dreamjennie
FLYINGJOHNNY
大数据培训,目前主要有两种:1、大数据开发数据工程师建设和优化系统。学习hadoop、spark、storm、超大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;2、数据分析与挖掘一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。大数据培训一般是指大数据开发培训。大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
yeting1976
大数据开发工程师课程体系——Java部分。第一阶段:静态网页基础1、学习Web标准化网页制作,必备的HTML标记和属性2、学习HTML表格、表单的设计与制作3、学习CSS、丰富HTML网页的样式4、通过CSS布局和定位的学习、让HTML页面布局更加美观5、复习所有知识、完成项目布置第二阶段:JavaSE+JavaWeb1、掌握JAVASE基础语法2、掌握JAVASE面向对象使用3、掌握JAVASEAPI常见操作类使用并灵活应用4、熟练掌握MYSQL数据库的基本操作,SQL语句5、熟练使用JDBC完成数据库的数据操作6、掌握线程,网络编程,反射基本原理以及使用7、项目实战 + 扩充知识:人事管理系统第三阶段:前端UI框架1、JAVASCRIPT2、掌握Jquery基本操作和使用3、掌握注解基本概念和使用4、掌握版本控制工具使用5、掌握easyui基本使用6、项目实战+扩充知识:项目案例实战POI基本使用和通过注解封装Excel、druid连接池数据库监听,日志Log4j/Slf4j第四阶段:企业级开发框架1、熟练掌握spring、spring mvc、mybatis/2、熟悉struts23、熟悉Shiro、redis等4、项目实战:内容管理系统系统、项目管理平台流程引擎activity,爬虫技术nutch,lucene,webService CXF、Tomcat集群 热备 MySQL读写分离以上Java课程共计384课时,合计48天!大数据开发工程师课程体系——大数据部分第五阶段:大数据前传大数据前篇、大数据课程体系、计划介绍、大数据环境准备&搭建第六阶段:CentOS课程体系CentOS介绍与安装部署、CentOS常用管理命令解析、CentOS常用Shell编程命令、CentOS阶段作业与实战训练第七阶段:Maven课程体系Maven初识:安装部署基础概念、Maven精讲:依赖聚合与继承、Maven私服:搭建管理与应用、Maven应用:案列分析、Maven阶段作业与实战训练第八阶段:HDFS课程体系Hdfs入门:为什么要HDFS与概念、Hdfs深入剖析:内部结构与读写原理、Hdfs深入剖析:故障读写容错与备份机制、HdfsHA高可用与Federation联邦、Hdfs访问API接口详解、HDFS实战训练、HDFS阶段作业与实战训练第九阶段:MapReduce课程体系MapReduce深入剖析:执行过程详解、MapReduce深入剖析:MR原理解析、MapReduce深入剖析:分片混洗详解、MapReduce编程基础、MapReduce编程进阶、MapReduc阶段作业与实战训练第十阶段:Yarn课程体系Yarn原理介绍:框架组件流程调度第十一阶段:Hbase课程体系Yarn原理介绍:框架组件流程调度、HBase入门:模型坐标结构访问场景、HBase深入剖析:合并分裂数据定位、Hbase访问Shell接口、Hbase访问API接口、HbaseRowkey设计、Hbase实战训练第十二阶段:MongoDB课程体系MongoDB精讲:原理概念模型场景、MongoDB精讲:安全与用户管理、MongoDB实战训练、MongoDB阶段作业与实战训练第十三阶段:Redis课程体系Redis快速入门、Redis配置解析、Redis持久化RDB与AOF、Redis操作解析、Redis分页与排序、Redis阶段作业与实战训练第十四阶段:Scala课程体系Scala入门:介绍环境搭建第1个Scala程序、Scala流程控制、异常处理、Scala数据类型、运算符、Scala函数基础、Scala常规函数、Scala集合类、Scala类、Scala对象、Scala特征、Scala模式匹配、Scala阶段作业与实战训练第十五阶段:Kafka课程体系Kafka初窥门径:主题分区读写原理分布式、Kafka生产&消费API、Kafka阶段作业与实战训练第十六阶段:Spark课程体系Spark快速入门、Spark编程模型、Spark深入剖析、Spark深入剖析、SparkSQL简介、SparkSQL程序开发光速入门、SparkSQL程序开发数据源、SparkSQL程序开DataFrame、SparkSQL程序开发DataSet、SparkSQL程序开发数据类型、SparkStreaming入门、SparkStreaming程序开发如何开始、SparkStreaming程序开发DStream的输入源、SparkStreaming程序开发Dstream的操作、SparkStreaming程序开发程序开发--性能优化、SparkStreaming程序开发容错容灾、SparkMllib 解析与实战、SparkGraphX 解析与实战第十七阶段:Hive课程提体系体系结构机制场景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive阶段作业与实战训练第十八阶段:企业级项目实战1、基于美团网的大型离线电商数据分析平台2、移动基站信号监测大数据3、大规模设备运维大数据分析挖掘平台4、基 于互联网海量数据的舆情大数据平台项目以上大数据部分共计学习656课时,合计82天!0基础大数据培训课程共计学习130天。以上是大数据开发培训内容,加米谷是线下面授小班教学!
华美新建材
大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。想要学习大数据课程推荐选择【达内教育】。在大数据培训班主要培训内容有:一、课程内容教学。不同的培训机构,根据课程内容的不同,当然时间也会有所差异,学习内容大概为Java语言基础、HTML、CSS、JavaWeb和数据库、Linux基础、Hadoop生态体系、Spark生态体系等课程内容。二、项目实战训练。参加【大数据培训】必须经过项目实战训练。学员只有经过项目实战训练,才能在面试和后期工作中从容应对。项目实战训练时间和项目的难度、项目的数量相关。项目难度越大、项目越多学习的时间越长。感兴趣的话点击此处,免费学习一下想了解更多有关大数据培训内容的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、百度等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。
北京青年123
简单来讲是学习Java、数据结构、关系型数据库、linux系统操作、hadoop离线分析、Storm实时计算、spark内存计算以及实操课程。复杂的话,就是每个大的知识点里都包含着很多小的知识点,这可以参考(青牛的课程)。
数据库设计今后的研究发展方向是研究数据库设计理论,寻求能够更有效地表达语义关系的数据模型,为各阶段的设计提供自动或半自动的设计工具和集成化的开发环境,使数据库的
核心力量这样练,不怕支撑不稳定
数据挖掘,无论是银行的大数据、证券的大数据、互联网的大数据、还是你在上看到的春运大数据,都是用过数据挖掘来产生价值的
数据库系统的核心和基础,是数据模型,现有的数据库系统均是基于某种数据模型的。数据库系统的核心是数据库管理系统。数据库系统一般由数据库、数据库管理系统(DBMS)
肯定是关于大数据或数据库整理、编程、挖掘,然后出报告。还有就是学习的工具有Hadoop、MapReduce、Sqoop、Spark、Python等。除了现场学习
优质论文问答问答知识库