格水物獭致知
文献综述格式文献综述格式与般研究性论文格式所同研究性论文注重研究结文献综述要求向读者介绍与主题关详细资料、态、进展、展望及面评述文献综述格式相总说般都包含具体格式:综述题目;作者单位;摘要;关键词;引言;文;总结;参考文献() 题目题目限20字内(包括副标题)能够准确反映文章主要内容(二) 摘要关键词摘要限200字内摘要要具独立性自含性应现图表、冗公式非公知符号、缩略语摘要须给3-5关键词间应用号;隔(三) 引言部引言部主要说明写作目介绍关概念、定义及综述范围扼要说明关主题研究现状或争论焦点使读者全文要叙述问题初步轮廓综述引言(或者导言、介绍)部要写清内容:(1)首先要说明写作目定义综述主题、问题研究领域(2)指关综述主题已发表文献总体趋势阐述关概念定义(3)规定综述范围、包括专题涉及科范围间范围必须声明引用文献起止份解释、析比较文献及组织综述序准则(4)扼要说明关问题现况或争论焦点引所写综述核主题广读者关兴趣写作综述主线(四)主题部主题部综述主体其写没固定格式按文献发表代顺序综述按同问题进行综述按同观点进行比较综述管用种格式综述都要所搜集文献资料归纳、整理及析比较阐明引言部所确立综述主题历史背景、现状发展向及些问题评述主题部应特别注意代表性强、具科性创造性文献引用评述主题内容根据综述类型灵选择结构安排主题层标题应简短明15字限用标点符号其层划及编号律使用阿拉伯数字级编号(含引言部)般用两级第三级用圆括号()间加数字形式标识插图应精选具自明性勿与文文字表格重复插图应注明图序图名表格应精设计结构简洁便于操作并具自明性内容勿与文、插图重复表格应采用三线表适加注辅助线能用斜线竖线表格应注明表序表名(五) 总结部总结部与研究性论文结些类似全文主题进行扼要总结与前言部呼应指现研究主要研究优缺点或知识差距若作者所综述主题已经所研究能提自见解(六)参考文献参考文献虽放文末却文献综述重要组部仅表示引用文献作者尊重及引用文献依据且读者深入探讨关问题提供文献查找线索应认真待参考文献编排应条目清楚查找便内容准确误参考文献应限于作者直接阅读、主要、发表式版物文献要求少于30篇 .文献综述引言包括撰写文献范围、文标题及基本内容提要;二.文献综述文包括课题研究历史 (寻求研究问题发展历程)、现状、基本内容 (寻求认识进步) 研究析(寻求研究借鉴)已解决问题尚存问题重点、详尽阐述前影响及发展趋势便于解该课题研究起点切入点三.文献综述结论概括指自该课题研究意见存同意见待解决问题四.文献综述附录列参考文献说明文献综述所依据资料增加综述信度便于读者进步检索格式排版说明:1. 文献综述做word格式文档打印(A4纸)2. 标题四号字居3. 作者信息五号居4. 摘要五号字行距1.5倍5. 关键词五号左齐6. 文五号字段落书字 行距1.5倍7. 参考文献五号字左齐行距1.5倍8. 注释五号字左齐行距1.5倍9. 参考文献序号(1)、(2)……形式进行标注10.注释序号右标①、②……形式录入参考文献①、②……形式进行序号标注
小昕总理
数形结合思想是中学数学中四种重要的数学思想方法之一,所谓数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和几何形式巧妙、和谐的结合起来,并充分利用这种“结合”,寻求解题思路,使问题得以解决.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,它从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性和灵活性的有机结合
壮儿象象
数形结合思想是一种数学思想方法。数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。基本思想是:我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休。”“数”与“形”反映了事物两个方面的属性。数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而实现优化解题途径的目的。扩展资料数形结合应用要点1、 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。2、 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合 。3、纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。4、数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。5、数形结合思想的论文:数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以“数”化“形”、以“形”变“数”和“数”“形”结合。
我好些 可以的.
函数图像的教学研究论文 摘要: 数形结合的思想是数学中一种重要的思想方法,而在函数的教学中把刻画数量关系的数和具体直观的图形有机结合,用代数的语言揭示几何要素及
数学专业毕业论文选题方向如下: 1、并行组合数学模型方式研究及初步应用。 2、数学规划在非系统风险投资组合中的应用。 3、金融经济学中的组合数学问题。 4、竞赛
在数学的学习过程中,数学思想方法是最为重要的,是学习数学的关键所在,它能够把知识的学习,智力的发展,能力的培养,有机地联系起来.
本科毕业答辩流程