南瓜囡囡
西风华诞
标准差表示数据的离散程度,或者说数据的波动大小。标准误表示抽样误差的大小。 统计教材上一般都写标准误表示均数的抽样误差,这对于初学者很难理解。这里通过举例来说明含义。 比如,有一个学校,学校中共有1000名学生,则这1000名学生可以作为这个学校学生的总体。如果我想了解所有学生的身高,采用随机抽样,抽取了50人。这50人就是一个样本。这里需要注意:一个样本并不是指一个人,而是指一次抽样。一个样本可以是1个人,也可以是100人,这里的1和100就是样本大小。 从理论上讲,抽样误差表示这样的意思:即如果不止抽样一次,而是抽样10次,每次都50人,那么我就有10个均数和标准差。例如大圈套有十个小圈,大圈代表总体1000人,一个小圈代表一个样本,即50人。每个样本都能计算计算一个均数和标准差。 以这10个均数作为原始数据,仍然能计算出一个均数和标准差,以这10个均数计算出的标准差就称之为标准误。这是理论上的含义,实际的含义就代表抽样误差的大小,即抽取的样本代表性好不好,抽样误差越小,代表性越好,反之,代表性越差。 如果我对学校中的1000人都测量了身高,那理论上就没有标准误,也就是没有抽样误差了,因为我测量了总体,这时就不存在标准误了。但是标准差是存在的,因为这1000人的身高肯定不同,肯定会有波动。这里就充分表明了标准差和标准误的区别了。
berber1215
区别: ①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差; ②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误用于估计参数的可信区间,进行假设检验等。 ③它们与样本含量的关系不同:当样本含量n足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。 联系: 标准差,标准误均为变异指标,当样本含量不变时,标准误与标准差成正比。
陆老头11
标准误差用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。1,标准误差一般用来判定该组测量数据的可靠性,在数学上它的值等于测量值误差的平方和的平均值的平方根。2,标准误差在正态分布中表现出正态分布曲线的陡峭程度,标准误差越小,曲线越陡峭,反之,曲线越平坦。3,标准误差在实际的计算中使用的是标准误差估算值。4,标准误差不是实际误差。标准差,中文环境中又常称均方差,但不同于均方误差(均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组组数据,标准差未必相同。标准差:
热腾腾的鱼粥
回答 一、表示不同: 标准差是方差的平方根,标准偏差不是平方根。 二、计算方法不同; 方差计算:是各个数值减去平平均值所得的数值的平方的加和,除以数值个数n,结果就是方差了,开方之后是标准差。但是标准偏差,是所得到的加和除以(n-1),再开方便可得到标准偏差。我们一般处理数据用的好像是标准偏差。 公式意义 所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。 深蓝区域是距平均值一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值(即1)之2%。对于正态分布,两个标准差之内(深蓝,蓝)的比率合起来为4%。对于正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为6%。 更多5条
误差条 error bar。在实验中单次测量总是难免会产生误差,为此我们经常测量多次,然后用测量值的平均值表示测量的量,并用误差条来表征数据的分布,其中误差条的
按每页计算,16K一P的价格在十元左右
不得高于万分之三
GB GB/T
本科生毕业论文(设计)格式要求第一部分:扉页论文题目(黑体二号,居中);其他填写内容在横线上居中(指导教师不需填写职称),使用宋体三号字。第二部分:中、英(外)
优质论文问答问答知识库