两组结果,通过函数拟合即可得到最优化结果。3 模型假设 (1)假设每个人的送货路线一旦确定,再不更改。 (2)送货期间,每个人相互之间互不影响。 (3)如果到某一个点距离最近的点不至一个,就按下面的方法进行确定:考虑该点需求的快件量,将其从大到小依次排列,快件量需求大者优先,但路线中各点总重量加上该点的快件量超过25kg的上限时,该点舍去。如距离4最近的点有2,5,6,7四个点,其中,0-1-3-4路线易确定,且各点重量之和为 19.5kg,因此对于2,7两点,直接舍去,选5最合适。4 符号说明 A:所有配送点的集合,A=,其中0代表配送中心m: 业务员人数 C:任意一点到原点(总部)的距离 C总:表示一条路线所运行的总公里数 i,j: 表示送货点,如i点,j点 K:表示K条路线 qi: 点i的需求量,q0=0,表示总部的需求量 B总K: K条路线的总运行费用 X:校核时的适应度 Xij: 业务员路线安排5 模型的建立及求解5.1 TSP模型的数学描述为:其顶点集合为A顶点间的距离为C= m nmin ∑ ∑ CijXij i=1j=1满足 n∑ Xij=1,ⅰi=1,2,⋯nj=1 m∑ Xij=1,j=1,2,⋯nj=1Xij∈, i=1,2⋯n,j=1,2⋯n,而根据题意,任意两点之间都有通路,即不存在Xij=0的情况。 根据上述所列的启发式方法生成一个行程安排解。每一个行程的第一个送货点是距离总部最近的未服务的送货点。 第一条行程中访问了节点0-1-3-4-5-0,是因为1距离原点最近,因此由1出发,3是距离1点最近的点,而且两处快件量之和为14kg,小于每个人最大负重量,可以继续指配。接着,4是距离3最近的点,而且三处快件量之和为 19.5kg,仍小于25kg,还可以继续指配。在剩下未服务送货点中,5距离4最近(其实距离4最近的点有2,5,6,7四个点,然后考虑该点需求的快件量,将其从大到小依次排列,快件量需求大者优先,但超过25kg上限的点舍去。这里2,7被舍去,故选择了5)总快件量之和为24kg。再继续扩充,发现就会超出“25kg”这个上限,因此选择返回,所以0-1-3-4-5就为第一条路线所含有的送货点。 现在0-1-3-4-5这四个送货点之间的最优访问路径安排就是一个典型的单回路问题。可以通过单回路运输模型-TSP模型求解。一般而言,比较简单的启发式算法求解TSP模型求解有最邻近法和最近插入法两种。由RosenkrantzStearns等人在1977年提出的最近插入法,能够比最近邻点法,取得更满意的解。由于0-1-3-0 已经先构成了一个子回路,现在要将节点4 插入,但是客户4有三个位置可以插入,现在分析将客户4插入到哪里比较合适:1.插入到(0,1)间,C总= 7+4+5+1+4+9=30。2.插入到(1,3)间,C总=5+6+4+9=24。3.插入到(3,0)间,C总=5+4+4+11=24。比较上述三种情况的增量,插入到(3,0)间和(1,3)间增量最小,考虑到下一节点插入时路程最小问题,所以应当将4插入到送货点3和总部0之间。接下来,用同样的方法,将5插到4和0之间,能使该条路线总路程最小,该路线总路程为32km,历时1.96667h。结果子回路为T= .因为街道平行于坐标轴方向,所以它就是最优化路线。第二条行程这中,由于所剩下节点中,2距离0点最近,因此由2出发,就可以找到最近点13,接着是7,然后6.这样,第二条优化路线0-2-13-7-6-0就确定了。用这种方法,依次可确定以下剩余六条路线。具体参看如下图表三(一,二,三,……为路线编号;总重量为该路线所有节点快件量之和):由启发式方法得到的可行的行程安排解一: 表三直观的具体路线图如下:图一然后,根据所经历的时间进行划分,确定运送人数。在工作时间小于6小时的前提下,可作如下分类:这样,将确定的五种组合情况分别分配给五个业务员去送即可。这个解是第一个中间最好解。在选择可行解1每条行程中的第一个送货点时,选择了距离总部最近的未服务的点。接下去通过选择距离仓库最远的未服务的点为每条行程的第一个客户生成了可行解2。为了方便遗传算法的分析,编号将连续进行。如果继续增加的新的标签的行程和前面可行解1 中的重复,就是用原先的标签号。由启发式方法得到的可行的行程安排解二:表四直观的具体路线图如下:图二注意:通过上述方法,最后剩两个点1,9还没有被列入路线。于是问题就出来了,如何将这两个点插入进这八条路线?除第十条路线之外,其余各条均能将9号点纳入,而1号点没有办法纳进去,只能作为第十七条路线出现。那么,9号点应纳入哪一条呢?显然,纳入第十六条比较合适,原因是他对总路程的大小没影响,顺便可以带上。由此可以看到,可行解2没有替代中间最优解,以总路程518km,历时25.72h高于492km和24.68h。通过对上面的两个可行解进行交叉操作。其中每个解的行程已经按照他们送每千克快件量在每一千米的路程范围内的送货成本的大小降序重新排列,这个参数是对每一行程质量的比较好的测度。本文以此作为适应值(X)。在对两个解中的行程进行交叉分析时,根据适应值计算的接受每条行程的概率附加到每条行程上。P(X)=Ke- λx ,然后通过设定参数对结果进行拟合。具体而言。如果一条行程的选择概率P(select)值至少和exel相应行的随机概率一样大,那么他就被选择出来可能在交叉分析中被包括进去。在本题中,根据上述要求,求出了两种可行解,但是由于本题的特殊性(即街道和坐标轴平行),两条路径中没有相同的运行路线,也就是说最终的拟合结果就是解一的结果。因此,可行解一就是本题中的最优解。至此,B题中的第一问已经解决了。即需要5个业务员,每个业务员的运行线路如下:第一个人:0-1-3-4-5-0和0-18-26-28-0;第二个人:0-2-13-7-6-0和0-19-25-24-0;第三个人:0-10-12-8-9-0和0-16-17-20-14-0;第四个人:0-22-32-23-15-11-0;第五个人:0-27-29-30-0.总的运行公里数为:C总K=32+42+42+72+68+56+88+92=492km。5.2 下面我们求解B题中的第二个问题:根据上面设计的最优化路线,容易算出每条路线运行费用及运行第二时间(这里的第二时间指的是在问题2中的新速度的前提下算出的)。具体参看下表五和表六:表五表六从表五和表六的比较来看,解法二以总费用15241.3元和总时间27.36667h高于解一的12208.4元和26.26667h。因此我们选择了解一的优化结果。从上表(表五)很容易看出:B总K=12208.4元。然后根据第二时间的大小,我对运行路线和人员个数做以下调整,具体参看表五。这样,就需六个人就才能完成任务。考虑到人员工作时间不能一边倒(即部分线路组合工作时间太长,部分太短)的情况,每个人的组合路线如下:第一个人:0-1-3-4-5-0和0-19-25-24-0;第二个人:0-2-13-7-6-0和0-10-12-8-9-0;第三个人:0-16-17-20-14-0;第四个人:0-22-32-23-15-11-0;第五个人:0-18-26-28-0;第六个人:0-27-29-30-0。 现在,我们准备介绍计算机科学史上伟大的成就之一:Dijkstra最短路径算法[1]。这个算法适用于边的长度均不为负数的有向图,它计算从一个起始顶点到其他所有顶点的最短路径的长度。在正式定义这个问题(3.1节)之后,我们讲解这个算法(3.2节)以及它的正确性证明(3.3节),然后介绍一个简单直接的实现(3.4节)。在第4章中,我们将看到这种算法的一种令人惊叹的快速实现,它充分利用了堆这种数据结构。3.1单源最短路径问题3.1.1问题定义Dijkstra算法解决了单源最短路径问题。[2]问题:单源最短路径输入:有向图G=(V, E),起始顶点s∈V,并且每条边e∈E的长度e均为非负值。输出:每个顶点v∈V的dist(s,v)。注意,dist(s,v)这种记法表示从s到v的最短路径的长度(如果不存在从s到v的路径,dist(s,v)就是+∞)。所谓路径的长度,就是组成这条路径的各条边的长度之和。例如,在一个每条边的长度均为1的图中,路径的长度就是它所包含的边的数量。从顶点v到顶点w的最短路径就是所有从v到w的路径中长度最短的。例如,如果一个图表示道路网,每条边的长度表示从一端到另一端的预期行车时间,那么单源最短路径问题就成为计算从一个起始顶点到所有可能的目的地的行车时间的问题。小测验3.1考虑单源最短路径问题的下面这个输入,起始顶点为s,每个边都有一个标签标识了它的长度:从s出发到s、v、w和t的最短距离分别是多少?(a)0,1,2,3(b)0,1,3,6(c)0,1,4,6(d)0,1,4,7(正确答案和详细解释参见3.1.4节。)3.1.2一些前提条件方便起见,我们假设本章中的输入图是有向图。经过一些微小的戏剧性修改之后,Dijkstra算法同样适用于无向图(可以进行验证)。另一个前提条件比较重要。问题陈述已经清楚地表明:我们假设每条边的长度是非负的。在许多应用中(例如计算行车路线),边的长度天然就是非负的(除非涉及时光机器),完全不需要担心这个问题。但是,我们要记住,图的路径也可以表示抽象的决策序列。例如,也许我们希望计算涉及购买和销售的金融交易序列的利润。这个问题相当于在一个边的长度可能为正也可能为负的图中寻找最短路径。在边的长度可能为负的应用中,我们不应该使用Dijkstra算法,具体原因可以参考3.3.1节。[3]3.1.3为什么不使用宽度优先的搜索如2.2节所述,宽度优先的搜索的一个“杀手”级应用就是计算从一个起始顶点出发的最短路径。我们为什么需要另一种最短路径算法呢?记住,宽度优先的搜索计算的是从起始顶点到每个其他顶点的边数最少的路径,这是单源最短路径问题中每条边的长度均为1这种特殊情况。我们在小测验3.1中看到,对于通用的非负长度边,最短路径并不一定是边数最少的路径。最短路径的许多应用,例如计算行车路线或金融交易序列,不可避免地涉及不同长度的边。但是,读者可能会觉得,通用的最短路径问题与这种特殊情况真的存在这么大的区别吗?如图3.1所示,我们不能把一条更长的边看成3条长度为1的边组成的路径吗?图3.1路径事实上,“一条长度为正整数的边”和“一条由条长度为1的边所组成的路径”之间并没有本质的区别。在原则上,我们可以把每条边展开为由多条长度为1的边组成的路径,然后应用宽度优先的搜索对图进行展开来解决单源最短路径问题。这是把一个问题简化为另一个问题的一个例子。在这个例子中,就是从边的长度为正整数的单源最短路径问题简化为每条边的长度均为1的特殊情况。这种简化所存在的主要问题是它扩大了图的规模。如果所有边的长度都是小整数,那么这种扩张并不是严重的问题。但在实际应用中,情况并不一定如此。某条边的长度很可能比原图中顶点和边的总数还要大很多!宽度优先的搜索在扩张后的图中的运行效率是线性时间,但这种线性时间并不一定接近原图长度的线性时间。Dijkstra算法可以看成是在扩张后的图上执行宽度优先的搜索的一种灵活模拟,它只对原始输入图进行操作,其运行时间为近似线性。关于简化如果一种能够解决问题B的算法可以方便地经过转换解决问题A,那么问题A就可以简化为问题B。例如,计算数组的中位元素的问题可以简化为对数组进行排序的问题。简化是算法及其限制的研究中非常重要的概念,具有极强的实用性。我们总是应该寻求问题的简化。当我们遇到一个似乎是新的问题时,总是要问自己:这个问题是不是一个我们已经知道怎样解决的问题的伪装版本呢?或者,我们是不是可以把这个问题的通用版本简化为一种特殊情况呢?3.1.4小测验3.1的答案正确答案:(b)。从s到本身的最短路径的长度为0以及从s到v的最短路径的长度为1不需要讨论。顶点w稍微有趣一点。从s到w的其中一条路径是有向边(s,w),它的长度是4。但是,通过更多的边可以减少总长度:路径s→v→w的长度只有1+2=3,它是最短的s−w路径。类似地,从s到t的每条经过两次跳跃的路径的长度为7,而那条更迂回的路径的长度只有1+2+3=6。3.2Dijkstra算法3.2.1伪码Dijkstra算法的高层结构与第2章的图搜索算法相似。[4]它的主循环的每次迭代处理一个新的顶点。这个算法的高级之处在于它采用了一种非常“聪明”的规则选择接下来处理哪个顶点:就是尚未处理的顶点中看上去最靠近起始顶点的那一个。下面的优雅伪码精确地描述了这个思路。 在物流配送领域,如何快速、准确的获得用户信息并及时开展业务,高效、合理的完成配送服务,成为决定物流企业市场竞争力的重要因素。下面是我为大家整理的物流配送管理系统论文,供大家参考。 物流配送系统干扰管理模型研究 物流配送管理系统论文摘要 摘要:物流配送在我国信息化时代是非常需要的,因此有着非常重要的地位。物流配送系统就是一个经济行为的系统,它为人们在物流上面提供了方便。关于物流配送系统干扰管理模型,国内外都有一定的研究。本文从物流配送系统的概念、一般方式、具体模型来作了探讨工作。 物流配送管理系统论文内容 [abstract] the logistics distribution in our country's information age is very need, so has a very important position. The logistics distribution system is an economic behavior of the system, it for the people in the logistics provided above to a convenient. About logistics distribution system interference management model, and have certain research at home and abroad. This paper, from the concept of logistics distribution system, general way, the specific model to work were discussed 关键词:物流配送;系统;干扰管理;研究; 中图分类号:F253 一、物流配送系统 (一)概念 物流配送系统是一个经济行为的系统,它是通过其收集广泛的信息来实现以信息为基础的物流系统化,其作用是不可忽视。物流配送系统的主要机能分为两种,一种是作业子系统,另一种是信息子系统。作业子系统的范围比较广,包括的内容也比较多,例如输送、保管、加工等机能,其主要目的是保证物流配送达到快速的运作,使工作效率提高。信息子系统相比作业子系统来说范围是比较小的,其内容包括订货、发货、出库管理等,它的主要目的除了提高其工作效率以外,还能使工作更加效果化。信息子系统还有一点对于顾客来说是非常有用的,那就是可以以比较低的成本以及优良的顾客服务来完成商品实体,然后从供应地再到消费地,是一种非常有利于顾客的活动。 (二)一般方式 物流配送在我国占有非常重要的地位,它一般有两种配送模式,一种是及时配送,另一种是准时配送,这两种配送模式的应用是非常广泛的,因为两种模式都要有一个共同点,那就是都满足了用户的特殊要求,以此来进行供货以及送货的工作。即时配送和准时配送的供货时间非常的灵活和稳定,基于这种情况,对于用户的生产者和经营者来说,库存的压力就发生了变化,也就是出现库存缩减的情况,有时还会取消自己的库存。 二、物流配送系统干扰管理模型 (一)国内外的研究 关于干扰的研究在20世纪70年代就已经开始了,但是其干扰管理模型是在同个世纪90年代才提出来的,在提出来的概念中,把干扰管理给局限化了,把系统扰动控制在最小数值,还指出了干扰管理的另一种含义,它是属于运筹学的某个应用领域,其发展的潜能在一定程度上来说是非常大的。 我国的学者也对干扰管理作了一些研究,研究表明干扰管理的实质就是使事件回到最初的状态,其突然出现的事件就是一种偏离,而这种偏离是微小的,并没有对其产生一些重要的影响,所以通过及时的管理 方法 是可以修正的。学者还将干扰管理与应急管理的不同点分列出来,使人一目了然。 在现阶段,国内外关于干扰管理的模型的研究具有片面性,侧重于模型以及算法,虽然涉及的领域非常的多,但是也具有一定的局限性,片面性在一定程度上也是有的,比如说在车辆调度领域,特别是物流配送这一方面,相对来说起步是比较晚的,但是后续的研究并没有停止。 (二)原因 1.总所周知,客户如果对一个企业充分信任的话,就能使企业的长期的拥有这些客户,也就是固定客户会增多,随着旧客户的口碑相传,新客户也会随之而来,企业就会得到更多的赢利。下文所讲到的数学模型建立的目标是最小化的,因此就可以就可以用这一条件来反映对客户满意度的扰动。 2.物流配送的运营商最关心的必然是运作成本,因为其运作成本是整个物流配送的核心,所以根据这种情况来看,要想节约其运作成本的话,就可以调整其干扰方案。 3.干扰管理在生成新的配送方案后,其车的路线也将发生变化,因为频繁的更改其路线,其交通费必然会增加,超过了原本的预算,其效率也会受到影响。另一方面,因为路线频繁的更改,司机原本已经熟悉的路线又变得陌生起来,必将会影响司机的工作心情。依据干扰管理的思想来看,新方案和原方案相比的话,两者间的偏差值应该是最小的,所以路径的变动量也会最小。在本文中,提出的模型(下文将提到)是以三个维度来度量其扰动的,其模型是属于多目标的。 (三)数学模型的建立 数学模型的建立,是例子是非常多的。本文只是以需求量变动为干扰事件这一个例子来进行数学建模,其原因有以下几点内容。 1.需求量变动在一些企业中是必然会发生的干扰事件,特别是在成品油销售的企业。因为油品的存放存在一定的危险,容易造成火灾事故,如果除去加油站,其他成油品销售一般为服务行业,比如说餐饮、酒店等,因为这些行业所存储的油不能太多,所以只能小批量的、多数次的来购买,根据这样一种情况,需求量必然会发生变化。据有关资料调查,需求量变动量最大的干扰事件就是该类企业。 2.需求量变动的问题在国内外学术界的关注度是非常高的,国内外许多著名学者都对需求量变动问题作了探讨。根据一些新闻、期刊以及文献我们就可以看出,物流配送需求量变动的研究已经在很久以前就有相关资料了。此类干扰事件在1987年时就作了有关研究,比如说不确定性需求的动态车辆指派问题模型。 3.关于物流配送的车辆其路径问题的种类也是非常多的,本文主要通过对有时间窗的车辆路径问题作了相关研究。此类问题有一个特别明显的特点,就是客户对货物所送达的时间非常的严格,因此其要求也更加高了。下面我们举一个例子来详细的讲解一下这个问题,让其更加的清晰明了。假如其问题范围和条件分别为:只有一个配送中心,并且其配送中心有足够的同质物质材料,车辆也足够,但是有一个问题就是其车辆必须以配送中心为始源地和终点,而且每一辆车必须从只能访问一个客户,如图1(a)所示.如果出现需求量的突发事件,车辆就必须在出发之前就要把物品载满。假如说在开始设定的计划中,并没有对需求量不足做出一些应急 措施 ,如果客户的需求量突然增加,如图1中的客户点7,而且增加的需求量还超过了剩余车辆的载货量,也就是说其车辆也出现供应不足的情况,此时它就需要其他车辆来进行援助工作,如图l(b)所示。 三、结束语 随着我国经济的迅速发展,人们开始追求方便化,所以物流配送工作对于人们来说变得越来越重要。但是在物流配送的过程中,必定会出现突发状况,也就是出现干扰的情况。比如说客户需求量变动、车辆出现故障等,这些干扰事件经常会使原本计划出现失败的情况,然后顾客就对其不满,矛盾也会随着时间而加深。在现阶段,物流配送系统干扰管理模型的研究有些片面化,在前面我们也提到过,主要因为全都集中在单一要素变动引发的干扰事件上,在真正的物流配送过程中,存在变动的情况更多,因此,物流配送系统干扰管理模型的问题还有待进一步的研究,以此来完善此系统,让其更加贴近生活,实用性也变得更强。 物流配送管理系统论文文献 [1]王旭坪,杨德礼,许传磊.有顾客需求变动的车辆调度干扰管理研究[J].运筹与管理.2009(04) [2] 孙丽君,胡祥培,于楠,方艳.需求变动下的物流配送干扰管理模型的知识表示与求解[J].管理科学.2008(06) [3] 杨文超,王征,胡祥培,王雅楠.行驶时间延迟的物流配送干扰管理模型及算法[J].计算机集成制造系统.2010(02) [4] 朱晓锋,蔡延光.物流配送的优化模型及算法在连锁企业中应用[J].顺德职业技术学院学报.2011(01) [5] 胡祥培,于楠,丁秋雷.物流配送车辆的干扰管理序贯决策方法研究[J].管理工程学报.2011(02) 矩阵算法在物流配送管理系统中的应用 物流配送管理系统论文摘要 摘要: 本文针对物流配送中心运营过程中如何合理制定配送线路的问题,以邻接矩阵为基础,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。 物流配送管理系统论文内容 Abstract: In this paper, for the problem how to develop reasonable distribution lines in the process of logistics and distribution center operations, based on adjacency matrix, by the computation of adjacency matrix to get graph reachability matrix and judge whether can find forward path from the source node to goal node, and finally complete the search of the shortest path. 关键词: 车辆路径问题;配送;物流;最短路径 Key words: vehicle routing problem;distribution;logistics;shortest path 中图分类号:TP39 文献标识码:A 文章 编号:1006-4311(2013)10-0163-02 0 引言 目前我国的快递行业蓬勃发展,使得物流配送中心的业务量不断增加,业务的复杂程度也已不断提高,这都对物流配送中心的科学管理水平提出了新的要求,高效、合理、安全、快速的配送是物流系统顺利运行的保证,而配送线路安排是否合理也是配送速度、成本、效益的保证。正确、合理地安排配送线路,可以达到省时、省力,增加资源利用率,降低成本,提高经济效益的目的,从而使企业达到科学化的物流管理。 本文以邻接矩阵模型为基础,提出了一种新的最短路径算法,通过对邻接矩阵进行运算得到有向图的可达矩阵,并据此判断是否能够找到从源节点到目标节点的有向通路,最后完成最短路径的搜索。 1 有向图的可达矩阵 假设有一个n个节点(d1,d2……dn)建立的有向图,每条有向边上都有各自的权值,若节点di和dj之间有条有向边,则其权值表示为Wij。如果我们要求节点d1到节点dn的最短路径。那么首先应该建立基于该有向图的邻接矩阵M:Mij=0表示节点di和dj之间没有直接有向通路,若Mij=1表示节点di和dj之间存在直接有向通路。 那么矩阵M2中所有为1的元素的坐标所代表的就是通过一次“中转”可以达到贯通的节点对。以此类推M3中所有为1的元素的坐标就是通过两次 “中转”可以达到贯通的节点对;Mn所有为1的元素的坐标就是通过n-1次“中转”可以达到贯通的节点对。 所以我们可以得出:M1+M2+M3+……+Mn得到的矩阵T即为原有向图可达矩阵,Tij=0表示节点di和dj之间没有有向通路,若Tij=1表示节点di和dj之间存在至少存在一条有向通路。 对于大规模稀疏矩阵,由于存在大量的值为0的元素,若按常规意义来存储,既会占用大量的存储空间,又会给查找带来不便。所以只要存储值为非0的元素即可。这在计算机中很好实现,只要建立含有两个整数域的结构体变量即可。 2 路径搜索算法 2.1 初步设想 由矩阵乘法的性质可知,Mx=Mx-1*M。若M■■≠0,则说明节点d1通过x-1次“中转”可以到达节点dj。那其中这x-1个节点都是哪些?它们又是什么顺序呢?把这两个问题搞清楚我们就找到了一条从节点d1经x-1次“中转”到达节点dj的通路。 接下来我们观察矩阵Mx-1的第一行,若M■■≠0,且Mij≠0,则说明:节点d1存在经x-2次“中转”到达节点di的通路,且节点di和dj之间存在直接有向通路。这样我们就找到了节点d1到节点dj通路的最后一次“中转”di,即d1,……,di,dj是一条有向通路。我们可以根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。 这在计算机中实现也很容易,只要把找节点di和dj之间的最后一次“中转”的方法编写好,采用计算机中的递归调用就能很好地解决这个问题,计算机会自己自动完成整个操作。 2.2 节点的选取 有一个问题我们需要注意:在我们观察矩阵Mx-1的第一行时可能有多个节点di,使得M■■≠0,且Mij≠0。基于我们是想找到有向图中的最短路径,所以每一次选取节点应该选择一个到节点dj最短的节点作为最后一次“中转”。这一过程是通过查看另一权值矩阵W,找到值最小的Wij来确定di的。 2.3 待查节点集 上面说到,我们找到了节点d1到节点dj的x-1次“中转”的最后一次“中转”di,即d1,……,di,dj是一条有向通路。根据此方法进一步再找到节点d1到节点到达di的最后一次“中转”,以此类推直至找到整个通路上的所有节点。 每一次查找之前,与待查节点有直接通路的节点都应加到考察的范围,同时上一次确定的最终通路上的节点也应从待查范围中删除,而加入最终通路的节点集中。 2.4 需要考虑的两种情况 按照上面方法是会找到一条从d1到节点dj的一条有向通路,但是一定是最短路径吗?我们先考虑两个情况:①如果在已经找到一条从d1到节点dj的有向通路的前提下,再重复以上过程再找一条从d1到节点dj的有向通路,那么有可能新找到的通路上的所有权值之和要比之前找到的通路上的权值之和小,在这种情况下,应放弃原来通路。记下新找到的通路把它作为“当前”的最短路径。②如果在查找的过程中,已经确定节点dy是在已找通路上的节点,即存在节点d1到节点dy的通路,也存在节点dy到节点dj的通路,并且dy是上一节点的最近邻接点。但在查找下一步节点d1到节点dy的通路的最后一次“中转”dz的过程中发现:所定通路上节点dy的上一节点通过其他方式到节点dz的长度要比经过节点dy中转到节点dz的长度要短,即通过dy相当于“绕路”。因为根据2.1中所阐述的方法找到的节点dz一定是待查节点中到节点dy路径长度最短的节点。若存在“绕路”现象,那么通过节点dy到其他的未差节点都会“绕路”。因而在这种情况下应该从已经确定的有向通路中把节点dy删除,恢复上一节点为当前节点,重新查找其除dy之外的最后一次“中转”。 2.5 搜索算法 首先根据实际情况建立有向图,并根据有向图建立有向图的邻接矩阵M,以及根据各有向边的权值建立矩阵W。然后根据矩阵乘法求出M2,M3,……Mn。这可以通过循环完成。之后的步骤就是设定待查节点,由于算法是从终点向起点查找的,所以应该先把与终点dj构成直接通路的节点作为待查节点。建立完待查节点集后,首先按照深度优先进行搜索,按照上面所说的递归算法查找第一条有向通路。然后以此条通路为基准,进行广度优先搜索,寻找新的通路,查找过程仍然是采用上述的递归算法,但是要考虑到2.4中的两种情况。需要指出的是:广度优先搜索过程可能是一个反复执行的过程,直至最终找到节点d1到节点dj的最短路径。 3 实例 某物流公司业务员要从v0到地点v2投递货物,路线如图1所示,业务员想在此过程走的路线最短,时间最快。他应该走哪条路线? 由上面有向图建立的邻接矩阵M以及有向边权值矩阵W如图2所示,由于M是一个稀疏矩阵,按照上面方法所述形成的节点数对(0,1),(0,3),(1,2),(3,2),(3,4),(4,1),(4,2)。按照矩阵乘法计算出M2、M3、M4、M5。由它们产生的节点对如下所示:M2(0,2),(0,4),(3,1),(3,2),(4,2);M3(0,1),(0,2),(3,2);M4(0,2)。我们据此可得到该有向图的可达矩阵T的节点对:(0,1),(0,2),(0,3),(0,4),(1,2),(3,1),(3,2),(3,4)(4,1),(4,2)。 现在我们求节点v0到v2的最短路径。查看矩阵T可知存在(0,2)的节点对,所以从V0可以到达V2。再按照上述规则以及结合矩阵W,找到M2存在(2,0)节点对,M中存在(1,2)和(0,1)节点对,即M■■= M12* M01, M■■、M12、 M01都不为0。所以找到一条通路即:v0、v1、v2,其路径长为19。 按照上述方法,我们还可以找到通路:v0、v3、v2和v0、v3、v4、v2,但是由于它们的路径长分别为19和20,不产生对通路v0、v1、v2的替换,所以在此不再详述。继续按着上述方法查找通路时会发现:M■■≠0,且存在M■■≠0,M12≠0,继续查找又会发现存在M■■≠0,M41≠0,进一步查找又会发现存在M03≠0,M34≠0,所以最终找到通路:v0、v3、v4、v1、v2,由于其路径长为18,所以按照上述原则对原通路v0、v1、v2进行替换,又由于已查找该有向图中所有通路,所以确定最短路径为v0、v3、v4、v1、v2,由于其路径长为18。 4 结论 本文针对物流配送系统中的投递等事务中路线优化的问题,提出了一种新的对最短路径算法的尝试,采用逆向标号,对待查节点进行优化选取,有效的利用了第一次计算的有用信息,避免重复计算,使得该算法搜索设计上要比以往算法节省时间,对于最短路径问题可以快速求解。虽然增加了邻接矩阵的乘法计算,但由于是稀疏矩阵,不会增加太多的计算量。本算法是具有实际意义的,可以在成本降低方面给出积极、高效的意见和解决方法,从而降低物流中的流通费用。 物流配送管理系统论文文献 [1]肖位枢.图论及其算法.北京:航空工业出版社,1993. [2]任亚飞,孙明贵,王俊.民营快递业的发展及其战略选择.北京:中国储运,2006. [3]周石林,尹建平,冯豫华.基于邻接矩阵的最短路径算法.北京:软件导报,2010. [4]蔡临宁.物流系统规划—建模实例分析.北京:机械工业出版社,2003. 有关物流配送管理系统论文推荐: 1. 配送管理论文 2. 物流配送毕业论文范文 3. 浅谈仓储与配送管理论文 4. 物流管理专科毕业论文范文 5. 浅谈服装物流管理论文 6. 快递末端物流配送的风险分析与防范措施研究论文 支座工艺课程设计 // dijsktra.cpp : 定义控制台应用程序的入口点。//#include "stdafx.h"#define N 12#include 提高毫不鱼鼓应该小AC啊生产SCX按时ASDF啊达到ASD按时的 毕业论文的研究方法有哪些啊?那里罗列了一些大学论文的研究方法?下面我就给大家整理出来了毕业论文的研究方法有哪些啊?一起来了解看一看吧,阅读完之后希望能够对你有所帮助到呢! 大学毕业论文的论文的研究方法有哪些呢? 调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法、调查方法是科学研究中常用的基本研究方法.它综合运用历史法、观察法等方u法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有i计划的、周密的和系统的了解,并对调查搜集到的超多资科进行分析、综合,比较、归纳,从而为人们带给规律性的如识。 调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法.即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。 论文的研究方法之实验法 实验法是透过主支变革、挖制研究对象来发现与确认事物间的因栗联系的一种科研方法。其主要特点是:第一、主动变革性。观察与调查都是在不下预研究对象的前提下去认识研究对象,发现其中的问题。而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。第二,控制件。科学实验要求根据研究的需要。借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。第三,因果性。实验以发现确认事物之间的因果联系的有效工具和必要途径。 论文的研究方法之观察法i观察法是指研究者根漏必须的研究日的、研究提继或观察表,用自我的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有日的性和计划性,系统件和可重复性。在科学实验和调查研究中,观察法具有如下几个方面的作用:①扩人人们的感件性认识。②启发人们的思维。③导致新的发现。 论文的研究方法之文献研究法 文献研究法是根据必须的研究日的或课题,透过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被子广泛用于各种学科研究中。其作用有:①能了解有关问题的历史和现状,帮确定研究课题。②能构成关于研究对象的一般印象,有助于观察和访问。③能得到现实资料的比较资料。①有助于了解事物的全貌。 论文的研究方法之实证研究法 实证研究法是科学实践研究的一种特殊形式。其依据现有的.科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,透过有日的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要日的在于说明各种自变量与某一个因变量的关系。 毕业论文的研究方法有哪些啊 论文的研究方法之定件分析法 定件分析法就是对研究对象进行质的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精,去伪存真,由此及彼、由表及里,到达认识事物本质、描示内在规律。 论文的研究方法之定量分析法 在科学研究中,透过定量分析法能够使人们对研究对象的认识进一步精确化,以使更加科学地揭示规律。把握本质,理清关系,预测事物的发展趋势。 论文的研究方法之跨学科研究法 运用多学科的理论,方法和成果从整体上对某一课题进行综合研究的方法,也称交义研究法。科学发展运动的规律证明,科学在高度分化中又高度综合,构成一个统一的整体。据有关专家统,此刻世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言,方法和某些概念方面,有日益统一化的趋势。 论文的研究方法之个案研究法 个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其构成过程的一种研究方法。个案研究有三种基本类型:(1)个人调查,即对组织中的某一个人进行调查研究;(2)团体调查。即对某个组织或团体进行调查研究:(3)问题调查,即对某个现象或问题进行调查研究。 论文的研究方法之功能分析法 功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。它透过说明社会现象怎样满足一个社会系统的需要(即具有怎样的功能)来解释社会现象。 论文的研究方法之数量研究法 数量研究法也称统计分析法和定量分析法,指透过对研究对象的规模、速度、范围、程度等数量关系的分析研究,认识和描示事物间的相互关系、交化规律和发展趋势,借以到达对事物的正确解释和预测的一种研究方法。 论文的研究方法之模拟法(模望方法)模拟法是先依照原型的主要特征,创设一个相似的模型,然后透过模型来间接研究原型的一种形容方法。根据模型和原型之间的相似关系,模拟法可分为物理模拟和数学模拟两种。 论文的研究方法之探索件研究法 探索性研究法是高层次的科学研究活动。它是用已知的信息,探索、创造新知识。 产生出新颖而独特的成果或产品。 哥哥给我点问问分吧我的灭了啊谢谢您拉 一,自己写。找关键词:药用丁基橡胶塞成品检测技术或者药用丁基橡胶塞成品检测研究,二,找个类似的论文然后COPY 关键路径的算法是建立在拓扑排序的基础之上的,这个算法中用到了拓扑排序。 1. 什么是拓扑排序? 举个例子先:一个软件专业的学生学习一系列的课程,其中一些课程必须再学完它的基础的先修课程才能开始。如:在《程序设计基础》和《离散数学》学完之前就不能开始学习《数据结构》。这些先决条件定义了课程之间的领先(优先)关系。这个关系可以用有向图更清楚地表示。图中顶点表示课程,有向边表示先决条件。若课程i是课程j的先决条件,则图中有弧。若要对这个图中的顶点所表示的课程进行拓扑排序的话,那么排序后得到的序列,必须是按照先后关系进行排序,具有领先关系的课程必然排在以它为基础的课程之前,若上例中的《程序设计基础》和《离散数学》必须排在《数据结构》之前。进行了拓扑排序之后的序列,称之为拓扑序列。 2. 如何实现拓扑排序? 很简单,两个步骤: 1. 在有向图中选一个没有前驱的顶点且输出。 2. 从图中删除该顶点和以它为尾的弧。 重复上述两步,直至全部顶点均已输出,或者当前图中不存在无前驱的顶点为止。后一种情况则说明有向图中存在环。 3. 什么是关键路径? 例子开头仍然,图1是一个假想的有11项活动的A0E-网。其中有9个事件v1,v2......,v9,每个事件表示在它之前的活动一完成,在它之后的活动可以开始。如v1表示整个工程的开始,v9表示整个工程结束,v5表示a4和a5已完成,a7和a8可以开始。与每个活动相联系的数是执行该活动所需的时间。比如,活动a1需要6天,a2需要4天。 由于整个工程只有一个开始点和一个完成点,故在正常情况(无环)下,网中只有一个入度为零的点(称作源点)和一个出度为零的点(叫做汇点)。那么该工程待研究的问题是:1.完成整项工程至少需要多少时间?2.哪些活动是影响工程进度的关键?由于在AOE-网中有些活动可以并行进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上各活动持续时间之和,不是路径上弧的数目)。路径长度最长的路径叫做关键路径(Critical path)。假设开始点是v1,从v1到vi的最长路径叫做时间vi的最早发生时间。这个时间决定了所有以vi为尾的弧所表示的活动的最早开始时间。我们用e(i)表示活动ai的最早开始时间。还可以定义一个活动开始的最迟时间l(i),这是在不推迟整个工程完成的前提下,活动ai最迟必须开始进行的时间。两者之差l(i)-e(i)意味着完成活动ai的时间余量。当这个时间余量等于0的时候,也即是l(i)=e(i)的活动,我们称其为关键活动。显然,关键路径上的所有活动都是关键活动,因此提前完成非关键活动并不能加快工程的进度。因此,分析关键路径的目的是辨别哪些是关键活动,以便争取提高关键活动的功效,缩短整个工期。4. 如何实现关键路径?由上面的分析可知,辨别关键活动就是要找e(i)=l(i)的活动。为了求得e(i)和l(i),首先应求得事件的最早发生时间ve(j)和最迟发生时间vl(j)。如果活动ai由弧 2) 从vl(n-1) = ve(n-1)起向后推进求得vl(j)vl(i) = Min{vl(j) - dut(};属于S,i=n-2,...,0其中,S是所有以第i个顶点为尾的弧的集合。这两个递推公式的计算必须分别在拓扑有序和逆拓扑有序的前提先进行。也就是说,ve(j-1)必须在vj的所有前驱的最早发生时间求得之后才能确定,而vl(j-1)必须在Vj的所有后继的最迟发生时间求得之后才能确定。因此可以在拓扑排序的基础上计算ve(j-1)和vl(j-1)。 具体算法描述如下:1. 输入e条弧 为了能按逆序拓扑有序序列的顺序计算各个顶点的vl值,需记下在拓扑排序的过程中求得的拓扑有序序列,这就需要在拓扑排序算法中,增设一个栈,以记录拓扑有序序列,则在计算求得各顶点的ve值之后,从栈顶到栈底便为逆拓扑有序序列。 转自: 首先你应该找到最早完成跟最迟完成的时间,然后剪一下就可以了 这个问题,你最好咨询开发这个软件的人~~ 1、下载360安全卫士,打开界面,然后右下角人工服务——热门工具——搜索(重装系统)打开之后点击重装系统,自动下重装。2、打开人工服务——360专家(免费)——通过预约专家——微信预约专家——在预约的时间会通知你打开电脑然后以远程服务的方法来帮你重装。最短路径算法的研究毕业论文
最短路径法的研究论文
毕业论文研究方法与路径
图中关键路径查找算法研究论文