• 回答数

    4

  • 浏览数

    253

扬州宏宏
首页 > 期刊论文 > 高压断路器论文参考文献

4个回答 默认排序
  • 默认排序
  • 按时间排序

红豆花花花

已采纳

横看成岭侧成峰,远近高低各不同.

211 评论

大米粒圆又圆

摘要:概述了断路器操动机构的分类,分析了CY3型液压机构运行中的问题,提出了处理其常见问题的方法,阐述了应用于CY3液压机构的故障诊断系统。展望了永磁操动机构的发展动态。 0 断路器操动机构 断路器由三部分组成:断路器本体、操动机构、电源。作为断路器主要部件的断路器本体,它的功能是切断负载或短路电流。按其灭弧所采用的介质来分,可分为油断路器,真空断路器和SF6断路器。操动机构的功能是通过电动方式或手动方式实现断路器触头的开合及满足触头开合特性的各种要求。因此,虽然操动机构在断路器总造价中占较低的比率,但其在断路器的开合特性起着至关重要的位置。电源部件的功能是为断路器以电动方式开合提供足够的能源。 就真空断路器而言,目前真空技术已很“成熟”,世界上已经有了可断开100kA短路电流的真空断路器。因此,对配电网开关设备而言,人们关心的技术参数,已不是它的开断容量,而更主要的是关注高可靠性和免维护设计。而对于真空断路器而言,就目前的制造水平,包括我国自行设计和生产的产品,真空灭弧室的可靠性已经达到相当高的水平,它的平均无故障时间已可达到25年,然而在实际运行中,配电网开关设备的可靠性却并不乐观,远远低于真空无弧室已达到的可靠性水平。统计资料表明:设备故障中有70%~90%以上为操动机构的机械故障。传统的真空断路器,其操动机构主要是电动弹簧机构和电磁操动机构。对于机械电动弹簧机构,它所暴露出来的缺点是机械结构十分复杂,零件数量多,且要求加工精度高,制造工艺复杂,成本高,产品的可靠性不易保证。对于电磁操动机构,其结构复杂程度和工作可靠性比电动—弹簧储能机构要有所改善,但其致命的问题是合闸线圈消耗功率太大,要求配置价格昂贵的蓄电池组,以及电磁机构结构笨重,动作时间较长。因此想依靠这两种操动机构的改进,来提高断路器的可靠性和免维护水平,以及实现开关设备的自动化、运动化和智能化。这种设想是难以实现的。 从国外的产品发展趋势看,10kV以下的真空断路器还是以采用电磁机构为主,而10kV以上的真空断路器以采用电动弹簧机构为主。随着真空断路器的迅速发展,对配套使用的弹簧操动机构有了更高的要求。早先的电磁操动机构,因合闸功率大、合闸速度低等逐渐被弹簧操动机构取代。CT8是我国开发研制的第一代弹簧操动机构产品,在此基础上,衍生出CT10、CT12等弹簧操动机构,得到了广泛的推广使用。20世纪70~80年代,我国还没有适合于真空断路器使用的长寿命弹簧操动机构。1992年以后发展了几种长寿命弹簧操动机构,我国开发第二代CT17、CT19等新一代弹簧操动机构。它们的输出特性与真空断路器的反力特性有较好的匹配,输出功能满足大容量真空断路器的要求,机械寿命已达到30000次。多数真空断路器用的操动机构(包括电磁机构和弹簧机构)是集中布置的,即机构被设计成独立的元件,自成一体,这样做便于操动机构的集中生产,有利于保证产品质量。 1 CY3型液压机构工作原理 110,220 kV的少油断路器均采用CY3型液压操动机构,其液压部份如图1所示。贮压筒上部充以高压氮气,贮压筒下部充以航空油。由于氮气贮存了大量能量,于是航空油便成了具有操作能量的压力油,通过油路进入液压操动机构部分,控制断路器的分、合闸。在运行中,由于油渗漏或操作中使用了一定量的压力油,使贮压筒中活塞下移,氮气空间变大,压强降低,此时利用活塞杆下移触动微动开关2YJ,使之闭合,接通油泵启动回路,油泵便将油通过油路注入贮压筒下部,使活塞上移,于是恢复了氮气的压强,亦即恢复了压力油的压强,当活塞杆上移过程中离开微动开关 1YJ时,1YJ断开,断开油泵启动回路,停止打油。图1中微动开关3YJ是重合闸闭锁开关,4YJ是合闸闭锁开关,5YJ是分闸闭锁或自动分闸开关,分别接于相应的二次回路部份。2 CY3型液压机构运行中存在的问题分析及处理 2.1 油泵启动频繁 (1)故障现象;断路器的液压机构在没有任何操作的情况下,规程规定油泵电机每天启动的次数一般不得超过25次。我公司部分变电站多次出现CY3型液压机构油泵电机启动频繁的故障,最多达到70次/天。 (2)原因分析;根据统计资料发现,油泵电机启动频繁问题具有一定的规律性,也就是夏季问题开始暴露,秋、冬季又趋于正常,这是由于液压油的温度过高导致密封圈的性能下降引起的,所以一定要注意保证机构箱的通风良好,加强设备的巡视。其主要原因有: ①管路接头有漏油处; ② 一、二级阀钢珠密封不严,从泄油孔中渗油; ③油泵出口的高压逆止阀有可能不严; ④如果机构在分闸状态,油泵也启动频繁,这说明合闸的二级阀钢珠密封不严 ⑤ 放油阀关闭不严; ⑥工作缸活塞密封圈密封不好; ⑦液压油内有杂质,卡滞在各密封圈部位,导致密封不好。 (3)处理方法 ①处理漏油、渗油部位,更换全部密封圈; ②检查工作缸活塞连杆,如果存在纵向划痕,根据情况进行更换或用细砂纸轻轻打磨至光滑; ③对液压油进行过滤或更换; 2.2 液压系统不能正常建压 (1)故障现象;断路器在分闸操作后再度合闸操作时,油泵电机长时间打压,压力升不到停泵压力。 (2)原因分析,主要原因有: ①油泵内各高压密封圈损坏或球阀密封不良,滤油器有脏物堵塞,影响油通过; ②高压放油阀没有复位,高压油直接放到油箱中; ③油泵低压侧有空气; ④油泵大修后,柱塞在组装时没有注入适量液压油或柱塞杆及珠塞座没有擦干净,柱塞间隙配合过大,吸油阀钢珠不复位;一、二级阀密封不严,可能存在阀口磨损或球托翻倒;。 (3)处理方法 ①清洗滤油器及油泵;更换全部密封圈; ②检查高压放油阀是否复位,如损坏应更换; ③多次打压排出油泵内空气;应重新组装各级分、合闸阀。 2.3 液压操动机构压力异常升高或异常降低 (1)故障现象;断路器在运行中出现压力异常,严重时导致高压闭锁分、合闸或压力降低至零位。 (2)压力异常升高原因分析 ①微动开关1YLJ(1CK)失灵,使储压罐活塞杆超过1YLJ位置时,电机电源无法切断,继续打压; ②储压罐密封圈损坏或者罐壁有磨损,液压油进入储气罐; ③压力表失灵或存在误差; ④中间继电器“粘住”,其触点断不开;接触器卡滞,电机始终处于运转状态。 (3)压力异常降低原因分析 ①压力表失灵或存在误差; ②机构箱内有大量漏油处,阀体被油中脏物“垫起”或胶圈损坏(此时油泵会连续运转); ③如储压罐连杆在正常停止位置而压力继续降低,则是压力罐焊缝处可能存在渗漏现象; ④氮气缸上单向逆止阀密封不严漏气或储压罐活塞杆头部两个密封圈损坏,使氮气进入油中。 (4)处理方法 信息请登陆:输配电设备网 ①检查微动开关、压力表、中间继电器、接触器,如损坏应更换,对微动开关触点进行打磨; ②检查储压罐,如罐体损坏应更换;更换全部密封圈; 2.4 故障现象;压力低于重合闸或合闸闭锁值 (1)油压远低于重合闸闭锁值,接近合闸闭锁值。 (2)原因分析:CY3型液压操动机构在运行中,当室外温度发生较大变化时,由于氮气的热胀冷缩(航空油的热胀冷缩系数极小,可以忽略不记)现象,使氮气压强随温度变化而变化,即使压力油压随着变化,此时活塞杆几乎不会上下移动。微动开关2YJ的位置是在常温(25℃)下调整好的,在零下10℃时,氮气压强下降2.92 MPa。该装置设定油泵启动值为27.3 MPa,停泵值为27.9 MPa,假设温度降低35℃,则油压降低到24.38 MPa,油泵才能启动打油,但此 时的油压远低于重合闸闭锁值,接近合闸闭锁值,对设备的安全运行构成威胁。 (3)改进措施;设备制造厂在解决这个问题时,采用在贮压筒下部安装一个发热器,但在实际运行中,天气冷时发热器由于长期频繁加热,容易烧毁,实用价值不是很大。建议采用下述两种方法消,效果较好。 ①文献[1]采取消用微动开关2YJ控制油泵启动,改用接在油路上的压力开关1YK控制;取消用微动开关1YJ控制油泵停运,改用接在油路上的压力开关2YK控制。在实际应用中,由于油路压力开关1YK、2YK的启停参数具体设定时,控制系统的滞后较大,并受扰动的因素较多易造成压力异常,故采用2YJ和1YK,1YJ和2YK串联的方式控制油泵的启停,提高了油压控制系统的可靠性。 ②根据文献[1]对贮压筒进行改造,如图2所。在贮压筒上部加装一个调压活塞贮压筒顶部改用密封盖板密封,密封盖板与贮压筒用加密封垫螺栓联接,在调压活塞与密封盖板之间加一个调压弹簧,其空间充灌润滑脂(注意要保留一定空间)。调压弹簧对调压活塞作用的压强值为原装置油泵停运时的油压值,即调压弹簧的弹力选择为调压活塞截面积与原装置油泵停运时的油压值的乘积。 当由于装置油渗漏或断路器操作中使用了一定体积的压力油时,活塞同样正常向下移动。为保证油泵能正常打油补充,此措施可以在油压下降时,由于调压活塞两边压差的作用,调压活塞向下运动,压缩氮气体积,提高氮气压强,保证了油压基本恒定。当环境温度改变时,氮气压强改变,调压活塞亦能上、下运动自动调节氮气压强,保证油压基本恒定。 润滑脂主要用来作为调压活塞与贮压筒内壁间的密封,防止氮气泄漏,当运行时间过长,调压弹簧弹力降低时,可拆开密封盖板更换调压弹簧。使用该改进装置,任何情况下油压基本恒定,提高了断路器运行中的安全可靠性。 3 永磁操动机构的发展概况 自1989年英国曼彻斯特大学系统与能量组为GEC公司设计了第一台永磁操动机构模型起,永磁操动机构就成了世界各国开发的热点。永磁操动机构的显著优点是:结构简单零部件少,可靠性高及操作能耗小。当其与真空断路器配合使用,组成自动重合器系统,应用于变电站(开关柜)和柱上开关,使配电网的可靠性和自动化程度有很大提高。在欧洲市场已出现以电池作为操作能源,可10年免维护的永磁操动机构及控制系统。上世纪末,国际上永磁操动机构的发展概况大致如下: ABB Calor Emag开关设备公司,在1997年开发了一种新型利用永磁操动机构的VM1型真空断路器。操动机构是永磁方形双线圈结构,仅用7个活动元件代替了由数百个零件组成的传统结构。在10万次操作寿命中不需维修,是传统操动机构的3倍。目前VM1真空断路器的额定电压为12175和24kV,额定电流为2000~3150A,额定开断电流为25~50kA。 英国IPEC公司的永磁操动机构采用圆粒形双线圈结构,并且把永磁体由静铁芯移到了动铁芯。 荷兰Holec 公司的MMS型真空断路器采用的永磁操动机构其特点是:合闸、合闸保持和分闸的磁路是分开的,只有合闸位置靠永磁体保持,机构的终止位置是分闸位置,分闸操作仅靠开关触头的弹簧力和分闸弹簧力,通过合闸线圈使之释放能量。它的短路开断电流为31.5kA,分合闸时间偏差不超过1ms。 国内在近一、二年里,一些高等院校、研究机构及从事高压断路器产品开发制造的公司,正开展永磁操动机构的研制,也已开发出了一些初级阶段的产品,还未形成系列化产品,性能也很不稳定。 根据专家的估计,国际上这一领域内系统的理论还远未成熟,还有许多实验研究工作要做。国内的理论及实验研究工作还刚刚起步。因此这种使用新材料、新工艺及新原理,使真空断路器的磁力驱动装置实现低能耗,高可靠性的永磁操动机构的研究发展前景及市场前景将是十分宽阔的。 传统的电动弹簧操动机构及电磁操动机构,由于它们的结构复杂,可靠性低,能耗大,成为提高真空断路器的可靠性和提高其免维护水平的障碍。同时,由于断路器是实现配电网控制的关键电气设备,因而传统操动机构也制约了配电网自动化,运动化和智能化的发展。 而永磁操动机构比传统操动机构,其结构大为简单,合、分闸能耗大大降低,从而能极大的提高了真空断路器的运行可靠性和免维护水平,并为配电网实现自动化、运动化、智能化提供了必要的技术条件。 参考文献: 1. 王明俊,于尔铿,刘广一,配电系统自动化及其发展,中国电力出版社,1998.1 2. 张冠生,电器学,机械工业出版社,1980.11 作者简介:周志敏(1957-),男,高级工程师,主要从事高压电气设备试验及检测工作

292 评论

月影星云

一种USB电源开关的设计 摘要: 设计了一种低导通损耗的USB电源开关电路。该电路采用自举电荷泵为N型功率管 提供足够高的栅压,以降低USB开关的导通损耗。在过载情况下,过流保护电路能将输出电流限 制在0.3 A。 关键词: USB开关;自举电荷泵; N型功率管;过流保护 1引言 通用串行总线(Universal Serial Bus)使PC机 与外部设备的连接变得简单而迅速,随着计算机以 及与USB相关便携式设备的发展,USB必将获得 更广泛的应用。由于USB具有即插即用的特点,在 负载出现异常的瞬间,电源开关会流过数安培的电 流,从而对电路造成损坏。 本文设计的USB电源开关采用自举电荷泵,为 N型功率管提供2倍于电源的栅驱动电压。在负载 出现异常时,过流保护电路能迅速限制功率管电流, 以避免热插拔对电路造成损坏。 2 USB开关电路的整体设计思路 图1为USB电源开关的整体设计。其中,VIN 为电源输入,VOUT为USB的输出。在负载正常的情 况下,由电荷泵产生足够高的栅驱动电压,使 NHV1工作在深线性区,以降低从输入电源(VIN 到负载电压(VOUT)的导通损耗。当功率管电流高于 1 A时,Current-sense输出高电平给过流保护电路 (Current-limit);过流保护电路通过反馈负载电压 给电荷泵,调节电荷泵输出(VPUMP),从而使功率管 的工作状态由线性区变为饱和区,限制功率管电流, 达到保护功率管的目的。当负载恢复正常后,Cur- rent-sense输出低电平,电荷泵正常工作。 3 电荷泵设计 图2为一种自举型(Self-Boost)电荷泵的电路 原理图。图中,Φ为时钟信号,控制电荷泵工作。初 始阶段电容,C1和功率管栅电容CGATE上的电荷均 为零。当Φ为低电平时,MP1导通,为C1充电,V1 电位升至电源电位,V2电位增加,MP2管导通。假 设栅电容远大于电容C1,V2上的电荷全部转移到 栅电容CGATE上。当Φ为高电平时,MN1导通,为 C1左极板放电,V1电位下降至地电位,V2电位下 降,MP2管截止,MN2管导通,给电容C1右极板充 电至VIN。在Φ的下个低电平时,V1电位升至电源 电位,V2电位增加至2VIN,MP2管导通,VPUMP电 位升至2VIN-VT。 自举电荷泵不需要为MN2和MP2提供栅驱 动电压,控制简单[1],但输出电压会有一个阈值损 失。图3是改进后的电荷泵电路图,Φ1和Φ2为互 补无交叠时钟。由MN2、MN5、MP3、MP2和电容 C2组成的次电荷泵为MN4、MP4提供栅压,以保证 其完全关断和开启。当Φ1为低电平时,MP1导通, 电位增加,此时,V3电位为零,MP4导通,V2上的电 荷转移到栅电容CGATE上,VPUMP电位升高。当Φ1为 高电平时,MP2导通,为C2充电,V4电位上升至电 源电位,V3电位随之上升,MP3导通,VPUMP电位继 续升高。MN3相当于二极管,起单向导电的作用。 在VPUMP电压升高到VIN+VT以后,MN3隔离V3 到电源的通路,保证V3的电荷由MP3全部充入栅 电容。这样,C1和C2相互给栅电容充电,若干个时 钟周期后,电荷泵输出电压接近两倍电源电压[2]。 在电荷泵输出电压升高的过程中,功率管提供的负 载电流逐渐上升,避免在容性负载上引起浪涌电流 4 过流保护电路设计 当出现过载和短路故障时,负载电流达到数安 培,需要精确的限流电路为功率管和输入电源提供保 护。对于MOS器件,只有工作在饱和区时的电流容 易控制。限流就是通过反馈负载电压,调节电荷泵输 出电压来实现的。图4是限流电路的原理图。 N型功率管NHV的源与P型限流管MP6的 栅相接,N型功率管NHV的栅与P型限流管MP6 的源相接。从而达到控制功率管栅源压降的目的。 当负载电流超过1 A时,电流限信号(VLIMIT)为高 电平,MN7导通,栅电荷经MP6流向地,栅电压减 小,功率管工作在饱和区。C1、C2为电荷泵电容值, 在一个时钟周期T内,由电荷泵充入的栅电荷为: Q=VIN×C1+VIN×C2(1) 当功率管栅压稳定时,电荷泵充入的栅电荷等 于限流管放掉的栅电荷。限流管泄放电流为: IL=QT=VIN×C1+VIN×C2T(2) 由VGS(NHV)=VSG(MP6)(3) 得功率管和限流管的电流关系: 5 仿真结果与讨论 图5为负载正常情况下负载输出电压和功率管 电流的仿真波形。电源电压为5 V,C1、C2电容值为 1 pF,时钟周期为40μs,NHV和MP6宽长比的比值 为300,功率管的并联个数为1×103。采用0.6μm 30 V BCD工艺,在典型条件下,用HSPICE对整体电 路仿真。由波形可以看出,在1 ms内,负载输出电压 逐渐上升,功率管电流没有过冲,启动时间为1.7 ms。 3 ms后,功率管完全开启,为负载提供电源。 表1为限流电路工作时功率管的平均栅电压和 平均电流。图6为USB开关启动8 ms后负载短路 到恢复正常的仿真结果。USB开关在负载正常情 况下启动,8 ms后负载短路,负载电流过冲到3.1 A。当过流保护电路工作后,过流保护电路将电流 限制在0.3 A,保护了USB端口。16 ms后,负载恢 复正常,电源开关重新启动. 图6 USB开关在启动、限流和恢复正常过程中,电荷泵 输出电压、负载输出电压和功率管电流的仿真波形 Fig.6 Simulation waveforms of charge pump output volt- age,power switch output voltage and power tran- sistor current during startup, current-limit and normal operation 6结论 本文设计了一种满足USB规范的电源开关。 一种结构简单的自举电荷泵为N型功率管提供栅 驱动电压,以降低开关的导通损耗。精确的限流电 路针对过载和短路故障,对输入电源提供保护。仿 真结果表明,在负载短路瞬间,限流电路能够有效地 减小过冲电流,并能把电流限制在0.3 A,达到保护 USB端口的目的。 参考文献: [1] PARK S, JAHNS T M. A self-boost charge pump to- pology for a gate drive high-side power supply [J]. IEEE Tans Power Electronics, 2005, 20 (2): 300- 307. [2] DI CATALDO G, PALUMBO G. Double and triple charge pump for power IC: dynamic models which take parasitic effects into account [J]. IEEE Trans Circ and Syst. 1993, 40 (2): 90-100.

133 评论

如果蛋蛋愿意

ZW7-40.5型户外高压真空断路器,是龙源电力研究所受国家电力公司的委托组织该产品主要由真空灭弧室、电流互感器、传动机构及电磁(或电动机储能弹簧)操

195 评论

相关问答

  • 断路器论文开题报告

    论文开题报告基本要素 各部分撰写内容 论文标题应该简洁,且能让读者对论文所研究的主题一目了然。 摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:

    颂美装饰 3人参与回答 2023-12-11
  • 高压油管论文参考文献

    1. 基于局域波分析的柴油机故障诊断方法的研究及应用 王珍 文献来自: 大连理工大学 2002年 博士论文 CAJ下载 在线阅读 分章下载 分页下载 人们就需要

    jasmine7927 3人参与回答 2023-12-07
  • 高血压论文最新参考文献

    高血压定义为:非同日3次以上,测量收缩压大于等于140mmHg和/或舒张压大于等于90mmHg。也就是说,如果单纯收缩压大于等于140mmHg,可诊断为高血压;

    桑塔卢西亚 2人参与回答 2023-12-09
  • 基建变压器论文参考文献

    关于变压器的保护措施分析论文 摘要:文章分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想。

    PK从来没赢过 2人参与回答 2023-12-06
  • 四路抢答器论文参考文献

    有必要上这儿来吗,去图书馆的数据库,这样类型的文章多得不得了啊

    满堂红李娜 4人参与回答 2023-12-10