wo洒脱小姐
75-57-01-01专题报告.华北地区大气水-地表水-土壤水-地下水相互转化关系研究.1990
蔡述明,马毅杰等.三峡工程与沿江湿地及河口盐渍化土地.北京:科学出版社,1997
陈吉余,沈焕庭等.三峡工程对长江河口盐水入侵和侵蚀堆积过程影响的初步分析.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987,350~368
陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究.水利学报,1996,1:38~46
陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟.水利学报,1997,5:77~83
程竹华,张家宝,徐绍辉.黄淮海平原三种土壤中优势流现象的试验研究.土壤学报,1999,36(2):154~161
冯绍元,张瑜芳,沈荣开.非饱和土壤中氮素运移与转化试验及其数值模拟.水利学报,1996,8:8~15
冯绍元等.非饱和土壤中氮素运移与转化及其数值模拟.水利学报,1996,8:8~15
冯绍元等.排水条件下饱和土壤中氮肥转化与运移模型.水利学报,1995,6:16~22
郭元裕.农田水利学(第二版).北京:水利电力出版社,1986
黄冠华,叶自桐,杨金忠.一维非饱和溶质随机运移模型的谱分析.水利学报,1995,11:1~7
黄冠华.大尺度非饱和土壤水分运动的随机模型及有效参数的解析结构.水利学报,1997,11:39~48
黄冠华.土壤水力特性空间变异的试验研究进展.水科学进展,1999,10(4):450~457
黄康乐.求解二维饱和—非饱和溶质运移问题的交替方向特征有限单元法.水利学报,1988,7:1~13
黄康乐.求解非饱和土壤水流问题的一种数值方法.水利学报,1987,9:9~16
黄康乐.求解非饱和纵向弥散系数的一种简便方法.水利学报,1987,2:51~54
黄康乐.野外条件下非饱和弥散系数的确定.土壤学报,1988,25(2):125~131
黄康乐.原状土等温吸附特性的试验研究.灌溉排水,1987,6(3):26~29
黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅰ.水利学报,1996,6:9~13
黄元仿,李韵珠,陆锦文.田间条件下土壤氮素运移的模拟模型Ⅱ.水利学报,1996,6:15~23
康绍忠,李晓明等.土壤-植物-大气连续体水分传输理论及其应用.北京:水利电力出版社,1994
康绍忠,刘晓明,张国瑜.作物覆盖条件下田间水热运移的模拟研究.水利学报,1993,3:11~17
康绍忠.土壤水动态随机模拟研究.土壤学报,1990,27(1):17~24
雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988
雷志栋,杨诗秀.非饱和土壤水一维流动的数值模拟.土壤学报,1982,19(2):141~153
李恩羊.渗灌条件下非饱和土壤水分运动的数学模拟.水利学报,1982,4:1~10
李法虎.土壤中水、热、溶质运移的研究现状及展望.灌溉排水,1994,13(1):7~9
李庆扬,王能超,易大义.数值分析.武汉:华中理工大学出版社,1991
李韵珠,陆锦文,黄坚.蒸发条件下粘土层与土壤水盐运移.1985,济南,国际盐渍土改良学术讨论会论文集:176~190
李韵珠、李保国.土壤溶质运移.北京:科学出版社,1997
刘亚平,陈川.土壤非饱和带中的优先流.水科学进展,1996,7(1):85~89
刘亚平.稳定蒸发条件下土壤水盐运动的研究.1985,济南,国际盐渍土改良学术讨论会论文集:212~225
罗秉征,沈焕庭等.三峡工程与河口生态环境.北京:科学出版社,1994
戚隆溪,陈启生,逄春浩.土壤盐渍化的监测和预报研究.土壤学报,1997,34(2):189~198
启东县土壤普查办公室,南通市农业局,江苏省土壤普查办公室.江苏省启东县土壤志.1985
任理.地下水溶质运移计算方法及土壤水热动态数值模拟的研究.武汉水利电力大学博士论文,1994
任理.有限解析法在求解非饱和土壤水流问题中的应用.水利学报,1990,10:55~61
邵爱军,李会昌.野外条件下作物根系吸水模型的建立.水利学报,1997,2:68~72
邵明安,杨文志,李玉山.植物根系吸收土壤水分的数学模型.土壤学报,1987,24(4):296~304
邵明安.植物根系吸收土壤水分的数学模型(综述).土壤学进展,1986,14(3):6~15
沈荣开,任理,张瑜芳.夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟.水利学报,1997,2:14~21
沈荣开.非饱和土壤水运动滞后效应的研究.土壤学报,1993,30(2):208~216
沈荣开.土壤水运动滞后机理的试验研究.水力学报,1987,4:38~45
石元春,李保国,李韵珠,陆锦文.区域水盐运动监测预报.石家庄:河北科学技术出版社,1991
石元春,李韵珠,陆锦文等.盐渍土的水盐运动.北京:北京农业大学出版社,1986
史海滨,陈亚新.吸附作用与不动水体对土壤溶质运移影响的模拟研究.土壤学报,1996,33(3):258~266
史海滨、陈亚新.饱和-非饱和流溶质传输的数学模型与数值方法评价.水利学报,1993,8:49~55
水建高,张瑜芳,沈荣开.不同渗漏强度条件下淹水土壤中NH4+-N转化运移的数值模拟.水利学报,1996,3:57~63
隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅰ—有限元分析及应用.地理学报,1992,47(2):181~186
隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅱ—数学模型.地理学报,1992,47(1):74~79
孙菽芬.土壤内水分流动及温度分布计算——耦合型模型.力学学报,1987,19(4):374~380
王福利.用数值模拟方法研究土壤盐分动态规律.水利学报,1991,1:1~9
王亚东,胡毓骐.裸地蒸发过程土壤盐分运移的实验及数值模拟研究.灌溉排水,1992,11(1):1~5
魏新平,王文焰,王全九,张建丰.溶质运移理论的研究现状和发展趋势.灌溉排水,1998,17(4):58~63
席承藩,徐琪等.长江流域土壤与生态环境建设.北京:科学出版社,1994
谢森传,杨诗秀,雷志栋.水平入渗条件下溶质含量对土壤水分运动的影响和土壤水盐运动综合扩散系数Dsh(θ)的测定.灌溉排水,1989,8(1):6~12
徐绍辉,张佳宝.土壤中优势流的几个基本问题研究.水文地质工程地质,1999,6:27~30
徐绍辉.土壤中优势流的数值模拟研究.中国科学院南京土壤研究所博士后研究工作报告,1998
薛泉宏,蔚庆丰等.黄土性土壤K+吸附、解吸动力学研究.土壤学报,1997,34(2):113~122
杨邦杰,隋红建.土壤水热运移模型及其应用.北京:中国科学技术出版社,1997
杨金忠,蔡树英.土壤中水、汽、热运动的耦合模型和蒸发模拟.武汉水利电力大学学报,1989,22(4):157~164
杨金忠,蔡树英等.区域水盐动态预测预报理论与方法研究.国家教委博士点基金资助项目研究报告,1993
杨金忠,叶自桐.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响.水科学进展,1994,5(1):9~17
杨金忠,叶自桐等.野外非饱和土壤中溶质运移的试验研究.水科学进展,1993,4(4):245~2
杨金忠.一维饱和与非饱和水动力弥散的实验研究.水利学报,1986,3:10~21
杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展.水科学进展,1998,9(1):84~98
杨培岭,郝仲勇.植物根系吸水模型的发展动态.中国农业大学学报,1999,4(2):67~73
姚其华,邓银霞.土壤水分特征曲线模型及其预测方法的研究进展.土壤通报,1992,23(3):142~145
尤文瑞.土壤盐渍化预测预报的研究.土壤学进展,1988,16(1):1~8
张妙仙.次生盐渍化土壤潜水系统水-盐-作物产量动态模拟及调控.中国科学院、水利部水土保持研究所,博士学位论文,1999
张明炷,黎庆淮,石秀兰.土壤学与农作学(第三版).北京:水利水电出版社,1994
张蔚榛,张瑜芳,沈荣开.排水条件下化肥流失的研究——现状与展望.水科学进展,1997,8(2):197~204
张蔚榛.土壤水盐运移数值模拟的初步研究.农田排灌及地下水土壤水盐运动理论和应用论文集,武汉:武汉水利电力大学,1992,244~263
张蔚榛等.地下水与土壤水动力学.北京:中国水利水电出版社,1996
张效先.饱和条件下田间土壤纵向及横向弥散系数的试验和计算.水利学报,1989,1:1~7
张效先.求田间土壤横向弥散系数的一种实验和解析解.水利学报,1989,6:29~35
张瑜芳,刘培斌.不同渗漏强度条件下淹水稻田中铵态氮转化和运移的研究.水利学报,1994,6:10~19
张瑜芳,张蔚榛,沈荣开等.排水农田中氮素转化运移和流失.武汉:中国地质大学出版社,1997
张瑜芳,张蔚榛.垂向一维均质土壤水分运动的数值模拟.工程勘察,1984,4:51~55
张瑜芳.土壤水动力学.武汉水利电力大学研究生教材.1987
中国科学院环境评价部,长江水资源保护科学研究所.长江三峡水力枢纽环境影响报告书(简写本).北京:科学出版社,1996
中国科学院三峡工程生态与环境科研项目领导小组.长江三峡工程对生态与环境的影响及对策研究.北京:科学出版社,1988
朱学愚、谢春红等.非饱和流动问题的SUPG有限元素数值法.水利学报,1994,6:37~42
祝寿泉,单光宗等.三峡工程对长江三角洲土壤盐渍化演变的影响及其对策.长江三峡工程对生态与环境影响及其对策研究论文集.北京:科学出版社,1987,454~462
左强,陆锦文.裸地水、汽、热昼夜变化规律的模拟与分析.中国博士后首届学术大会论文集(下集),北京:国防工业出版社,1993
左强.改进交替方向有限单元法求解对流-弥散方程.水利学报,1993,3:1~10
Aboitiz M et al.Stochastic soil moisture estimation and forecasting for irrigated field.Water Resour.Res.,1986,22(2):180~190
Bear J.Dynamics of fluid in porous media.American Elsevier,New York,1972.(中译本,多孔介质流体动力学,J.贝尔著,李竞生、陈崇希译,孙纳正校,北京:中国建筑工业出版社,1983)
Bouma J.Soil morphology and preferential flow along macropores.Agricultural Water Management,1981,3:235~250
Brandt A et al.Infiltration from a trickle source:Ⅰ.Mathematical models.Soil Sci.Soc.Am.Proc.,1971,35:675~683
Bresler E.Simultaneous transport of solutes and water under transient unsaturated flow conditions.Water Resour.Res.,1973,9(4):975~985
Bresler E.Simultaneous transport of solutes and water under transient unsaturated flow conditions.Water Resour.Res.,1973,9:975~986
Chandra S P O,Amaresh K R.Nonlinear root⁃water uptake model.J.Irrig.and Drain.Engi.,1996,122(4):198~202
Chung S,Horton R.Soil heat and water flow with a partial surface mulch.Water Resour.Res.,1987,23(12):2175~2186
Clothier B E,Kirkham M B,Mclean J E.In situ measurements of the effective transport volume for solute moving throughsoil.Soil Sci.Soc.Am.J.,1992,56:733~736
Clothier.Diffusivity and one⁃dimensional absorption experiment.Soil Sci.Soc.Am.Proc.,1983,47:641~644
Cushman J H et al.A Galerkin in time,linearized finite element model of two⁃dimensional unsaturated porous media drainage.Soil Sci.Soc.Am.J.,1979,43:638~641
De Smedt F,Wierenga P J.Mass transfer in porous media with immobile water.J.Hydrol.,1979,41:59~69
De Smedt F,Wierenga P J.Solute transfer through columns of glass beads.Water Resour.Res.,1984,20(2):225~233
de Vries D A.Simultaneous transfer of heat and moisture in porous media.Eos Trans.AGU,1958,39(5):909~916
Elrick D E et al.Estimating the sorptivity of soils.Soil Sci.,1982,132(2):127~133
Eric K,W,Mary P A.Simulation of preferential flow in tree⁃dimensional heterogeneous conductivity fields with realistic internal architecture.Water Resour.Res.,1996,32(3):533~545
Feddes R A,Kowalik P J,Zaradny H.Simulation of field water use and crop yield.Centre for Agricultural Publishing and Documentation,Wageningen,the Netherlands,1978,19~20
Flury,Markus,Hannes Fl hler Susceptibility of soils to preferential flow of water.Water Resour.Res.,1994,30:1945~1954
Gardner W R.Dynamic aspects of water availability to plant.Soil Sci.1960,89:63~73
Gardner W R.Relation of root distribution to water uptake and availability.Agron.J.,1964,16:41~45
Gardner W R.Solution of the flow equation for the drying of soils and other porous media.Soil Sci.Soc.Am.Proc.,1959,23:183~187
Gaudet J P.Solute transfer,with exchange between mobile and stagnant water,through unsaturated sand.Soil Sci.Am.J.,1977,41:665~671
Gerke H H,van Genuchten M Th.A dual⁃porosity model for simulating preferential movement of water and solutes in structured porous media.Water Resour.Res.,1993,29(2):305~319
Germitza,Page E R.An empirical mathematical model to describe plant root system.J.Appl.Ecol.,1974,11(2):773~781
Ghodrati M,Jury A W.A field study using dyes to characterize preferential flow of water.Soil Sci.Soc.Am.J.,1990,54:1558~1563
Gureghian A B.A 2⁃D finite⁃element scheme for the saturated⁃unsaturated with applications to flow through ditch⁃drained soils.J.Hydrol.,1981,50:333~353
Hanks R J,Bowers S A.Numerical solution of the moisture flow equation for infiltration into layered soil.Soil Sci.Soc.Am.Proc.,1962,26:530~534
Hanks R J,Klute A,Bresler E.A numerical method for estimating infiltration,redistribution,drainage,and evaporation of water from soil.Water Resour.Res.,1969,5:1065~1069
Herkelrath W N,Miller E E,Gardner W R.Water uptake by plant:Divided root experiment.Soil Sci.Soc.Am.J.,1977,41:1033~1038
Hillel D,Talpaz H,Van Keulen H.A macroscopic scale model of water uptake by an nonuniform root system and salt movement in the soil profile.Soil Sci.1976,121:242~255
Hornung V,Messing W.A predictor⁃corrector alternating⁃direction implicit method for two⁃dimensional unsteady saturated⁃unsaturated flow in porous media.J.Hydrol.,1980,47:317~323
Jaynes D B,Logsdon S D,Horton R.Field method for measuring mobile/immobile water content and solute transfer rate coefficient.Soil Sci.Soc.Am.J.,1995,59:352~356
Jones M J,Watson K K.Movement of non⁃reactive solute through unsaturated soil zone.Australian Water Resources Council,Technical Paper No.66,1982
Jury W A,Bellantuoni B.Heat and water movement under surface rocks in a field soil:Ⅰ.Thermal effects.Soil Sci.Soc.Am.J.,1976,40(4):505~509
Jury W A,Bellantuoni B.Heat and water movement under surface rocks in a field soil:Ⅱ.Moisture effects.Soil Sci.Soc.Am.J.,1976,40(4):509~513
Lantz R B.Quantitative evaluation of numerical diffusion(Truncation error).Soc.Petr.Eng.J.,1971,11:315~320
Li Yimin,Ghodrati M.Preferential transport of solute through soil columns containing constructed macropores.Soil Sci.Soc.Am.J.,1997,61:1308~1317
Mahrer Y,Katan J.Spatial soil temperature regime under transparent polyethylene mulch:Numerical and rxperimental studies.Soil Sci.,1981,131:82~87
Mantoglou A,Gelhar L W.Stochastic modeling of large⁃scale transient unsaturated flow system.Water Resour.Res.,1987,23(1):37~46
Mantoglou A.A theoretical approach for modeling unsaturated flow in spatially variable soils:Effective flow models in finite domains and nonstationarity.Water Resour.Res.,1992,28(1):251~267
Milly P C D.Moisture and heat transport in hysteretic inhomogeneous porous media.Water Resour.Res.,1982,18(3):489~498
Mohanty B P et al.Preferential transport of nitrate to a tile drain in an intermittent⁃flood⁃irrigated field:Model development and experimental evaluation.Water Resour.Res.,1998,34(5):1061~1076
Molz F J,Remson I.Extracting term models of soil moisture use of transpiring plant.Water Resour.Res.,1970,6:1346~1356
Molz F J.Models of water transport in the soil⁃plant system:A review.Water Resour.Res.,1981,17:1254~1260
Molz F J.Water transport in the soil⁃root system:Transient analysis.Water Resour.Res.,1976,12:805~807
Mualem Y.A modified dependent⁃domain theory of hysteresis.Soil Sci.,1984,137:283~291
Murali V.Competitive absorption during solute transport in soils.Ⅱ.Simulations of competitive absorption.Soil Sci.,1983,135(4):203~213
Murali V.Competitive absorption during solute transport in soils.Ⅱ.Simulations of competitive absorption.Soil Sci.,1983,135(4):203~213
Neuman S P et al.Finite element analysis of two⁃dimensional flow in soil considering water uptake by roots.Ⅰ.Theory.Soil Sci.Soc.Am.Proc.,1973,37:522~527
Niber J L,Walter M F.Two⁃dimensional soil moisture flow in a sloping rectangular region:experimental and numerical studies.Water Resour.Res.,1981,17(6):1772~1730
Nielsen D R,Biggar J W.Miscible displacement in soils:Ⅰ.Experimental information.Soil Sci.Soc.Am.Proc.,1961,25:1~5
Nielsen D R,Biggar J W.Miscible displacement in soils:Ⅲ.Theoretical consideration.Soil Sci.Soc.Am.Proc.,1962,26:216~221
Nielsen D R et al.Water flow and solute transport process in unsaturated zone.Water Resour.Res.,1986,22(9):89~110
Nimah M N,Hanks R J.Model for estimating soil water,plant and atmosphere interrelations:Field test of model.SoilSci.Soc.Am.Proc.,1973,37:522~527
Olsen S R,Kemper W D.Movement of nutrients to plant roots.Adv.Agron.,1968,80:91~151
Parlange M B et al.Physical basis for a time series model of soil water content.Water Resour.Res.,1992,28(9):2437~2446
Philip J R,de Vries D A.Moisture movement in porous materials under temperature gradients.Eos Trans.AGU,1957,38(2):222~232
Pickens J F et al.Finite element analysis of transport of water and solutes in tilo⁃drained soils.J.Hydrol.,1979,40:243~264
Selim H M,Kirkham D.Unsteady two⁃dimensional flow of water in unsaturated soils above an impervious barrier.SoilSci.Soc.Am.Proc.,1973,37:489~495
Smiles D E et al.Hydrodynamic dispersion during absorption of water by soil.Soil Sci.Soc.Am.J.,1978,42:229~234
Smiles D E,Philip J R.Solute transport during absorption of water by soil:Laboratory studies and their practicalimplication.Soil Sci.Soc.Am.J.,1978,42:537~544
Stephens D B,Neuman S P.Free surface and saturated⁃unsaturated analysis of borehole infiltration tests Above water table.Adv.Water Resour.,1982,5:111~116
Van Genuchten M Th.A closed⁃form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Sci.Soc.Am.J.,1980,44(5):892~898
Van Genuchten M Th.A comparison of numerical solutions of the one⁃dimensional unsaturated⁃saturated flow and mass transport equations.Adv.Water Resour.,1982,5:47~55
Van Genuchten M Th.An Hermitian finite element solution of the two⁃dimensional saturated⁃unsaturated flow equation.Adv.Water Resour.,1983,6
van Genuchten.M.Th.Mass transfer studies in sorpting porous media.Ⅱ.Experiment evaluation with Tritium(H2O).Soil Sci.Am.J.,1977,41:272~285
Wu G,Chieng S T.Modeling multicomponent reactive chemical transport in non⁃isothermal unsaturated/saturated soil.Part 1.Mathematical model development.Transa.ASAV,1995,38(3):817~826
Wu G,Chieng S T.Modeling multicomponent reactive chemical transport in non⁃isothermal unsaturated/saturated soil.Part 2.Numerical simulations.Transa.ASAV,1995,38(3):827~838
Yeh T⁃C J et al.Stochastic analysis of unsaturated flow in heterogeneous soil:1.Statistically istropic media.Water Resour.Res.,1985,21(4):447~456
Yule D F,Gardner W R.Longitudinal and transverse dispersion coefficients in unsaturated plain field sand.Water Resources Research,1978,14(4):582~589
Zhang R,Huang K,van Genuchten M Th.An efficient Eulerian⁃Lagrangian method for sovlving solute transport problems in steady and transient flow field.Water Resour.Res.,1993,29(12):1431~1438
Zhang Weizhen,Zhang Yufang.The crop root uptake model and the simulation of the soil water movement on the condition of the crop growth.Proceedings of the International Conference on Modeling Groundwater Flow and Pollution,Nanjing University,Nanjing,China,1991.3~12
咩丝忒酷
1.文章标题:一般不超过300个汉字以内,必要时可以加副标题,最好并译成英文。2.作者姓名、工作单位:题目下面均应写作者姓名,姓名下面写单位名称(一、二级单位)、所在城市(不是省会的城市前必须加省名)、邮编,不同单位的多位作者应以序号分别列出上述信息。3.提要:用第三人称写法,不以“本文”、“作者”等作主语,100-200字为宜。4.关键词:3-5个,以分号相隔。5.正文标题:内容应简洁、明了,层次不宜过多,层次序号为一、(一)、1、(1),层次少时可依次选序号。6.正文文字:一般不超过1万字,用A4纸打印,正文用5号宋体。7.数字用法:执行GB/T15835-1995《出版物上数字用法的规定》,凡公元纪年、年代、年、月、日、时刻、各种记数与计量等均采用阿拉伯数字;夏历、清代及其以前纪年、星期几、数字作为语素构成的定型词、词组、惯用语、缩略语、临近两数字并列连用的概略语等用汉字数字。8.图表:文中尽量少用图表,必须使用时,应简洁、明了,少占篇幅,图表均采用黑色线条,分别用阿拉伯数字顺序编号,应有简明表题(表上)、图题(图下),表中数字应注明资料来源。9.注释:是对文章某一特定内容的解释或说明,其序号为①②③……,注释文字与标点应与正文一致,注释置于文尾,参考文献之前。10.参考文献:是对引文作者、作品、出处、版本等情况的说明,文中用序号标出,详细引文情况按顺序排列文尾。以单字母方式标识以下各种参考文献类型:普通图书[M],会议论文[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利〔P〕,汇编[G],档案[B],古籍[O],参考工具[K]。11.基金资助:获得国家基金资助和省部级科研项目的文章请注明基金项目名称及编号,按项目证明文字材料标示清楚.12.作者简介:第一作者姓名(出生年月-),性别,民族(汉族可省略),籍贯,现供职单位全称及职称、学位,研究方向。13.其他:请勿一稿两投,并请自留原稿,本刊概不退稿,投寄稿件后,等待审查。审查通过编辑部会通知您一般杂志社审核时间是1-3个月:如果要是到我中心给你论文代发请详细看。
永创佳绩
杨勤海
(中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】对三峡库区的松散地质体灌浆加固试验进行声波测试,即可获得松散岩体的主要地球物理动力学参数,为库区移民安置区的地基处理与合理开发提供科学依据,又可定量、全面评价三峡库区的松散岩体的稳定性。本文结合以往的声波测试成果,运用声波测试技术和方法,论述声波测试方法在研究库区测试松散工程体灌浆加固的效果。
【关键词】三峡库区松散地质体声波测试
1前言
在长江三峡库区移民安置中,奉节、巫山等不少城镇新址都遇到对复杂成因的第四系松散堆积层组成的滑坡、崩塌、岩溶等地质灾害体土地资源的开发利用问题。这些地带基本上是县城新址就地后靠的主要部位,由于其成因复杂,工程地质条件特殊,在县城迁建规划中未能充分加以利用,严重地妨碍了城市的建设和发展。第四系松散堆积体的地质成因虽然复杂、特殊,但是作为建筑地基,其工程地质条件并不很差,只要能进行充分论证,辅以必要的地质体改造工程,就可以为迁建城市所用,可增加迁建城镇的土地资源,产生巨大的经济效益和社会效益。近年来,对于这类复杂成因的第四系堆积体的研究成为工程地质界关注的焦点。本文介绍了声波测试技术及其在三峡库区工程地质体灌浆加固试验研究情况,结合以往在库区开展的一些有关岩土弹性参数与力学性质的关系方面的试验和研究工作,通过声波测试结果给出了工程地质体的力学指标,在一定程度上能够反映试验场地的动力学性质,可以定量、全面评价加固效果。
2试验场地地质条件与地球物理特性
2.1试验场地地质条件
试验场地选择在移民迁建急需且地质条件典型的地方,即奉节宝塔坪规划小区的赵家梁子一带和巫山二道沟四大家一带。因位置不同,试验场地的地质条件差别较大,反映了松散堆积体结构的不同性。各试验场地的岩性特征简述如下:
奉节第一组上部3m左右为第四系坡积含碎块石亚粘土,密实。下部为深灰色薄—中厚层泥灰岩,裂隙发育,岩层破碎,岩芯呈短柱状、饼状及碎块状。
奉节第二组上部为粉土含碎块石角砾,稍密,透水性弱,下部为碎块石,粘土充填,后经开挖验证:2m以上为坡积亚粘土含块石,密实;2m以下为黄褐色—灰色泥灰岩。岩层裂隙发育,强风化,在6m以上段裂隙被泥质充填紧密,6m以下段充填物较少。
巫山第一组上部13m以上段为绿灰色泥灰岩,中强风化,垂向裂隙发育,多被泥质充填,岩芯呈碎块状,钻进过程中3~12m段易垮塌,一般不漏水。13m以下为钙质粉砂质泥岩,暗紫红色,裂隙发育,岩芯仍较破碎。
按设计要求,每组试验均由7个钻孔组成,中间1孔,周边6孔,呈梅花状分布,其中3个为灌浆试验孔,4个为测试观测孔,奉节试验点孔深为20m,巫山试验点为18m。各孔浆液配比、灌浆量均不同。
2.2试验场地地球物理特性
根据以往在巴东黄土坡滑坡、万州关塘口滑坡等地及实测资料,试验场地完整岩体的声波速度一般在3000m/s以上。由于库区大部分地质条件较差,基岩上部的地层破碎、裂隙发育、完整性差。声波速度变化区间较大,多在700~2600m/s之间。声波在岩体中传播时,其参数的变化直接反映岩体的地质构造和物理力学性质。
声波测试岩体(石)的弹性力学参数是在快速瞬间加载情况下完成的,称为动力法。所测得的参数称为动弹性参数,如动弹性模量Ed、动泊松比μd、动剪切模量Gd等。只要测得岩体的纵波速度、横波速度,密度,则可根据下列工程式计算出岩体(石)的动弹性参数。
动弹性模量计算公式:
地质灾害调查与监测技术方法论文集
动剪切模量计算公式:
地质灾害调查与监测技术方法论文集
动泊松比计算公式:
地质灾害调查与监测技术方法论文集
式中:Vp——纵波速度(km/s);
Vs——横波速度(km/s);
ρ——岩石密度(g/cm);
Ed——动弹性模量;
Gd——动剪切模量;
μd——动泊松比。
因此诸如纵波速度、横波速度、振幅、频率等参数,可作为评价工程岩体的定量依据,并可校验工程地质体灌浆加固的效果。声波测试主要是为了评价灌浆质量,而灌浆质量主要依据声波速度进行评价,根据声波测试获得的波速资料,结合地质资料,可准确定量评价灌浆效果,从而为试验场地的稳定性评价提供科学依据。
3测试方法及技术
要了解第四系松散堆积体灌浆加固效果且要求所采用的方法快速、经济,声波测试技术是满足上述条件的首选方法。经过反复比较研究,松散堆积体灌浆加固试验检测方法主要选择岩心测试、单孔声波测试及跨孔声波测试方法。
传播于固体中的声波是机械波。由于其作用力的量级所引起的变形在线性范围,符合虎克定律,也可称其为弹性波。声波测试与浅层地震、面波勘探同属弹性波测试技术范畴。声波测试所使用的波动频率从几十 Hz到50kHz(现场原位测试)和50kHz到500kHz(岩石及混凝土样品测试),覆盖了声频到超声频,在检测声学学科领域中仍称其为“声波测试”。由于采用的信号频率要高于地震波和面波的频率,因此有较高的分辨率,适用于对岩体等地质目标进行较细致的研究。测试动力学参数具有设备轻巧、测试简便、经济迅速等优点,而且许多大型工程都要考虑岩土的动力学特征,因此测量岩体的动弹性参数具有实际意义。
3.1岩心试件测试
先将所选柱状岩心切齐、磨平做好测试准备,后用纵波换能器、凡士林和岩心耦合进行纵波波速测试;用横波换能器、锡铂纸与岩芯耦合进行横波波速测试。
采用的仪器为CYC-4型超声岩石测试仪,BPFT型和WT型纵波探头频率分别为100kHz 25kHz;HT型横波探头频率为460kHz。表1列出了灌浆前钻孔取芯的岩样试件声波速度及相关动力学参数实测资料。
表1岩心测试成果表
3.2单孔声波测试
单孔声波测试是采用长源距一发双收探管,发射—接收间距50cm,接收—接收间距30cm。在钻孔(赋存井液的裸孔)内沿井壁发射、接收声波信息,测井时将探管下至井底,按测井点距(本次测试选用0.5m点距)向上测试,由笔记本计算机完成采集与存储,室内通过回放和资料处理拾取纵波,在采集波形中根据波形干涉点、幅度、频谱分析确定纵波初至走时,计算纵波波速。
测试使用的仪器为SSJ-4D全波列声波测井仪,井下探头:源距0.5m,间距0.3m,直径78mm;电缆长度300m。表2列出了此次试验场地灌浆加固试验中的不同期单孔波速实测资料。
表2奉节、巫山单孔波速表
3.3跨孔声波测试
跨孔声波测试法采用的是同步提升法:在其中一个钻孔(裸孔)内激发,另一个钻孔(裸孔)内接收,由孔底起始同步上升至上部,按测试要求点距向上测试,在一钻孔内由电火花(或剪切锤)发射信号、另一钻孔内由换能器接收声波信息,由仪器完成采集与存储,室内通过回放和资料处理拾取波形,在采集波形中根据波形干涉点、幅度、频谱分析确定纵波或横波初至走时,计算波速。
仪器采用SWS-1型多功能仪(北京水电物探研究所研制),测试激发源一般采用电火花(湘潭市无线电厂生产)或剪切锤两种激振方法。贴壁式三份量检波器接收。表3列出了此次试验场地灌浆加固试验中的不同期跨孔波速实测资料。
表3奉节、巫山跨孔波速表
4 试验场地力学参数及方法分析
4.1 力学参数明显提高
通过采用声波测井方法对灌浆效果的检测,工程地质体改性加固灌浆后力学参数明显提高。
(1)声波参数
①灌浆前:
a.含粘土松散岩土体(巫山),纵波速度1320m/s~1480m/s。
b.裂隙基岩破碎岩体(奉节),纵波速度810m/s~1100m/s。
②灌浆后:
a.含粘土松散岩土体(巫山),单孔波速平均提高11%,跨孔波速平均提高25%。
b.裂隙基岩碎裂岩体(奉节),单孔波速平均提高14.6%,跨孔波速平均提高65%。
(2)场地力学参数
①灌浆前:
a.含粘土松散岩土体(巫山),地基承载力[R]=557(kPa),凝聚力[c]=151(kPa),压缩量[Es]=8.9(MPa),摩擦角[φ]=36(°)。
b.裂隙基岩松动岩体(奉节),地基承载力[R]=388-438(kPa),凝聚力[c]=92~110(kPa),压缩量[Es]=6.9~7.3(MPa),摩擦角[φ]=25.6~29(°)。
②灌浆后:
a.含粘土松散岩土体(巫山),地基承载力[R]=636(kPa),凝聚力[c]=181(kPa),压缩量[Es]=10.3(MPa),摩擦角[φ]=41(°)。
b.裂隙基岩松动岩体(奉节),地基承载力[R]=504~568(kPa),凝聚力[c]=134~157(kPa),压缩量[Es]=8.1~8.9(MPa),摩擦角[φ]=31~37.1(°)。
4.2 测试方法的分析
由上述中可以看出岩心试件、单孔及跨孔的纵波速度存在明显的变化,这是因为岩心试件、单孔声波、跨孔声波3种方法的测试结果之间具有可对比性,每种方法所呈现的波速变化与岩石、岩质之间的关系是互相对应的,趋势是一致的。只是由于测试方法的不同,其结果亦表现出不同的特点。
岩心试件的测试一般是在规定尺寸上进行的。相对而言可以视为岩体一个点上的测试,测试频率范围为超高频率;单孔声波测试的间距是30cm,其所测的只是井壁圆柱体一个波长附近有限范围内的岩体声学特性,相对而言可以视为一段一维杆状岩体的测试,频率范围为高频;跨孔法在小孔距的范围内进行,与上述两种方法比较,测量范围要大的多,在较大的范围中,弹性波传播不但受岩质的制约,而且更重要的是受岩体结构面的控制。也可以视为二维平板状岩体上的测试,频率范围相对为低频。由于上述的差别,表现在波速参数上的关系是岩心试件测得的声速大于单孔声速,而单孔声速又大于跨孔声速(V岩芯>V单孔>V跨孔)。以上是符合客观规律的。岩心测试反映的是岩体点上的声学特性,单孔反映局部岩体的纵向声学特性,而跨孔却代表岩体的横向变化。
5结论与讨论
采用声波测试技术对三峡库区松散堆积体灌浆加固试验进行测试,取得了良好的效果,奉节、巫山两地的灌浆加固试验结果表明上述方法是可行的、有效的;声波测试不仅具有快速、简便、准确的特点之外,还是一种无损的测试方法,能够从整体上、全方位地评价灌浆质量。
应当指出,由于动力法是在瞬间加载情况下进行测试的,且对岩体施加的应力较小,因此,动、静弹性参数间存在一定的差异。为了满足当前工程技术界仍需将动弹性参数换算成荷载条件相近的静弹性参数的要求,有必要进一步研究二者之间的关系。但这个问题比较复杂,一般其对应关系因不同岩性和不同地区而异。实际工作中,往往要进行一定数量的动静弹性参数的对比测试,才能找出其中的对应规律。
参考文献
[1]郭建强等.地质灾害勘查地球物理技术手册.北京:地质出版社,2003
[2]林宗元.岩土工程试验手册.沈阳:辽宁科学技术出版社,1994
[3]陈仲候等.工程与环境物探教程.北京:地质出版社,1999
75-57-01-01专题报告.华北地区大气水-地表水-土壤水-地下水相互转化关系研究.1990 蔡述明,马毅杰等.三峡工程与沿江湿地及河口盐渍化土地.北京:科
杨清波,男,党员,1966年生于重庆,副教授(主任编辑)。1986年7月毕业于天津大学,被分配在北京国家化工部出版社从事书刊编辑。1989年起在万州日报、三峡经
是湖北省教育厅主管、三峡大学主办的人文社会科学类学术理论刊物。刊号为ISSN:1672-6219/CN42-1707/C。本刊创办于1979年,现为双月刊,大1
本科毕业论文的标准格式 ⑴ 题名.是以最恰当,最简明的语词反映论文中最重要的特定内容的逻辑组合,应避免使用的不常见的省略词,首字母缩写字,字符,代号和公式,字数
三峡大坝在某种程度上确实给我们人类带来了很大的利益,但是在现在这个社会里还是给我们带来了很多的不便和危害。三峡工程的益处,最主要是集中在防洪、发电和航运方面。三