• 回答数

    3

  • 浏览数

    259

伊萨贝辣
首页 > 期刊论文 > 智能停车场论文英文文献

3个回答 默认排序
  • 默认排序
  • 按时间排序

t苹果多多t

已采纳

直接下载Microscopic traffic simulation: A tool for the design, analysis and evaluation of intelligent transport systemsJ Barcelo, E Codina, J Casas, JL Ferrer - Journal of Intelligent & , 2005 of possibilities and proposals of intelligent transport system (ITS) implementation in LithuaniaA Jarašūniene - Transport, 2006

335 评论

meteorakira

Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's R.U.R. (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial intelligence.The problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this skill.General intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be simulated.In the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the 1980s.How can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents fail.Artificial intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive results.The broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is sub-human.A quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human testers.AI is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and fears.Mary Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: A.I. considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (K.I.T.T. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]

331 评论

六月的橙子

智能建筑停车场管理系统论文,我的建议:1.计算机毕业设计可不能马虎,最好还是自己动动脑筋,好好的写一写。 2.网上那种免费的毕业设计千万不能采用,要么是论文不完整,要么是程序运行不了,最重要的是到处都是,老师随时都可以知道你是在网上随便下载的一套3.如果没有时间写,可以在网上找找付费的,我们毕业的时候也是为这个头疼了很长时间,最后在网上找了很久,终于购买了一套毕业设计,还算不错,开题报告+论文+程序+答辩演示都有,主要的都是他们技术做好的成品,保证论文的完整和程序的独立运行,可以先看了作品满意以后再付款,而且同一学校不重复,不存在欺的性质,那个网站的域名我记的不是太清楚了,你可以在百度或者GOOGLE上搜索------七七论文,一定可以找到的这个智能建筑停车场管理系统论文的,祝您好运

308 评论

相关问答

  • 停车场问题论文参考文献

    地下室防水施工与监理 【作者中文名】 卢滨; 【作者单位】 广州珠江工程建设监理公司; 【文献出处】 广东建材, Guangdong Building Mate

    下雨天2017 4人参与回答 2023-12-10
  • 物联网智能停车系统论文答辩

    1、刍议网络信息技术教育的一些思索2、浅谈网络犯罪3、网络招聘现状模式分析4、应用无线网络技术组建局域网的常见问题分析5、中国网络经济和电子商务问题探析6、ne

    suiningxiaohh 3人参与回答 2023-12-09
  • 停车场的毕业论文

    停车场管理信息系统设计陶永明(东北财经大学经济信息系 辽宁 大连 116023)摘 要 本论文根据停车场的管理工作需要,设计了一个简洁、稳定、实用的停车场

    L1ttleJuan 3人参与回答 2023-12-08
  • 物联网智能停车场系统毕业论文

    停车场管理信息系统设计陶永明(东北财经大学经济信息系 辽宁 大连 116023)摘 要 本论文根据停车场的管理工作需要,设计了一个简洁、稳定、实用的停车场

    好猫墙纸 2人参与回答 2023-12-07
  • 电子停车场论文参考文献

    计算机论文常用参考文献 在平平淡淡的日常中,大家都有写论文的经历,对论文很是熟悉吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。写论文的

    虎宝宝001 2人参与回答 2023-12-06