数学论文格式范文【时间:2010-10-06 10:52 来源:未知】 题目要求:引人注目,一般不超过20个字。字体要求:小2号黑体,居中。空一行写摘要。页面设置要求:页边距上、下、右都为2.5厘米,左边距为3厘米。装订线位置为左。中学数学与高等数学的和谐接轨(小二黑体,不加粗)摘要(小三黑体,不加粗):从中学数学到高等数学,实际上是由具体的、粗浅的数学结构上升到了严谨的公理化体系的论述,由形象思维上升到抽象思维,由特殊到一般,由简单到复杂,由低级到高级。领悟到这一点,再结合中学数学的相关知识去学高等数学,就不会觉得艰涩难懂。站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。所以如何实现中学数学和高等数学的和谐接轨,如何在两者之间架一座桥梁是至关重要的。本文从特例分析、数学内容(代数、几何)、数学思想方法等三个方面就接轨问题进行了简要论述。(小四楷体,200字以上)关键词(小三黑体,不加粗):中学数学 高等数学 数学思想 接轨(小四楷体,不多于5个)一般说来,数学史家把数学的发展分成四个阶段:萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期或五个时期(再加上“当代高等数学时期)。(正文,小四宋体,字数不少于3000字)参考文献:(小三黑体,不加粗)( 收集整理原创论文)[1] 唐国庆.湘教版初中数学教案(七年级上册)[M].湖南教育出版社.2008年.[2] 张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978年.(小四宋体,参考文献不少于4个)论文内容必须是有关数学方面的,专业或教学方面的。西藏大学(初号隶书加黑居中)本科生毕业论文(设计)(小初楷体加黑居中)题目:(字号二号,宋体,加黑,居中,下划线)----副标题:(字号三号,宋体,加黑,居中,下划线)院(部) 专业年级 姓 名 学 号 指导教师 职 称
每个学校都有他规定的格式的,你最好问下你们学校的领导吧。来源:金鼎论文
1、论文题目:要求准确、简练、醒目、新颖. 2、目录:目录是论文中主要段落的简表.(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整.字数少可几十字,多不超过三百字为宜. 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索.每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方. 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语. 5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头.引言一般要概括地写出作者意图,说明选题的目的和意义,并指出论文写作的范围.引言要短小精悍、紧扣主题. 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论.主体部分包括以下内容: a.提出-论点; b.分析问题-论据和论证; c.解决问题-论证与步骤; d.结论. 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行. 中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证. (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息.
哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!
数学教学的知识具有抽象性、严谨性、广泛性、辩证性等基本特征,相比于其他的学科,数学教学知识素养具有更高的要求。下面是我为大家整理的高中数学小论文,供大家参考。
摘要:课堂作为学生接受知识的主要场所之一,教师的课堂教学效率问题备受瞩目。高中数学课堂教学效率的提高,在很大程度上可以激发学生学习数学的兴趣和信心。在此过程中,授课教师应根据教学任务和实际情况,借助多媒体技术和现代化教学手段来激发学生在数学学习中的兴趣,引导学生发现问题并解决问题,从而提高教学质量。
关键词:高中数学;教学;效率;策略
高中数学以其难度大、知识点多且课时量大的特点,在所有高中课程中一直占据着较大的比例。因此,高中数学的课堂教学效率决定着学生对数学这一学科的本质认知以及是否可以重拾或加深学习数学的兴趣,授课教师要怎样改变单一古板的教学模式,如何运用恰当有效的教学方法,将会对学生日后的数学学习产生深远影响。本文针对此问题提出三种策略以提高高中数学课堂的教学效率。
1兴趣创造知识
兴趣是做任何事情的根基,尤其是在探究数学的道路上。数学是一门相对枯燥乏味的科学,如何提起学生学习数学的兴趣是高中数学授课教师在准备教学过程中应首先考虑的问题,并且要将此问题融入到设计教学的内容、方法和手段中。授课教师应做到以下两点:第一,教师应从自身出发彻底改变传统的教学观念和教学模式,让填鸭式、题海式的教学模式远离高中数学课堂。并从学生的实际出发,选取适合高中生认知的方法开展教学。积极营造良好的课堂气氛,一改高中数学课堂压抑沉闷的教学氛围。第二,教师要将课堂还给学生。在新课程标准下,更加强调学生占据课堂学习的主体地位。学生本应是学习的主体,但一直以来的高中数学课堂都是老师教,学生学的单一模式,而这种模式不仅不利于教学质量的提高,而且会磨灭学生对数学学习的兴趣。因此,学生只有变被动为主动的接受知识,才能意识到自己是课堂教学的主体,是学习的主体,才会对学习内容产生兴趣并进行深入研究,并且乐于接受学习中的困难和挑战。综上,高中数学课堂教学效率的提升不仅得益于学生的课堂参与及课后探究,更离不开让学生积极主动去学习的动力——兴趣。
2不是替学生解决问题,而是教学生自己解决问题
高中数学在升学考试中一直占据着较大比例,因此,很多一线数学教师急于培养学生的应试能力,采取大量的题海战术,长此以往,在教师的认知中,学生可以不断在做题解题的过程中意会数学这一学科的真正本质,并掌握相应的解题方法,这是教师认知中普遍存在的错误。教师将解决问题的方法直接授予学生,不仅阻碍了学生思维的发展,而且扼杀了学生勇于创新的主动性和积极性。所以,高中数学课堂教学中,教师的任务不是替学生去解决问题,而是教学生自己去探索并解决问题。教师应鼓励学生的发散思维,多角度考虑问题,让学生养成良好的思维习惯,不拘泥于一种思维形式。鼓励学生自己发现问题,并试图用自己的办法去解决问题。要知道,经验和教训是需要通过尝试和努力之后自己总结出来的,而不是通过别人的行为或想法获取的。此时教师的角色便是积极引导,解答学生在探索过程中遇到的疑惑。
3将科学技术融入高中数学课堂
科学技术作为第一生产力,也要以其独到的形式融入到高中数学课堂,即多媒体技术的应用。数学作为一门较抽象且枯燥乏味的学科,尤其是学生在接触更加抽象、复杂的领域时,多媒体教学以及其他科技手段的引入,将抽象又枯燥的数字及图形变得活灵活现。比如高中几何教学中涉及的图形,以及高中代数教学中涉及的函数教学,其中有众多的数量关系问题,图形结合问题,代数和几何综合性的应用题,传统的这些教学,教师借助传统教学用具,在黑板上体现不直观、不具体,学生理解困难,教学质量不佳,但是,这些问题随着多媒体技术的融入,都迎刃而解。多媒体对图像的表达更加直观,学生对知识点的明确更加清晰,教学效果显著提升。例如,在解决函数问题上,教师可以通过多媒体展示动态函数图像,清晰的坐标图以及收缩可控的图像效果,都会深深印在学生的脑海中,而这样的教学效果是传统的黑板画图教学所达不到的。再比如空间立体几何教学,教师在黑板上很难体现出图形的空间感和立体感,而多媒体却可以弥补这一空缺。即使通过多媒体教学可以培养学生的主体参与意识可以达到师生互动的课堂效果,但多媒体只是填补传统教学漏洞的一种辅助教学手段,所以只有适度使用才能发挥其最大价值,才能更好地提升课堂教学效率,促进教师与学生之间更好的交流和沟通的形成。
4总结
综上所述,高中数学教师应积极构建和谐的师生关系,在教学中激发学生对数学学习的热情和兴趣,积极引导学生发现问题探究问题继而解决问题,并借助多媒体技术以及现代化手段让知识在学生大脑中留下生动形象的记忆,改变高中数学课堂的枯燥氛围。这需要授课教师和学生的积极配合,在完成教学任务的基础上,培养学生的学习能力,从而提高高中数学课堂学习效率。
参考文献:
[1]郝保奎.浅议提高高中数学课堂教学效率的方法[J].现代阅读(教育版),2013,(1):129.
[2]朱亚珍.提高高中数学课堂教学效率策略研究[J].数字化用户,2013,(4):87-88
摘要:当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。
关键词:高中数学;教育;创新能力
1.前言
创新是一个社会、一个国家发展的动力源泉,是我国站立在世界列强、屹立在民族之林的保证。我国的数学教育在世界上一直走在时代的前沿,但是我国学生的创新能力却存在普遍落后的现象。教育的发展要顺应时代的变化,尤其在我国处于一个转型期的关键时期,更要通过教育来培养出一批将来社会的栋梁人才。因为培养学生们的创新意识和创新能力,也成为了课堂上教学重点的重中之重。从数学课程来分析,创新能力主要表现在学生对教学知识的接受和学习能力,对既出数学问题的理解和分析能力,对应用数学的掌握和运用能力,这部分能力成为了高中数学教育中必须抓重的部分。为了达到学生创新能力的培养,需要教师们在课堂上不断的设立问题,打开学生们的大脑,鼓励学生的发散思维,让学生在分析和思考中,培养创新能力。本文将就如何提高高中数学教学中学生们的创新意识和创新能力进行论述。
2.高中数学教育学生创新意识的养成
创新意识的培养,就是为了使学生能够自觉的用创新的思维、用多种角度来解决高中数学学习中的问题。教师应该打破以往的教学模式,顺应时代的变化,采用现代化的教学手段,在理论方面实现创新的同时,注重实际的运用,使学生习惯用创新的思维和眼光去看待问题和解决问题。
(1)鼓励提问和质疑,培养创新的行为。所有的创新,离不开对事件本身的质疑。只有发现问题,才会想办法去解决问题,才会形成一定的创新意识。高中数学知识的教授对学生而言本来就存在很多难以接受的点,鼓励学生大胆的提问,对命题和真理大胆的质疑,而不是用搪塞的方法把学生的创新苗头给掐死在摇篮里。用宽容的态度,用引导的方式来处理学生们的提问和质疑,尝试一题多解的方法来拓宽学生的思维方式,用对命题真理推演的过程提高学生的发现和分析能力。通过这些,能有效的使学生们自觉的思考问题,形成自我主动性的创新,也就是潜移默化的培养出了创新意识。
(2)构建新型的课堂氛围。传统的教和学的方式已经很难适应新时代的教育需求,创新意识的养成离不开互动性的氛围,应该给予学生们主动思考的空间和时间,所以课堂气氛的营造是培养学生创新能力很重要的一点。教师在教学的过程中应当充分的和学生们进行互动,多提出问题,把自己定位成问题讨论的参与者,和学生们一起解决问题。同时对于学生们的理性思维问题,给予充分的帮助,让学生们体会到课堂的温馨,才会促使他们愿意在课堂上去共同解决问题。
3.高中数学教育学成创新能力的培养
数学教学是一个复杂的动态的教学模式,随着时代的发展,数学的教学模式也在一直发生改变。而培养创新能力是时代发展的结果,是社会进步的前提,所以在多变的高中数学教学中培养学生的创新能力,是新时代社会的需求。
(1)发展学生的探索能力。高中的数学学习不应该知识简单的接受和模仿,还应该多多自主探讨,尝试合作交流,培养自学的方式。多样性的学习,能放拓宽学生的思维方式,对创新能力的培养有着促进作用。发展学生的自学能力。自学能力是实现学生终生学习的基础,是学生不断进步、不断超越自己的基本能力。教师应该放开手脚,给予学生们充分的时间,引导他们自主学习。形成了自主学习,就形成了自主思考的能力,再结合平时课堂上正确的引导,这种自主思考能力能很快的转变为创新能力,成为学生终身受用的财富。提倡探索性学习。在教学的过程中,教师不能只扮演一个传授知识的角色,而应当以学生的兴趣为中心,利用数学的基本原理和相应的辅助教学手段,给学生们提出问题,一起进行探索性的解决问题,培养学生的思维能力。把理论知识和其他应用科学结合在一起,不断的为数学的教学注入活力,探索式的思考和解决问题,将有利于学生创新能力的培养。合作学习。善于合作的人,才能更适合社会的发展。教学过程中,教师应当注意避免学生一个人去面对问题,而是多方共同讨论,在合作讨论的过程中,学生们取长补短,形成了自主的学习,能为自己的思维方式进行自我的改善,这样能极大的激发学生的创新能力。
(2)利用解题教学方式。创新能力的培养,不但在于使学生们发现问题的本质,更注重的是使学生们自主解决生活的问题或者学术上的难题。所以教师应该在学生基本掌握了理论的基础上,自主学习解题的技巧,从多个角度来看到问题,形成良好的思维习惯。所以教师应该避免说教式教学,应该让学生们自己发现问题,然后从所学的知识中自主进行验证,这样即可以充分调动学生们的想象力,还能使学生们的思维方式拓宽,提高创新能力。
(3)教师教学观念的更新和学科的创新教育。数学是一门活学活用的学科,在高中数学教育中培养学生的创新能力,也就是培养学生们的思维方式,让他们形成自主的发现问题、解决问题的套路,最后形成一般规律。所以在这其中,教师必须具有创新意识,改变传统的教学思路,采用研究性教学。
4.结语
当下最普遍的教育方式便是从学生的兴趣和好奇心出发,引导学生耳朵理性思维能力,拓宽学生的自主学习和逆向思维的能力,利用高中数学独具的魅力和问题解决的多样性,促使学生们自我创新意识的进步,在高中数序的学习中,培养学生们自己的创新意识和创新能力,给新时代的社会人才的需求打下坚实的基础。
参考文献
1、高中数学教师如何指导高一新生走进数学武增明上海中学数学2004-08-20
在高中数学教学的过程中,数学的函数思想一直是我们从事教学的理念之一,函数的定义起始于初中阶段,进入到高中以后,不断的在原来的基础上增加了新的函数概念,主要是用映射的观点来阐明函数,这就要求我们学生对函数要有更加深层的理解,了解函数的思想,认清函数的理念,来解决函数中的各种问题.函数思想是指用函数的概念和性质去分析问题、转化问题和解决问题.学习函数要重点解决好以下三个问题:
一、准确、深刻理解函数的有关概念
函数是中学数学中的`一个重要概念,函数是高中数学的基础.学生学习函数的知识分四个阶段.第一个阶段是在初中,学生已经接受了初步的函数知识,掌握了一些简单函数的表示法、性质、图像.
第二个阶段(数学必修1),第三个阶段将学习三角函数(数学必修4)、数列(数学必修5),第四个阶段在选修课程中,如导数及其应用、概率(选修系列2)、参数方程(选修系列4)等都仍然要涉及函数知识的再认识,是对函数及其应用研究的深化和提高.
对于函数概念的引入,教材通过具体实例,让学生体会函数是数集之间的一种特殊的对应关系.教学应从学生已有的函数知识入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的变化,在集合的基础上,构建函数的一般概念.如:
(1)随着二氧化碳的大量排放,地球正在逐渐变暖;
(2)打电话时,通话费用与通话时间之间的关系;
(3)中国的国内生产总值正在逐年增长;
等等.
二、揭示并认识函数与其他数学知识的内在联系
在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用,综合问题的求解往往需要应用多种知识和技能.函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容,在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式.三、把握数形结合的特征和方法
数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径.函数图像的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图像的平移变换、对称变换
例:如果f(x)=x2+bx+c对于任意实数t都有f(2+t)=f(2—t),那么()
A。f(2) C。f(2) 本题若用代数方法求解较为困难,可以引导学生由题设条件f(2+t)=f(2—t)所反映的几何特征,据此画出抛物线示意图,根据它的单调性就可分辨f(2) 例题是通过数形结合,利用函数图像的性质解题.数形结合又是解析几何的基本特征之一,坐标系的建立给数学提供了一个双向的工具:集合概念可以用代数表示,几何目标可以通过代数表达,通过数形结合,利用曲线方程图像的性质解题,可以收到意想不到的效果. 函数思想,就是用运动和变化的观点,分析和研究自然界中具体问题量的依存关系,剔除问题中的非数学因素,抽象其数学特征,用函数的形式把这种数量关系表示出来.它在高中数学的教学中起着很重要的作用,为很多问题的解决提供了方便,同时增强了学生解决问题的能力. 随着新课改的全面推进,一场更新 教育 观念,改革教学内容、 教学 方法 的运动正在兴起。教育呼唤教师教学方式的转变,对学生自身的学习能力也提出了更高的要求。 下面是我为大家整理的 高一数学 论文 范文 ,供大家参考。 《 高中数学个性化教学探讨 》 个性化教学是指,在课堂教学中教师充分尊重学生的个性,根据每个学生不同的个性,包括兴趣、特长等,因材施教.教师授课的观念已经不是传统的传授知识,而是带动学生自主学习,把教学方式由“苦力”转化为“技术”,给学生提供充足的学习空间,培养学生的学习能力,提升教学质量和水平.这样,对学生优良的评价已经不是根据学生能够记忆多少知识,而是学生的获取信息、分析信息以及信息加工的能力.个性化教学是实现这样的教学目标的关键所在.教师由“知识的传授者”转变为“学生学习的协作者”,传授学生学习的方法,促进教育个性化发展.个性化教学需要从“多元化”“以生为本”出发,通过具体教学活动体现每个学生的个性、兴趣、特长等. 一、高中数学个性化教学存在的问题 1.学校方面.学校以及教育部门的重视程度不高,学校的管理观念落后,一味追求学生的成绩和整体的升学率,而忽视了对学生的多元化教育,将学习成绩列为评定学生优劣的唯一标准.这是不恰当的,只会逐步消磨学生的个性. 2.教师方面.教师个性化教学能力相对低下.在个性化教学中,教师需要具备数学知识、 基本素养 、心理学以及教育多元化思想结构、个性化教育方法等,但是只有少数教师能够达标,尤其是在乡镇比较落后的地区,几乎没有教师能够在多元化、个性化教学方面达到标准. 3.学生方面.由于学生长期受到“填鸭式”教学方式的影响,基本数学知识和理论的掌握理解程度不一.在这样的环境下,学生大都对学习产生功利性.比如,大多数学生的刻苦努力都是冲着应付考试、取得好名次,或者是为了评先、评优而刻苦学习的. 4.课程和教材方面.教学目标缺乏一定的层次性,教学方法简单机械,教学内容乏味无趣;教材的设置和知识点的配置很难与实际生活和应用达成一致,使学生学习教材知识点仅仅是为了考高分,从而使教学变得没有意义. 二、高中数学个性化教学策略 1.加强对高中数学个性化教学的重视.学校方面应该逐步加强对学生个性化教学的认识和重视,需要在教学理念上予以革新,在管理制度上给予重视.例如,在学校组织多种多样的个性化教学的培训和交流活动,使个性化教学的目标与过程深入到学校各个环节的教育工作者心中,使个性化教学充分展现在校园中. 2.教师提高个性化教学能力.一方面,教师应该提高自身教学素质,形成个性化教学的能力.例如,在讲“椭圆方程”时,教师可以这样开展个性化教学:从教学目标的制定方面将整个章节作为一个大的教学目标,再将大章节分散成小章节,将大问题分解成若干小问题,借助多媒体课件展示椭圆定义的实质,将整个概念浮现在学生记忆里,通过让学生自己动手,独立思考,自主探索,自己提出问题,利用各种教学资源进行观察、分析、实验、探究,找到解决问题的途径.教师可以提出问题:到两定点的距离之和为定值的点的集合一定是椭圆吗?通过课件演示和自主观察,学生得出初步结论,最后由教师进行讲解与集体验证,挖掘其内涵,使该知识点在学生记忆中留下深刻印象.这样,能够提高学生学习的积极性,从而提高教学质量. 3.引导学生适应个性化教学.在高中数学教学中,教师要创造个性化教学环境,引导学生个性化学习,大胆质疑,勇于表达,开展个性化探究活动.例如,在讲“椭圆”时,教师可以准备一根细绳和两根钉子,在给出椭圆定义之前,在黑板上任意取两个点(注意两点之间的距离要小于绳子的长度),让两个学生按照教师的要求在黑板上画椭圆,学生通过自主画椭圆的过程, 总结 出椭圆应该具备的具体特征,之后教师根据学生推测出来的椭圆的特点进行讲解,将椭圆的数学定义与学生总结出来的椭圆的特点进行对比,总结 经验 和教学.这样,每个学生脑海中都会存在椭圆的定义和椭圆的基本形态,提高学习效果. 4.形成个性化教学策略.首先,教师要按照不同学生的具体水平制定不同的教学目标,再按照各个层次不同基础学生的学习状态以及学习要求选择层次分明的教学方法,有针对性地对不同阶段学生进行不同方式的教学.其次,引入综合性的教学办法.最后,对高中数学的教学内容进行拓展,培养学生的 发散思维 ,形成多元化的教学评价.总之,个性化教学关键在于教师.在“以生为主”的基础上,突出教师的主导作用,不失时机地引导学生,从学生内心完成其对教学方法的认可,帮助学生对数学知识的掌握以及知识框架的梳理.通过教学方法来指导学生的学习,通过学生的学习来完善教学方法. 《 高中数学互动教学探讨 》 教学过程是师生双边性的活动,是师生沟通交流、共同发展的互动过程。随着新课改的不断深入,高中数学课堂从表面也变得活跃起来,但数学教师并没有从本质上激发学生学习数学的兴趣,没有充分挖掘学生的数学潜能。新课程改革对高中数学教学提出了新的要求,其更加重视学生在学习中的主体性,也要求教师维持课堂活力,通过更有效的互动交流提高教学的有效性。这就要求教师要高度重视与学生的互动交流,在互动的过程中注重培养学生的独立自主性、思维创造性,引导他们真正成为学习的主人。在此,笔者对高中数学互动教学作了一定的探讨。 一、转变教师角色,师生平等参与数学教学活动 师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般人际之间的关系,又在教育情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。 二、构建教学场景,师生在融洽氛围中深刻互动 情感渲染学指出,和谐师生关系、融洽生生关系,需要外在良好教学情境和氛围的渲染和支持。师生之间深入参与,积极互动,一方面需要积极的心理情态进行“驱动”,另一方面需要适宜的场景氛围进行“渲染”。部分教师轻视情感氛围的营造,强调教师的讲解指导功效,学生的主体意识淡化,参与情感淡薄,师生互动也只是“逢场作戏”,形式主义。笔者认为,教师应注重外在环境因素的应用,利用高中数学教材的生活应用特性、趣味生动特性、历史特点等,通过适宜融洽教学环境的“外因”,催化学生主动参与互动的“内因”,促使师生之间进行深入互动。如“等比数列的前n项和”新知讲解环节,教者发现,以往的“直接讲授法”教学模式限制了高中生掌握其知识内涵的“深度”,学生只有“参与其中”,深入互动,真切交流,采用场景激励法,设置了“古代印度国王准备对 国际象棋 的发明者给予麦子奖赏,而发明者提出了在第一格放1粒麦子,第二格放2粒麦子,第三格放4粒麦子,以此类推,放到象棋盘上的最后一格,将所用到的麦子全部奖赏给他”的现实案例,并利用教学课件进行动态演示展示,为学生营造具有真实感、现实感的场景氛围,贴合高中生认知实际,带着积极情感参与师生深刻互动。 三、注重综合评价,促进高中数学互动教学 在高中数学互动教学中,教师需要注重对学生进行综合全面的评价。只有通过有效的评价,教师才能对互动教学进行总结,才能够进一步激发学生的信心,使课堂教学氛围变得更加和谐。一方面,教师要评价的是师生互动中学生的收获与表现出的不足,要通过评价指出学生的得失,使学生能够在日后的学习中有意识的改正缺点并发挥优点。另一方面,教师要评价学生的能力与具体表现,要善于发现学生的闪光点,并通过正面的评价对其进行认可与肯定,达到巩固学生学习信心的目的。例如,在函数的单调性的教学中,教师利用课堂提问的方式引导学生进行思考与学习,同时在互动中了解学生掌握知识的情况。教师发现,部分学生能够在研究函数时有意识的利用数形结合的方法将抽象的条件放入函数图像中解析,并且能够从不同的角度思考问题分析问题。此时,教师并不能只看到学生在学习中取得的收获,而应该肯定意识和能力,要对学生表现出的能力进行肯定与认可。基于此,学生才能在与教师的互动中感受到教师对自己的关注与重视,才能在日后的交流中变得更加主动,同时有意识的发扬自己的优点,使其成为个人独特的能力。 有关高一数学论文范文推荐: 1. 高中数学论文范文 2. 高中数学评职称论文范文 3. 有关高中数学论文范文 4. 浅谈高一数学相关论文 5. 数学系毕业论文范文 6. 关于高中数学论文 7. 浅谈高中数学模型论文 8. 高中数学教育教学论文 数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。 【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。 【关键词】高中数学;数列;课堂教学 高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。 一、数列部分教学内容概述 数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。 二、数列教学的有效性策略简析 数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。 1.对比数学问题,归纳共性特点,培养探究习惯和能力 在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。 2.与其他数学知识相综合,建立数学知识体系的网络化综合化 数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。 3.通过练习和小测试来巩固课堂教学的效果 传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。 三、高中数学数列部分课堂教学设计要点 课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素: 1.要细致了解学生在数列学习和解决数列问题中的切身体验 应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。 2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板 数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。 3.重视数学史渗透和用数学工具解决实际问题的能力 数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。 4.重视数列学习中组合学习的魅力 人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。 5.教师应该注重自我提高,从别人的课堂教学中汲取营养 老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。 四、结束语 高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。 摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。 关键词:高中数学;数列;教学 一、引言 在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。 二、高中数学数列教学体会 1、以生为本,以学定教 1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。 2)以学定教,采用适合本班同学的数学教学方式进行有效教学 在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。 2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识 1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。 2)多媒体课件辅助教学可以让学生更加直观地理解数学知识 教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。 3、高中数学数列教学的创新 数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。 (一)数列教学应注重问题情境的创设 为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。 (二)创新理念下的“数学概念” 对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。 在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。 【摘 要】高等数学是高职院校的基础课程之一,本文以案例教学为载体,通过若干具体应用实例阐述了如何培养学生的数学应用能力和实践能力,从而更好地适应当前高等职业教育的发展,同时也指出了案例实施过程中一些需要注意的问题。 【关键词】案例教学法 高等数学 高等职业教育 应用能力 【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)30-0038-02 中国的高等职业教育于20世纪80年代正式纳入国民教育体系,成为中国高等教育事业的重要组成部分。经过若干年不断探索和总结,高职教育确立了培养生产、建设、管理、服务第一线的高素质、高级技能型专门人才的培养目标,确立了工学结合为其重要人才培养模式,并对课程体系进行了一系列各具特色的改革,取得了一些有价值的成果。 高等数学是一门重要基础课程,在信息时代大背景下,其数学思想和数学思维方法越来越受到各行各业的重视。在高职教育中,数学课程首先是为专业课程提供必要的数学基础,并在此基础上培养学生应用高等数学解决实际问题的能力和素养,概括来讲,就是“理解概念,联系实际,深化应用,提高能力”。然而,在高职教育从无到有,到遍地开花、蓬勃发展的这些年,高等数学的课程改革却是举步维艰,特别是在“如何培养学生应用数学、实践数学的能力和素养”这一点上,探索显得尤为艰难。有相当一部分学生觉得数学“学了不知道有什么用”“学完就忘”等,因此,如果要切实提高学生学数学的兴趣和用数学的能力,就必须想办法让学生“动”起来,而案例教学就是动态学习过程的一个良好载体。 案例教学法起源于20世纪初美国哈佛大学,即围绕一定的培训目的把实际中真实的情境加以典型化处理,形成供学生思考分析和决断的案例,通过独立研究和相互讨论的方式,来提高学生分析问题和解决问题的能力的一种方法,在当今世界的教育和培训中受到重视和广泛的应用。本文主要讨论若干应用实例在高等数学教学中的运用实践,旨在对如何提高学生的数学应用能力做一些探索。 实例一:割圆术 案例介绍:公元263年,中国古代数学家刘徽在《九章算术注》中给出了一种求圆面积的方法――“割圆术”,先作圆的内接正三角形,记其面积为S1,再作圆的内接正四边形,记其面积为S2…,一直下去,记圆的内接正n边形的面积为Sn,于是得到一个数列S1,S2…Sn…。当n无限增大时,Sn无限接近于圆的面积S。 案例实施:解决这个案例,学生大概需要分三步实现,流程如下: 案例应用:极限是微积分的基石,该案例的实施过程是极限应用的典型范例,后续无论是切线斜率问题(导数)还是曲边梯形面积问题(定积分),其推导过程都遵循了上述“建立函数表达式”――“将所求量表示为函数(数列)的极限”――“计算极限”这样的分析过程。 实例二:蜂巢结构 案例介绍:观察蜂巢的一个储藏室,它是中空的正六角形柱,而底部是由三个菱形面组成,交会于底部中心顶点G。著名天文学家马拉尔第观察到了作为蜂房底的3个菱形的钝角等于109°28′,锐角等于70°32′。 马拉尔第的结果引起法国著名的博物 学家雷奥姆的兴趣,他猜测蜜蜂选择 这两个角度一定是有原因的,可能就 是要在固定容积下,使表面积为最小, 即以最少的蜂蜡做出最大容积的储藏 室。这个猜测被瑞士数学家柯尼格从 理论上做了证明(他的计算结果与实测值仅差两分)。 案例实施:设正六边形的边长为2a,G到平面B1D1F1的距离为x,GC1=2y,实施流程如下: 案例应用:该案例是一个高等数学与数学建模相结合的最优化问题,主要通过“提炼模型”――“模型分析”――“模型求解”这样三个步骤实现,学生通过该案例的学习,可以体验将实际问题抽象为数学模型进而求解的一般过程,高等数学应用中很多实际问题,如“最优广告策略”“最省用料方案”等,都有类似的分析求解过程。 实例三:溶液混合问题 案例介绍:容器内盛有50升的盐水溶液,其中含有10克盐。现将每升含盐2克溶液以每分钟5升的速度注入容器,并不断搅拌,使混合液迅速达到均匀,同时混合液以每分钟3升的速度流出容器,请问任一时刻t容器中溶液的含盐量是多少? 案例实施:在案例中,盐水流入的同时也在流出,这是个动态问题,用初等数学的知识无法解决,可以通过建立微分方程来实现。 案例应用:这类溶液混合问题与著名的牛吃草问题(也称消长问题或牛顿牧场问题)具有同一动态属性,其某个特定量的动态变化速度是“消”“长”因素共同作用的结果。其他一些工程问题,如“抽水机抽水问题”等,也可以采用这样的思路求解。 英国数学家牛顿曾说:“在学习科学的时候,题目比规则还有用些。”案例教学通过为学生提供合理的数学教学情境,经过学生主观自觉的对比、归纳、思考、领悟、分析与决策,让学生在动手操作过程中综合运用课程知识,从而提高分析、解决问题的能力,是常规教学的一种有效补充。当然,案例教学也有局限性,如适合教学的案例较少、花费的时间较多、对教师的要求较高、效率有时较低等。特别是在案例的选取上,教师一定要注意把握尺度,案例太复杂,超出学生的能力范围,会打击学生的积极性;案例太简单,不能调动学生的兴趣,其理解、思维和分析能力也得不到很好的锻炼。此外,还要注意案例的生动性与数学知识点相结合。单调呆板的案例对学生来说与纯粹的数学知识无异,只有生动的、贴近生活的案例才可能调动学生的兴趣,但如果一味地追求案例的生动性而忽视了与数学内容的结合,那么通过案例教学提高学生应用数学的能力也就成了一句空话。 参考文献 [1]张家军、靳玉乐.论案例教学的本质与特点[J].中国教育学刊,2004(1):62~65 [2]郭德红.案例教学:历史、本质和发展趋势[J].高等理科教育,2008(1):22~24 [3]孙军业.案例教学[M].天津:天津教育出版社,2004 [4]陈卫忠、杨晓华主编.高等数学[M].苏州:苏州大学出版社,2012 [5]李心灿主编.高等数学应用205例[M].北京:高等教育出版社,1997 DataType: 1题名: 数学建模教学模式的研究与实践作者: 乐励华,戴立辉,刘龙章单位: 东华理工学院,东华理工学院,东华理工学院 江西抚州344000 ,江西抚州344000 ,江西抚州344000年: 2002期: 06页码: 9-12关键词: 数学建模课;;教学模式;;教学改革摘要: 探讨工科数学教学中数学建模课的多个层次和开设数学建模课的几种方式 ,并且介绍我们的一些具体做法DataType: 1题名: MATLAB用于《高等数学》的教学作者: 朱汉敏单位: 苏州经贸职业技术学院 苏州,215000年: 2004期: 02页码: 77-80关键词: MATLAB;;高等数学摘要: MATLAB 已经成为国际上最流行的科学与工程计算的软件工具,它在国内外高校和研究部门正扮演着重要的角色。本人在《高等数学》教学中,利用MATLAB的图形生成功能,使数学知识直观生动,增强了学生对数学的兴趣,并为学生日后数学建模、科学与工程计算开启了一扇大门。DataType: 1题名: 用MATLAB解决高等数学中的图形问题作者: 周德亮,白岩单位: 吉林大学数学科学学院,吉林大学数学科学学院 长春130012 ,长春130012年: 2002期: 01页码: 122-124关键词: MATLAB;;高等数学;;Mathematica摘要: 本文通过实例将 MATLAB与 Mathematica的图形功能做了比较 ,指出了 MATLAB在解决高等数学图形问题时的优势 .DataType: 1题名: MATLAB在高等数学教学中的几种应用作者: 唐世星;张红玉;柯凤琴;单位: 承德石油高等专科学校数理系,承德石油高等专科学校数理系,承德石油高等专科学校汽车工程系 河北承德067000,河北承德067000,河北承德067000年: 2007期: 03页码: 50-53关键词: 高等数学;;MATLAB;;计算机辅助教学;;教学改革摘要: 以提高高等数学的教学质量、进行教学改革为目的,充分利用MATLAB软件在作图和数值计算上的优势,结合高等数学和MATLAB语言的特点,以高等数学教学中的几个具体问题为例,阐明了MATLAB语言在高等数学教学中的三种应用。DataType: 1题名: MATLAB在高等数学CAI中的应用作者: 何双单位: 阳江职业技术学院 广东阳江529500年: 2005期: 10页码: 125-128关键词: MatLab;;梯度场;;绘图;;CAI教学摘要: 文章结合高等数学CAI教学,通过以梯度场为例,给出了课件的源代码,建立图形用户界面,实现了函数绘图的过程,来介绍Matlab的图形处理功能及优化高等数学CAI教学的制作问题。DataType: 1题名: 基于MATLAB动画设计辅助高等数学教学作者: 刘璟忠;莫明琪;单位: 湖南工学院,湖南公安高等专科学校 湖南衡阳421101,湖南长沙410008年: 2006期: 05页码: 269-271关键词: MATLAB;;动画设计;;高等数学;;辅助教学摘要: 高等数学相对于初等数学,在学习方法和思维方法等多方面都有很大的差异,许多学生对其望而生畏。随着计算机科学的发展以及软件技术的不断提高,生动、直观的教学成为可能。MATLAB软件是一款功能强大的应用型软件,它在动画制作方面也有明显的优势,本文就具体事例制作基于MATLAB的动画,辅助高等数学教学,取得了很好的效果。DataType: 1题名: 基于MATLAB的高等数学立体化教学作者: 钟建新;谢虹;单位: 赣南师范学院,赣州市第四中学 师范专科部数学系,江西赣州341000年: 2007期: 03页码: 60-61关键词: MATLAB;;数值计算;;图形处理;;数据分析摘要: 介绍了MATLAB软件在数值计算、图形处理、数据分析等方面的应用,为高等数学的立体化教学提供了平台,值得在数学教学中应用和推广。DataType: 1题名: 提高高等数学教学质量的对策研究作者: 刘罗华,汤琼单位: 株洲工学院信息与计算科学系,株洲工学院信息与计算科学系 株洲,412008 ,株洲,412008年: 2003期: 04页码: 83-86关键词: 教学内容;;教学方法;;教学手段摘要: 本文阐述了当今工科院校中高等数学教学内容、教学方法、教学手段的一些急需解决的问题 ,并对这些问题作了详细的分析 ,提出相应的处理对策 随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。 一、高等数学在地方高等职业教育中遇到的问题及解决办法 (一)数学师资力量短缺,教师学历偏低 地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。 (二)学生对数学课重要性认识不够,学习热情不高 目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。 (三)高等数学课程设置不合理,教学与实际应用脱节 由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。 二、总结 高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。 一、网络教育高等数学的现状分析 1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。 2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。 二、网络教育高等数学的教学初探 教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面: 1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。 2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。 毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。 本科数学毕业论文题目 ★浅谈奥数竟赛的利与弊 ★浅谈中学数学中数形结合的思想 ★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学 ★中数教学研究 ★XXX课程网上教学系统分析与设计 ★数学CAI课件开发研究 ★中等职业学校数学教学改革研究与探讨 ★中等职业学校数学教学设计研究 ★中等职业学校中外数学教学的比较研究 ★中等职业学校数学教材研究 ★关于数学学科案例教学法的探讨 ★中外著名数学家学术思想探讨 ★试论数学美 ★数学中的研究性学习 ★数字危机 ★中学数学中的化归方法 ★高斯分布的启示 ★a二+b二≧二ab的变形推广及应用 ★网络优化 ★泰勒公式及其应用 ★浅谈中学数学中的反证法 ★数学选择题的利和弊 ★浅谈计算机辅助数学教学 ★论研究性学习 ★浅谈发展数学思维的学习方法 ★关于整系数多项式有理根的几个定理及求解方法 ★数学教学中课堂提问的误区与对策 ★怎样发掘数学题中的隐含条件 ★数学概念探索式教学 ★从一个实际问题谈概率统计教学 ★教学媒体在数学教学中的作用 ★数学问题解决及其教学 ★数学概念课的特征及教学原则 ★数学美与解题 ★创造性思维能力的培养和数学教学 ★教材顺序的教学过程设计创新 ★排列组合问题的探讨 ★浅谈初中数学教材的思考 ★整除在数学应用中的探索 ★浅谈协作机制在数学教学中的运用 ★课堂标准与数学课堂教学的研究与实践 ★浅谈研究性学习在数学教学中的渗透与实践 ★关于现代中学数学教育的思考 ★在中学数学教学中教材的使用 ★情境教学的认识与实践 ★浅谈初中代数中的二次函数 ★略论数学教育创新与数学素质提高 ★高中数学“分层教学”的初探与实践 ★在中学数学课堂教学中如何培养学生的创新思维 ★中小学数学的教学衔接与教法初探 ★如何在初中数学教学中进行思想方法的渗透 ★培养学生创新思维全面推进课程改革 ★数学问题解决活动中的反思 ★数学:让我们合理猜想 ★如何优化数学课堂教学 ★中学数学教学中的创造性思维的培养 ★浅谈数学教学中的“问题情境” ★市场经济中的蛛网模型 ★中学数学教学设计前期分析的研究 ★数学课堂差异教学 ★一种函数方程的解法 ★浅析数学教学与创新教育 ★数学文化的核心—数学思想与数学方法 ★漫话探究性问题之解法 ★浅论数学教学的策略 ★当前初中数学教学存在的问题及其对策 ★例谈用“构造法”证明不等式 ★数学研究性学习的探索与实践 ★数学教学中创新思维的培养 ★数学教育中的科学人文精神 ★教学媒体在数学教学中的应用 ★“三角形的积化和差”课例大家评 ★谈谈类比法 ★直觉思维在解题中的应用 ★数学几种课型的问题设计 ★数学教学中的情境创设 ★在探索中发展学生的创新思维 ★精心设计习题提高教学质量 ★对数学教育现状的分析与建议 ★创设情景教学生猜想 ★反思教学中的一题多解 ★在不等式教学中培养学生的探究思维能力 ★浅谈数学学法指导 ★中学生数学能力的培养 ★数学探究性活动的内容形式及教学设计 ★浅谈数学学习兴趣的培养 ★浅谈课堂教学的师生互动 ★新世纪对初中数学的教材的思考 ★数学教学的现代研究 ★关于学生数学能力培养的几点设想 ★在数学教学中培养学生创新能力的尝试 ★积分中值定理的再讨论 ★二阶变系数齐次微分方程的求解问题 ★浅谈培养学生的空间想象能力 ★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育 ★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计 ★培养学生学习数学的兴趣 ★课堂教学与素质教育探讨 ★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施 ★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题 ★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣 ★数学教学中探究性学习策略 ★论数学课堂教学的语言艺术 ★数学概念的教与学 ★优化课堂教学推进素质教育 ★数学教学中的情商因素 ★浅谈创新教育 ★培养学生的数学兴趣的实施途径 ★论数学学法指导 ★学生能力在数学教学中的培养 ★浅论数学直觉思维及培养 ★论数学学法指导 ★优化课堂教学焕发课堂活力 ★浅谈高初中数学教学衔接 ★如何搞好数学教育教学研究 ★浅谈线性变换的对角化问题 本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法 生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。 1数学建模在煤矿安全生产中的意义 在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。 只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。 2煤矿生产计划的优化方法 生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。 2.1基于数学模型的方法 (1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。 (2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。 2.2基于人工智能方法 (1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。 (2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。 3煤矿安全生产中数学模型的优化建立 根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。 3.1建立简化模型 3.1.1模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。 很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式 式中x2---B工作面瓦斯体积分数; u2---B工作面采煤进度; w1---B矿井所对应的空气流速; w2---相邻A工作面的空气流速; a2、b2、c2、d2---未知量系数。 CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】 式中x3、x4---C、D工作面的瓦斯体积分数; e1、e2---A、B工作面的瓦斯体积分数; a3、b3、c3、d3---未知量系数: f1、f2---A、B工作面的瓦斯绝对涌出量。 3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。 3.2模型的转型及其离散化 因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】 在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。 依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。 3.3模型的应用效果及降低瓦斯体积分数的措施 以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。 综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。 4结语 应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。 参考文献: [1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106. [2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816. [3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237. 极限思想了,求最大最小值方面的问题;构造函数的思想,解决不等式方面的问题;........... 引言 一直以来,数学都被公认为是锻炼学生逻辑思考能力、分析问题能力的一门工具性极强的学科,因此,教师在高等数学的教学过程中要尤其注重对学生数学应用能力的培养,发挥数学的实用性价值。目前,国内不少高校都已将高等数学学科作为新生第一学年的基础必修课程,其目的不仅仅是为了丰富学生的专业课程学习,更重要的是培养学生的逻辑思考能力,锻炼他们独立思考的能力,学会用数学去解决更多的实际应用问题。因此大多数高校都以培养基础知识扎实,实践应用能力强的专业化人才为高等数学的教学目标。不少专家学者在关于数学应用能力各方面的分析报告中指出:阅读与建模能力、近似计算与估算能力、检验、讨论与评价能力等是影响数学能力形成的主要因素要,所以想真正实现提升学生的数学应用能力,有必要从以上各个要素上进行逐一突破。高等数学教师在平时的课程教学过程中可以根据以上影响学生数学应用能力的主要因素,结合自身的教学经验,辅以计算机网络等先进的多媒体教学技术,将数学与实际生产活动紧密联系在一起,有针对性地增强大学生的高等数学应用能力。 1 高校学生数学应用能力培养现状分析 受根深蒂固的传统教学观念影响,目前大多数的高校数学教师在高等数学的教学过程中仍然以理论性与严谨性为主,而对于应用型教学的重视程度却不够,具体体现在学分制形式的考试制度以及课时安排等方面。目前高校大多采取学分制的考试制度,即达到合格分数线便可取得学分,学生只要获取到足够的学分便可顺利毕业。在这种情况下,学生很容易对高数的学习产生懈怠心理,认为只要及格就够了,不重视高数的学习。此外,学校在制订人才培养计划时,往往将所有的基础必修课程与专业选修课程大多集中安排在第一、第二学年,以便后期安排学生的实践实习活动,加上高数对其他学科的学习奠定基础的重要性,学校往往将高数课程安排在第一学年,也是课程最多的一学年,这就导致高数课程的教学课时被安排得很紧凑,学生学习高数内容的时间有限,教师要在规定时间内讲完所有考试需要用到的知识点,并没有太多时间去培养学生的应用能力。 从教师自身角度而言,在如今的考试制度下,不少高等数学教师在教学过程中过于强调对计算能力、逻辑分析能力等内容的讲解,导致学生对高等数学知识内容体系的掌握变得片面化,弱化了学生的数学应用能力。此外,受教师教学方式的影响,学生在学习或者解题时也往往依赖技巧或大量背诵习题答案等方式来满足考试需求,并不能透过问题表象深入了解问题本质。此外,不少教师自身就不具备较强的数学应用能力,这也就制约了他们培养学生数学应用能力的水平,所以教师有必要先提高自身素质,进而带动学生数学实践应用能力的培养。从教材角度来看,如今大多高校使用的高等数学教材的内容大多都是以理论知识的推导为主,实际应用例题很少,不利于培养学生的应用能力,也不利于高校高等数学教学活动的长期开展。学生长期处于这样的教材环境中,很容易就丧失对数学应用能力的学习兴趣。 从学生角度而言,数学建模在培养学生数学应用能力的过程中起着至关重要的作用,学生在解决问题时,首先需要做的便是将问题进行简化抽象,使其变为我们熟知的数学模型,然而在实际教学过程中,很多学生的的动手能力欠缺,无法建立正确的教学模型,更无法提高自己的数学应用能力,进而丧失对数学应用性的探索求知欲。 2 加强学生数学应用能力培养的有效对策 2.1 加强教学内容改革 高校要想提高大学生的数学应用能力,第一步是改进现有的教学内容,从教材内容到教师的课堂教学内容都需要进行改进。在实践教学活动中,应注重更新高校数学课程的体系与内容,与实际生产活动紧密贴合。各校在编选教材时,要具体结合本校各专业的实际教学需求,以解决教学实际问题为主要目的,重点突出这些问题的实践性、趣味性及广泛性等特点。在改革高等数学的教学内容时可以适当借鉴综合课程的教学方式,例如,在讲解概念时,可以具体根据学生的专业特点,配合以适当的习题与例题帮助学生更好地掌握基本概念要点;在设置互动问题时,可选择一些开放性的话题,充分发挥学生的主观能动性,培养他们自主探究的能力;根据学生的实际需求或学习情况布置课后作业,让学生尝试着撰写数学应用小论文,引导他们在小论文中加入实际问题应用分析,可以适当借助教材中的案例,循序渐进地培养学生的创新能力与数学应用能力。 2.2 开展数学建模活动 培养学生数学应用能力是个漫长细致的过程,一方面,要让学生熟练了解高等数学的概念,并对其发展过程有所了解,从中探索出高数的思想与规律,经过经过一段时间的氛围熏陶,学生会逐渐形成数学应用的意识;另一方面,学校应开展必要的实践活动来加强学生数学技能的训练,例如数学建模活动。数学建模活动能够很好地锻炼学生的思考与语言组织能力,培养学生利用所学高数知识对复杂具体的问题进行简化抽象的'能力。高校通过开展数学建模比赛活动等形式,宣传并鼓励学生积极参与其中,既能让学生充分体验比赛的乐趣,又能有效提升他们的数学思维能力与应用能力。 2.3 结合现代化多媒体技术丰富教学手段 随着科学技术日异月新的发展,多媒体技术已在各大高校全面普及应用。数学教师应充分利用现代化的多媒体技术来辅助高等数学的课堂教学。由于高数相对其他专业课程而言是一门较为抽象枯燥的学科,学生往往缺乏学习高数的兴趣,教师在传统教学课堂中的教学效果并不是很理想。利用多媒体教学手段,教师可以将教材中抽象的思维与形象直观的内容结合在一起,帮助学生更好地消化理解一些抽象的数学知识。例如,在“不定积分”、“曲面积分”等重难点章节中,教师可以借助多媒体技术将复杂冗长的定义与概念简化,以图解、网格等直观的方式呈现在学生面前,使学生对各要素之间的关系一目了然。在这个过程中,既激发了学生的学习兴趣,帮助他们更加轻松地掌握理论知识,也提高了教师的课堂教学效率,减轻了教师的教学负担,实现资源共享与利用。 2.4 教学内容生活化和应用化 教师在培养学生数学应用能力时,应将教学重点放在回归生活实践,实现理论知识与实际生活的有机结合。就目前教材而言,高等数学的教学内容更侧重于数学类的问题,相关案例缺乏针对性,这就增加了学生学习高数的难度,削弱了学生的学习积极性,不利于培养学生的数学应用能力。因此,高数教师在课堂教学过程中,可以适当引入一些生活案例,弥补教材不足,同时也丰富了自己的教学内容,激发学生的学习兴趣。需要注意的是,面对不同专业的学生时,教师应采用不同的案例以满足学生的专业需求。例如在面对汽车学院学生时,教师可以讲解汽车刹车类的高数题目,对于化工学院的学生,则可以采用化学反应速度的模型案例,要让学生感觉到数学对他们专业学科的实际应用价值,并将其充分应用于专业知识的学习当中。 3 结束语 总的来说,目前我国高等数学教学培养学生应用能力现状中仍存在着诸多问题,制约了学生应用能力的发展。因此,高校应根据影响学生数学能力形成的各方面要素全方位地培养学生的应用能力,具体途径包括改革教学内容、创新教学方法等等。利用数学建模活动来激发学生的数学应用意识,锻炼他们的实践操作能力。教师在教学过程中,适当借助多媒体教学手段来丰富自己的课堂内容,促进学生对知识的理解与吸收,提高课堂教学效率,实现资源的共享与利用。此外,教师在培养学生应用能力时,应尽量结合实际生产活动,使其应用化与生活化,实现高等数学的最终教学目的。 1、总的来看就是研究函数图像,比方说用一阶导数研究增减性,用二阶导数研究凹凸性,了解函数的图形,求出极最值。很多实际的优化问题,不等式的证明都是通过建模或者构造定义了一个函数,研究函数的极最值就是解了。2、还有就是用定积分可以计算很多平面围成图形的面积,很多数列的求和也可以转化为定积分问题。3、在几何上的应用就是求图形的斜率,比方说在圆锥曲线方程中求圆锥曲线的斜率可以看做隐函数求导。数学高中应用论文范文
高等数学中的应用论文
高等数学在中学数学中的应用论文