1322183606ww
几何的三大问题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 几何三大问题是: 1、化圆为方——求作一正方形使其面积等於一已知圆; 2、三等分任意角; 3、倍立方——求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20°的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18=20°)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。 这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
剪刀手七七
[1] 陈计, 二次根式的三角代换, 中学数学教师(丛刊), 1982年第1期, 42-44.[2] 陈计, 艾尔兑斯——莫迪尔不等式的推广, 数学通讯, 1984年第1期(总第149期), 27-31. [3] 陈计, 反向Fermat问题的推广, 数学通讯, 1984年第5期(总第153期), 26. [4] 陈计, Kummer判别法的增补, 工科数学, 1984年第2期(总第2期), 55-56. [5] 陈计, 朱尧辰不等式的推广, 中学数学教学参考, 1985年第3期(总第77期), 15. [6] 陈计, 初等对称函数的一个不等式, 厦门数学通讯, 1986年第1期, 15-16, 26. [7] 陈计, 一个不等式的推广, 数学教学研究, 1986年第4期(总第16期), 34. [8] 陈计, 关于Hardy不等式, 玉溪师专学报(综合版), 1987年第3期(总第10期), 57-60. [9] 陈计, 王振, 罗承辉, 关于几个猜想的讨论, 玉溪师专学报(综合版), 1987年第6期(总第13期), 39-44. [10] 陈计, Polya-Szego不等式的多边形推广, 数学通讯, 1987年第6期(总第190期), 7. [11] 陈计, Heron公式的指数推广及其应用, 数学通讯, 1987年第12期(总第196期), 3-4. [12] 王挽澜, 王鹏飞, 陈计, 一些新不等式的注, 成都大学学报(自然科学版), 1988年第1期(总第7期), 15-17. [13] 陈计, 林祖成, 关于若干平均值不等式的推广, 成都大学学报(自然科学版), 1988年第2期(总第8期),75-76. [14] 陈计, 何明秋, 涉及两个三角形的不等式, 数学通讯, 1988年第1期(总第197期), 3-4. [15] 陈计, 舒海斌, Ostle-Terwilliger不等式的推广, 数学通讯, 1988年第3期(总第199期), 7-8. [16] 陈计, 马援, Neuberg-Pedoe不等式的四边形推广, 数学通讯, 1988年第5期(总第201期), 5-6. [17] 陈计, 王振, Garfunkel-Bankoff不等式的一个证明, 数学通讯, 1988年第10期(总第206期), 7-8. [18] 陈计, 王振, Barrow-Lenhard不等式的指数推广, 数学通讯, 1988年第12期(总第208期), 7-8. [19] 陈计, 王振, Heron平均和幂平均的不等式, 湖南数学通讯, 1988年第2期(总第43期), 15-16. [20] Ji Chen, Zhen Wang, The power mean and the Heron mean inequalities, Crux Mathematicorum, Vol.14 (1988), No. 4, 97-99. [21] 陈计, Mitrinovic-Djokovic不等式的推广, 中学数学教学(上海), 1988年第4期, 18, 35. [22] 陈计, 张焕明, 费恩斯列尔哈德维格尔不等式的一个类似, 数学教学研究, 1988年第5期(总第27期), 26-27. [23] 王挽澜, 李广兴, 陈计, 关于平均值的比的一些不等式,成都科技大学学报, 1988年第6期(总第42期), 83-88. [24] 张在明, 陈计, 刘竞欧,Woodall不等式的一个证明, 六盘水师专学报, 1989年第1期, 86-87. [25] 陈计, 刘竞欧, 关于圆形区域的最初几个Heilbronn数, 宁波大学学报(理工版), 1989年第1期(总第3期), 6-9. [26] 陈计, Mitrinovic-Djokovic不等式的推广, 宁波大学学报(理工版), 1989年第1期(总第3期), 115-117. [27] 陈计, 李广兴, Erdos-Florian不等式的加强(英文), 宁波大学学报(理工版), 1989年第2期(总第4期), 12-14. [28] Ji Chen, An extension of Oppenheim's area inequality for triangles, Crux Mathematicorum, Vol.15 (1989), No. 1, 1-3. [29] Ji Chen, Zhen Wang, A generalization of Lenhard's inequality, Crux Mathematicorum, Vol.15 (1989), No.9, 257-259. [30] 陈计, 马援, 涉及两个单形的一类不等式, 数学研究与评论, Vol.9 (1989), No.2, 282-284; 几何不等式在中国, 江苏教育出版社, 1996年第一版, 397-400. [31] 陈计, 李广兴, 多边形中的不等式, 湖南数学通讯, 1989年第3期(总第50期), 32-33. [32] 李广兴, 陈计, 樊畿不等式的推广, 湖南数学通讯, 1989年第4期(总第51期), 37-39. [33] 陈计, 胡波, Klamkin不等式的推广, 数学教学研究, 1989年第4期(总第32期), 2-3. [34] 李文志, 陈计, 一道有奖征解题的推广, 成都大学学报(自然科学版), 1989年第4期(总第12期), 13-15. [35] 陈计, 王振, 关于Erdos和Fejes Toth的猜想, 数学通讯, 1989年第5期(总第213期), 3-4. [36] 陈计, Barrow-Oppenheim不等式的推广及其应用, 数学通讯, 1989年第6期(总第214期), 3-4. [37] 陈计, 高海明, 一道征解题的拓广和加强, 数学通讯, 1989年第8期(总第217期), 4-5. [38] 陈计, 刘竞欧, Catalan不等式的指数推广, 数学通迅, 1989年第11期(总第220期), 3. [39] 陈计, Guggenheimer不等式的指数推广, 数学通讯, 1989年第12期(总第221期), 3. [40] Ji Chen, Bo Hu, The identric mean and the power mean inequalities of Ky Fan type, Facta Universitatis(Nis), Series: Mathematics and Informatics, 4 (1989), 9-12. [41] 王振, 陈计, Ky Fan不等式的推广(英文), 宁波大学学报(理工版), 1990年第1期(总第5期), 23-26. [42] 胡波, 陈计, Heron平均和幂平均的樊畿型不等式, 宁波大学学报(理工版), 1990年第2期(总第6期), 32-35. [43] 陈计, 王振, 关于对数平均的下界, 成都科技大学学报, 1990年第2期(总第50期), 100-102. [44] 刘启铭, 陈计, 关于Beckenbach不等式的推广, 成都科技大学学报, 1990年第2期(总第50期), 117-118, 124. [45] 陈计, 关于单位分数的一个定理的初等证明, 成都科技大学学报, 1990年第2期(总第50期), 119-123. [46] 陈计, Makowski-Berkes不等式的变形, 数学教学研究, 1990年第2期(总第36期), 34. [47] 陈计, Padoa不等式的加权推广(研究通讯2), 湖南数学通讯, 1990年第3期(总第56期), 40. [48] 王振, 陈计, n(≥5)边形的最大面积一般不能用边长的根式表示, 成都大学学报(自然科学版), 1991年第1期, 38-42. [49] 陈计, 关于多边形面积的Oppenheim不等式的推广(英文), 宁波大学学报(理工版), 1991年第1期(总第7期), 17-20. [50] Mitrinovic, Pecaric, Volence, 陈计, 专著《几何不等式新进展》的补遗(I)(英文), 宁波大学学报(理工版),1991年第2期(总第8期), 79-145. (定价: 3.00元) [51] 王振, 陈计, 关于Erdos-Mordell不等式, 数学通讯, 1991年第7期(总第240期), 28-29. [52] 陈计, Janous不等式的初等证明, 数学通讯, 1991年第11期(总第244期), 14. [53] 陈计, 《几何不等式》中译本序, 北京大学出版社, 1991年9月第一版, 1-2. (定价: 3.20元) [54] Zhen Wang, Ji Chen, A generalization of Ky Fan inequality, Math. Balkanica, 5 (1991), 373-380. [55] 陈计, Bencze不等式的加强, 苏州教育学院学报(自然科学版), 1992年第1期(总第28期), 37-38, 40. [56] 陈计, 王振, 一个分析不等式的证明, 宁波大学学报(理工版), 1992年第2期(总第10期), 12-14. [57] 李国富, 陈计, 次数k≤10的Steinhaus循环的计算, 宁波大学学报(理工版), 1992年第2期(总第10期), 15-25. [58] 陈计, 关于Kooistra不等式的推广, 成都大学学报(自然科学版), 1992年第3期(总第23期), 43-46, 13. [59] 王振, 陈计, Mitrinovic-Djakovic不等式的推广(英文), 数学季刊, 1992年第4期, 95-99. [60] 陈计, 埃德温·福特·贝肯巴赫教授逝世十周年纪念, 玉溪师专学报(自然科学版), 1992年第5期(总第42期), 34-35. [61] 陈计, 关于Gerber不等式的加强, 福建中学数学, 1992年第5期(总第75期), 8-9. [62] 陈计, Janous不等式的一个加强, 福建中学数学, 1992年第6期(总第76期), 8-9. [63] 陈计, 《几何不等式》书评, 数学通讯, 1992年第5期, (总第250期), 40. [64] 陈计, Janous猜想的简单证明, 数学通讯, 1992年第9期(总第254期), 16-17. [65] 陈计, 泰国提供给第31届IMO的预选题2创作的一些看法, 数学通讯, 1992年第10期(总第255期), 39-40. [66] 陈计, 一个三角不等式的加强, 湖南数学通迅, 1992年第6期(总第71期), 27, 7. [67] 陈计, 一个三角不等式的加强, 中学数学(武汉), 1992年第8期(总第126期), 23-24. [68] 陈计, 关于三角形的一个不等式的新证, 中学数学(武汉), 1992年第10期(总第128期), 33. [69] 陈计, 两个新发现的三角不等式, 中学数学(武汉), 1992年第12期(总第130期), 21. [70] 陈计, 一个几何不等式的加强, 中学数学(苏州), 1992年第10期(总第113期), 20. [71] 陈计, 关于三角形的不等式族, 中学教研(数学版), 1992年第10期(总第139期), 29-30. [72] 陈计, 一个新的三角不等式, 中学教研(数学版), 1992年第12期(总第141期), 23-24. [73] 陈计, 王振, Neuberg-Pedoe不等式与Oppenheim不等式, 初等数学研究论文选, 上海教育出版社, 1992年10月第一版, 303-334. (定价:10.00元) [74] 陈计, Erdos-Klamkin不等式的推广(英文), 宁波大学学报(理工版), 1993年第1期(总第11期), 98-100. [75] 王振, 陈计, OYZ不等式的初等证明, 宁波大学学报(理工版), 1993年第2期(总第12期), 25-27. [76] 王振, 陈计, 三角形角平分线的平方和, 中学教研(数学版), 1993年第1期(总第142期), 34-36. [77] 陈计, 谈一个三角不等式的加强及其它, 中学教研(数学版), 1993年第7期(总第148期), 29-30. [78] 陈计, 两个三角形不等式链的加细, 中学教研(数学版), 1993年第11期(总第152期), 15-17. [79] 何明秋, 陈计, 平面凸图形内n点问题, 中学教研(数学版), 1993年第12期(总第153期), 23-24. [80] 陈计, 一个三角不等式的加强, 数学通讯, 1993年第1期(总第258期), 22-23. [81] 陈计, 从Garfunkel的猜想谈起, 数学通讯, 1993年第9期(总第266期), 22-23. [82] 陈计, 两个新的三角不等式, 上海中学数学, 1993年第2期, 37-38. [83] 陈计, 一个新的三角形不等式链, 中学数学(武汉), 1993年第2期(总第132期), 2, 22. [84] 陈计, 何明秋, 三角形内八点问题, 中学数学(武汉), 1993年第8期(总第138期), 26-27. [85] 王振, 陈计, Mitrinovic-Djakovic不等式的另一个扩展(英文), 数学季刊, 1993年第3期, 108-110. [86] 陈计, 王振, 广义Heron平均和幂平均的不等式, 成都大学学报(自然科学版), 1993年第4期(总第28期), 6-8. [87] 王振, 陈计, 一个三角形不等式的再加强(研究简讯40), 湖南数学通讯, 1993年第6期(总第77期), 39. [88] 陈计, 关于一个几何不等式的探讨(一), 福建中学数学, 1993年第6期(总第82期), 10-11. [89] 陈计, 王振, 最初几个Heilbronn数的计算, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 49-53. (定价: 4.20元) [90] 陈计, 胡波, 指数平均和幂平均的樊畿型不等式, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 53-56. [91] Ji Chen, Xei-Zhi Yang, On A. Zirakzadeh inequality to the triangles inscribed one inthe other, Univ. Beograd. Publ. Elektrotehn. Fak., Ser.: Mat., 4 (1993), 25-27. [92] 陈计, 王振,一个分析不等式的反向,宁波大学学报(理工版), 1994年第1期(总第13期),13-15. [93] 陈计, Bager第二图的改进,宁波大学学报(理工版),1994年第2期(总第14期), 10-15. [94] 陈计,余切和下界的改进, 福建中学数学, 1994年第1期(总第83期), 12. [95] 陈计, 黄军华,两个三角不等式的加细, 湖南数学通讯, 1994年第1期(总第78期), 44-45. [96] 黄军华,陈计,一个三角不等式链的加细(研究简讯56), 湖南数学通讯, 1994年第5期(总第82期), 44-45. [97] 王振,陈计,第25届IMO第1题的讨论,数学通讯,1994年第1期(总第270期), 33-34. [98] 陈计,王振,Neuberg-Pedoe不等式的四面体推广, 数学通讯, 1994年第2期(总第271期),22-24. [99] 陈计,对一个三角形不等式的加细(标题文摘), 数学通讯,1994年第6期(总第275期), 22. [100]陈计,两个三角形不等式的加细(标题文摘), 数学通讯,1994年第6期(总第275期), 22-23. [101]陈计, 关于∑sin3A-∑cos3A的下界,数学通讯, 1994年第10期(总第279期), 25-26. [102]陈琦, 陈计,凸图形和覆盖问题, 中学数学(武汉), 1994年第3期(总第145期), 33-36. [103]陈计, 关于Carlitz-Klamkin不等式,中学数学教学(合肥), 1994年第6期(总第90期), 41. [104]王振, 陈计,两个猜想不等式的加强及其它, 中学教研(数学版), 1994年第7-8期(总第160期), 51-53. [105]陈计,一个几何不等式的别证, 初中生数学学习, 1994年第7-8期(总第117-118期), 67. [106]王振, 陈计, 从一道Putnam竞赛题谈起,数学竞赛, 第18辑, 湖南教育出版社, 1994年4月第一版, 27-32. (定价: 2.70元) [107]陈计,从三角形的圆心距谈起, 数学竞赛, 第19辑, 湖南教育出版社, 1994年4月第一版, 82-87. (定价: 2.70元) [108]陈计, 王振,一个三角形不等式族的完善, 数学竞赛, 第21辑, 湖南教育出版社, 1994年4月第一版, 105-112. (定价:2.70元) [109]王振, 陈计,一个三角不等式的简证及应用, 宁波大学学报(理工版), 1995年第1期(总第15期),70-72. [110]陈计,季文,某些分析不等式的矩阵类似,宁波大学学报(理工版), 1995年第3期(总第17期),21-26. [111]石世昌, 陈计,三元二次初等对称平均对幂平均的分隔及其应用,成都大学学报(自然科学版), 1995年第2期(总第34期),2-8. [112]陈计, 王振,Garfunkel-Kuczma循环不等式的推广, 安徽教育学院(自然科学版),1995年第2期(总第62期), 8-10. [113]陈计,关于三角形的一个不等式, 中学数学(武汉), 1995年第3期(总第157期),34. [114]陈计,关于四边形旁切圆半径的不等式, 福建中学数学,1995年第3期(总第89期), 10-11. [115]王振, 陈计,初等对称函数的一个不等式, 湖南数学年刊(国际奥林匹克数学专辑),Vol.15(1995),No.4(Summary No.32),3-5. [116]陈计,关于三角形重心的垂足三角形, 湖南数学年刊(国际奥林匹克数学专辑),Vol.15(1995),No.4(Summary No.32),42-44. [117]陈计,几个樊畿型不等式, 湖南数学通讯, 1995年第5期(总第88期), 30-32. [118]陈计,一道全俄数学奥林匹克试题的推广与改进,数学通讯,1995年第9期(总第290期), 28-29. [119]陈计, 单墫,一个角平分线不等式的推广, 数学通讯, 1995年第11期(总第292期),17-18. [120]朱再宇, 陈计,关于锐角三角形的一个不等式,中国中学数学教师优秀论文集(第二卷),贵州教育出版社, 1995年5月第一版, 177-178. (定价:8.80元) [121]Zhen Wang, Ji Chen, Another extension of the Mitrinovic-Dokovic inequality, Univ. Beograd.Publ. Elektrotehn. Fak., Ser.: Mat., 6 (1995), 25-28. [122]陈计,有关四面体的一个不等式的加强, 中学数学教学(合肥),1996年第1期(总第97期), 36. [123]陈计,关于中线的若干估计(研究简讯), 湖南数学通讯,1996年第1期(总第90期), 39. [124]陈计, 王振, Oppenheim不等式推广的简单证明,数学研究与评论, Vol. 16 (1996), No. 1, 62-64;几何不等式在中国, 江苏教育出版社, 1996年9月,第一版, 213-217. [125]陈计, 庞火茂, 陈聪杰,角平分线构成的三角形, 数学通讯, 1996年第3期(总第296期), 29-31. [126]陈琦, 陈计,关于三角形半径的一个不等式链,中国中学数学教师优秀论文集(第三卷),内蒙古人民出版社, 1996年3月第一版, 95-96. (定价:10.00元) [127]王振, 陈计, 互补型Ky Fan不等式的推广, 初等数学前沿(第一辑),江苏教育出版社, 1996年4月第一版, 56-69. (定价:13.60元) [128]王振, 陈计, Zirakzadeh不等式的推广,初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版, 104-111. [129]王巧林, 陈计, 叶中豪,编后记, 初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版, 470-471. [130]陈计, 陈聪杰,三角形中的线性不等式, 几何不等式在中国, 江苏教育出版社, 1996年9月第一版, 87-110. (定价:13.40元) [131]陈计, 陈聪杰,三角形中的负一次不等式, 几何不等式在中国, 江苏教育出版社, 1996年9月第一版, 111-121. [132]Zhen Wang, Ji Chen, Guang-Xing Li, A generalization of the Ky Fan inequality, Univ. Beograd. Publ. Elektrotehn. Fak., Ser.: Mat., 7 (1996), 9-17. [133]陈计, 庞火茂, Bager第三图的完善, 宁波大学学报(理工版),1997年第1期(总第23期), 12-15. [134]王振, 陈计, 盛宓杰,Bager第四图的完善,宁波大学学报(理工版),1997年第3期(总第25期),74-78. [135]陈计, 陈聪杰, Bager第五图的完善,宁波大学学报(理工版),1997年第4期(总第26期), 49-55. [136] 陈计, 王振,一个三角形不等式的推广和加强,成都大学学报(自然科学版),1998年第2期(总第46期), 1-5. [137]陈计, 夏时洪,虞立军,Bager第六图的完善,宁波大学学报(理工版), 1998年第3期(总第29期),52-56. [138] 陈计,黄勇,夏时洪,关于Neuberg-Pedoe不等式高维推广的一个注记, 四川大学学报(自然科学版), 1999年第2期(总第128期), 197-200. [139] 许康华,陈计,Euclid平面上8点间的不同距离,宁波大学学报(理工版), 1999年第4期(总第34期), 16-22. [140] 陈计,通用数学软件及其网址,科学,1999年(第51卷)第5期,61-62. [141] 田廷彦,陈计,凸四边形的边长与直径的不等式,宁波大学学报(理工版), 2000年第2期(总第36期), 43-47. [142] 陈计,量词对7种联结词的分配律 --计算机自动推理的1个实例,宁波大学学报(理工版), 2001年第3期(总第41期),60-63.[143] 季潮丞, 陈计, 一道越南竞赛题的推广, 中学教研(数学版), 2007年第6期, 44-45. [144] 季潮丞, 陈计, Gordon不等式的推广, 中学教研(数学版), 2008年第5期, 48. [145] 季潮丞, 陈计, 浅谈不等式与恒等式的关系, 中学教研(数学版), 2009年第12期,26-28. 陈计翻译的文著目录 [1] Albert W. Marshall, Ingram Olkin 著; 陈计, 曹冬极 译; 张在明 校,不等式优超方法引论, 玉溪师专学报(自然科学版),1989年第4期(总第23期), 86-101. [2] R. E. Woodrow 编选; 陈计提供, 初等数学问题选, 福建省初等数学研究文集, 福建教育出版社, 1993年7月第一版, 235-242. [3] H. Harborth, A. Kemnitz著,陈计 编译,Fibonacci三角形, 数学通讯, 1994年第5期(总第274期),41-42. [4] S. Vajda著, 陈计 编译,广义Fibonacci数列简介, 数学通讯, 1994年第12期(总第281期), 24-25. [5] O. Bottema著, 陈聪杰,陈计, 陈胜利 译, 关于R, r与s的不等式, 初等数学前沿(第一辑), 江苏教育出版社, 1996年4月第一版,378-391. (定价: 13.60元) 陈计指导的学生论文目录 [1] 杨任尔, 曹冬极, 对数平均的推广(英文), 宁波大学学报(理工版), 1989年第2期(总第4期), 105-108. [2] 王呈斌, 章建成, 关于SOP数的估计, 宁波大学学报(理工版), 1990年第2期(总第6期), 125-129. [3] 连加志, Garfunkel-Kuczma不等式的多边形推广, 数学通讯, 1992年第1期(总第246期), 22-23. [4] 徐一萍, 反调和平均与幂平均的Ky Fan型不等式(英文), 成都大学学报(自然科学版), 1992年第2期(总第22期), 10-12. [5] 杨任尔, 一个三角形不等式的加强, 数学通讯, 1992年第11期(总第256期), 20-21. [6] 杨任尔, Child不等式与Kooistra不等式的加强, 初等数学研究论文选, 上海教育出版社, 1992年10月第一版, 359-364. [7] 丁义明, 再谈自生数, 数学通讯, 1993年第4期(总第261期), 35-36. [8] 丁义明, 自守数, 宁波大学学报(理工版), 1993年第2期(总第12期), 39-48. [9] 陈聪杰,一个几何问题的解与推广, 宁波大学学报(理工版), 1995年第3期(总第17期),76-78. [10] 丁义明, 裘伟平,连加志, Kaprekar映射周期轨的衍生性, 初等数学前沿(第一辑), 江苏教育出版社, 1996年第一版,24-47.
美妮宝贝
有关中学数学教学的论文范文
在日常学习、工作生活中,大家肯定对论文都不陌生吧,论文是讨论某种问题或研究某种问题的文章。你知道论文怎样才能写的好吗?以下是我整理的关于中学数学教学的论文范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
中学数学教学创新思维的培养有利于提高学生对知识的渴求意愿和自主思维、动手能力。在教学中应针对存在的问题,建立系统化的理论形成过程,改进传统教学手段,注重理论与实践双管齐下,全面培养学生的创新思维。
一、中学数学教学中创新思维培养意义。
1、提高自主思维能力。
在中学数学教学课堂上,通过对于学生创新思维的培养,能够让学生形成一个良好的自主思维的能力。具有一定的创新思维能够让学生对于知识的见解可以拥有很多不同的角度,他们能够通过创新的思维来形成自己的看法,而不是一味的被教师和旁人的思想所左右。
2、提高学生动手能力。
创新思维的存在,还能够提高学生的动手能力。在创新思维的指导下,学生对于知识的兴趣会不仅仅停留在理论的学习上。通过知识的积累,他们能够在脑海中形成一定的对于知识如何呈现在现实生活中做出一定的假想,然后在可以实现的条件之下,通过自己动手来进行验证。
3、提高对知识的渴求意愿。
虽然创新思维在很大程度上能够带来实践层面上的行为,也就是创新思维的开发和培养,能够提升学生的动手能力和自主思维方式,但是这些转变最终还是会回归到理论本身上来。也就是说,当创新思维发展到一定的阶段时,学生对于创新意识的运用已经不仅仅能够对于如何去使用理论知识起到帮助,还能够将这种实践中的结论和猜想反馈到理论上来,当他们发现有些问题已经达到了自己能够解答的上限的时候,就会回到理论中去寻求支撑,从而进一步的提高他们对于知识的渴求意愿。
二、中学数学教学现状。
1、传统教学模式占据主流。
在目前中学数学教学中,教师和学生之间的教学关系主要还是沿用了以往的传统的教学模式,也就是教师在讲堂上把考试中的数学知识要点进行讲解,学生在大多数情况下,只是一个被动的接受者,在这样的情况下,学生学习的兴趣难以被调动起来,另外由于中学学生要应付考试繁重的课业,因此在这样的情况下,学生的学习兴趣很难被调动起来,从而变成了一个简单的知识的储备工具,长此以往,造成了学生在数学创新思维上的匮乏。
2、数学教学对创新思维的压制。
前文所述,在现有的中学数学教学中,因为传统模式是主要的教学模式,因此学生的学习兴趣不大,再加上中学数学教学的主要目的在于培养他们面对试题的解答能力,因此教师在进行教学的时候,会更加注重对教学难点和教学重点进行讲解,所以就导致了在课堂上,教师所传授的知识主要是出于应试教育的目的。
三、中学数学教学的创新思维培养不足之处。
1、忽略学生的猜想乐趣。
中国的教学模式基本上都是在教学中将已经有结论的理论拿出来,让学生记住,然后再教他们如何在解题的时候去运用。这一点相信很多人都深有体会。比如说在讲到长方体的体积应该如何计算的时候,相信有很多老师是直接让学生记住公式,然后在做题目的时候,将这个公式直接套用进去。这样确实能够为学生的考试分数提供优势,但是同时也剥夺了学生对于知识的猜想乐趣,而且这样填鸭式的教学也让学生没有了创新的余地。
2、传统教学手段稍显死板。
现在中学教育对于教学手段的运用,还是较为死板的。这其中有一部分原因是因为应试教育的存在,还有一部分原因是因为很多教师在教学的过程中,除了自己所必须要讲解的知识之外,也不愿意再多花时间在教学手段的研究上。但是其实数学这门学科在实际生活的运用中是十分广泛的,也就是说数学这门学科在进行教学的时候,其实是可以和现实生活紧密相关的。这样一个本应该是生动活泼的学科,因为教学手段的死板,扼杀了很多学生的创新思维的形成。在这种死板的教学手段之下,形成的也是死板的学习思维。
3、动笔多于动手。
中国应试教育的存在,能够为学生提供一条相比于社会更加公平公正的竞争渠道,因此也造成了很多家长对于中学教育的重视,导致学校也主要是以培养学生的解题能力作为主要目标,而忽视了对于学生动手能力的培养。可以说,在中国数学教学中,动手的时间不会超过整个教学过程的五分之一。在这样的情况下,学生的动手能力被弱化,学生的学习兴趣也不会得到强化。
四、中学数学教学的创新思维培养对策。
1、建立系统化的理论形成过程。
针对现在很多中学数学教学课堂中出现的,在进行某一个知识点的讲解的时候,可以先不要一下子将理论结果直接说出来,而是可以通过给学生设定一个情景,让他们在这个情景中去解开具体的某一个问题的方式,来让他们自己慢慢的摸索。通过教师在一旁的指导,能够及时对学生对于理论的发现与探讨的过程进行正确的指引,而且也培养了他们自主思维的形成,另外还让他们体验了自己发现一个知识过程的乐趣所在。
2、改进传统教学手段。
改进传统教学手段主要可以通过教学信息化技术的使用来实现。其主要运用的手段可以在课堂导学、课堂讨论以及课堂讲授中进行。
在课堂导学中,可以通过播放与课堂内容相关的相应的影音图像的方式,让学生能够对于课堂要教授的内容产生兴趣,让学生对于知识点产生深究下去的欲望。譬如在讲到有关于立体几何形的知识的时候,可以通过播放影片的方式让学生对于立体几何形的空间关系有一个直观的感受。另外还可以通过让他们自己用做图软件进行立体图形绘制的方式,培养他们的空间感,从而加强他们创新思维的培养。
在课堂讨论的环节能够激发学生创造力的实现,并且能够让学生积极主动的参与到课堂教学的过程中来。但是在传统的教学中,这个环节通常都是教学上的短板。在信息化教学方式中,对于这个问题也可以使其得到妥善解决。最为主要的一个方式就是,可以通过播放一个影片,让学生来进行分组讨论,通过小组展开探讨的方式来创造一个浓厚的学习氛围。
在课堂教学中,教师也应该改变自己的教学思维。首先,教师在课堂上讲授知识的时候,可以将一些知识点的介绍与现实生活结合起来。譬如在讲解有关路程、时间与速度的题目的时候,可以先让学生说出一次他们经历的旅行,在旅行的过程中他们所选择的班车,然后设定一定的情景,让学生算出自己讲在何时到达何地。这种和现实生活相互结合的教学方式能够做到教学与娱乐相结合,激发学生学习兴趣,促进学生对于知识点的实际运用能力。
其次,在课堂讲授中,教师要注重信息化教学手段只是促进学生学习的一个工具,而并不能取代教师与学生的课堂主体作用。因此,在课堂教授的过程中,教师可以利用信息化的教学手段来进行知识点的讲解,但是更为重要的是,要让学生知道,在信息发达的时代里,可以如何利用信息化手段来进行资料的查找、收集与使用的方式,让学生在学习到知识点的同时,还能够学会如何合理的利用信息化手段实现自己的学习目的。
3、理论与实践双管齐下。
创新思维的培养,是需要一定的实践能力作为辅助的,在动手的过程中,学生会自己发现问题并且尝试解决问题,因此要改变现在教学模式中因为动手实践互动不足而导致的创新思维不足的现象,就需要在教学中,尽可能多的让学生在实践中,通过自己的行动去进行数学知识的学习。主要的方法可以通过号召学生展开数学趣味竞赛、提出与现实生活息息相关的问题的方式让学生去进行解决,培养学生的动手能力,从而起到配套他们创新思维的目的。
【摘要】 要在中学数学教学中培养学生的思维能力,“提问”是一种行之有效的方法。提问时需要做到:有效性、针对性、启发性、注意方法、多倾听、适当的激励和表扬。我们注意探索提问的技巧,用提问来启发学生的思维,帮助学生找到打开知识宝库的大门,就可以做一名富有效率的受人爱戴的教师,引导学生一步步走向成功。
【关键词】 数学;教学;提问;技巧
数学是一门特别需要思考和分析能力的科学。思考和分析能力,我们又只能在数学教学去努力培养。在培养思维能力方面,提问在教学中已是一种必不可少的工具和技巧,尤其是在当今的中学数学教学中,显得非常重要。所谓“提问”式教学,就是教师根据学生所学知识,围绕一定范围的教学内容,结合自己所了解到的情况对学生提问,再由学生回答。其主要目的是启发学生思考问题,发挥学生的主观能动性,通过学生自己的分析与讨论,找出解决问题的正确办法的一种教学方法。那么,在中学数学教学中,“提问”需要注意哪些问题呢?下面,谈谈笔者的肤浅看法。
1.有效性原则
最初的有效教学,就是“如何有效地讲授”。老师首先是“讲师”,是“教书先生”,是文化知识的“传递”者。为了能够把知识讲清楚,于是就有“教学重点”、“教学难点”等系列说法。当教师把关注的焦点定位在“如何有效地讲授”的时候,“接受学习”就成为普遍的学习方式。学生的使命是“上课认真听讲”、“积极地接收知识”。课堂教学中大量流行的话语往往是老师一系列焦急的询问:“听清楚了吗?”、“听懂了吗?”,好像学习倒成了一种欣赏和练习“听”的艺术。有效地提问就意味着教师所提出的问题能够引起学生的回应或回答,且这种回应或回答让学生更积极地参与学习过程,以达到提问的目的,体现提问的有效性。
2.针对性原则
提问是有它的目的性和针对性,否则,就会大大地降低你的课堂效率,所以,我们提问前要弄清楚:提这个问题要达到什么样的目的,能起到什么样的效果,有多少学生能够回答,可能得到解决些什么样的答案,错误原因何在,如何纠错,与该问题相关的知识或方法有哪些,等等;因此,我们绝不能为了提问而提问,盲目地提问;而要有目的,有针对性地提问。
3.启发性原则
教师根据教学内容提出问题,并且对提出的问题可能需要有所暗示,以启发学生思考。如果学生的回答不正确,教师也不要急于纠正,而是针对学生的错误认识提出补充问题,再次启发学生,使学生意识到自己的错误所在,并尽可能自觉地加以纠正,教师所提的问题一定要让学生有思考,对学生有所启发。
4.提问要注意方法
学生的智慧潜能如宝藏一样,需要开采、需要激发,“知识就是力量,方法就是智慧。”美国哈佛儿童教育学家尼普斯坦说:孩子的表现达不到老师的要求时,老师觉得孩子教不会,其实这是因为老师还没有找到正确的方法去激活孩子的智慧和潜能,只要用对方法,即使最顽劣的孩子,也是可以教好的。
要想激发学生在课堂上的学习热情,有一定的学习方式和技巧。例如,我们在上《特殊的平行四边形》这一课时,就可以这样提问:假如平行四边形的一组邻边互相垂直,四边形的形状可能发生什么改变?若改为“邻边相等”呢?除了边的改变,还可以怎样改变条件(比如角、对角线等),使一般的平行四边形变成特殊的平行四边形;可以有些什么样的具体改变?把这些条件组合起来,形成的特殊平行四边形会有什么特征?比较各种特殊四边形的异同点。这样的有效提问,发散了学生思维空间,摆脱单一的对话式问答。
5.提问后要学会倾听
在中学数学教学中的提问,问题一般会保持一定的开放性。当教师的提问缺乏基本的开放性时,教师的提问不仅不能给教学带来生机,反而对课堂教学带来“满堂问”的干扰。如果用过于琐碎的无意义的问题牵着学生鼻子走,用只有唯一答案的问题领着学生朝同一方向迈进,学生就会丢失自己,迷失自己的方向——大人们为我设计的道路,总是让我迷路。退一步说,毕竟学生的许多想法和点子都是有道理的呀,你不仔细倾听,怎么能了解学生呢?。学生一旦主动学习,教师的责任就由讲授、提问转换为倾听。倾听是一种对话,好的对话者总善于倾听。教师在提问之后,给学生留出足够的等待的时间,为学生的回答提供及时的反馈。善于倾听的教师总是能够将学生的声音转化为有效教学资源。
6.适当的激励和表扬
教师不只是教授知识,更要传播人生的信念。当学生回答教师的问题后,无论其答案正确与否,都应适当地给与学生适当的鼓励或表扬,哪怕他的答案一无是处。只有这样,你以后的提问,才会得到积极响应,你在课堂上才能最大限度地调动学生的主观能动性,并让学生对教师产生充分的信任感。
7.做一名富有效率的教师
人类文化传播方式的改变尤其是书本和网络资源的出现,使学习者由原来的“听讲学习”转向“阅读学习”和“发现学习”成为可能。但这种转向的程度是有限的,教师仍然在充当“供给者”、“提供者”的角色;学生仍然只是“接受者”、“承受者”的角色。只有当教师由原来的“供给者”转向“激励者”“导向者”时,学生才有可能真正地亲自去发现学习,成为数学学习的“发现者”和“建构者”。为了使我们的授课更加富有效率,我们在课后还得有反思。也就是还得多对自己提问:这堂课的得失在哪里?下一次我会怎样改进?
总之,虽然教学无定法,但也有一定的规律可遁,提问没有现成的办法,但也得注意一些基本技巧。愿我们在中学数学教学中继承先辈们的宝贵遗产的同时,努力探索,多多实践,注意提问技巧,提高课堂效率,振兴国家的教育事业,为中华民族的繁荣富强贡献自己的力量。
作为一名中学数学教师,我在此结合当前中学数学学科的课改精神和自身的教学实际,从新课程理念的角度谈谈自己对新课程理念的理解、对新教材的挖掘,以及在此基础上展开的教学方法的改革与创新。
一、针对问题精心创设情境
能否设计一个好情境是教师在课堂教学中激发学生求知欲的首要问题。教材中提供的情境往往只具有一般性,还要求教师能够在新课程理念的引领下,根据本地情况和学生实际来精心设计一些让学生感受到浓厚兴趣的问题,让学生体会到数学并不是枯燥无味的数字和符号的堆积,而是与我们的生产生活密切相关的。从中体会到数学的价值,培养学生用数学的眼光看世界,用数学知识解决生活中的问题的能力。注意体现把教学活动建立在学生的认知发展水平和已有知识经验基础之上的精神。
例如,在华东师大版《数学》八年级(下)第20章的扇形统计图教学中,我考虑到学生在小学高年级阶段就已有了对扇形统计图有初步的了解,除了课前安排学生收集报刊杂志中的扇形统计图之外,还请学生以四人一组为单位,请他们对班级中来自不同区域的学生数量情况进行调查登记,通过课前预习,自己先试着绘制一张扇形统计图,并分别涂上自己喜欢的颜色。由于课程从学生熟悉的生活内容入手,每个学生对上课的内容都产生了很大的兴趣,课堂气氛活跃,教学效果有了明显的提高。在此研究型的学习过程中,学生带着感兴趣的问题去探索发现,通过收集数据,分析处理,师生交流,生生交流,独立思考,归纳总结,学会运用数学知识分析并解决实际问题。学生在发表见解、各抒己见、和谐民主、生动活泼的学习气氛中,能充分地融入课堂学习,提高数学能力和学习效率。有的学生在研究问题的过程中,还提出了扇形统计图反映数据情况的优缺点,在教材知识的基础上更上了一层楼。这种在充满探索的过程中学习数学,让数学知识和数学体验上升到了一个新的层次,让他们感受到运用知识解决问题的乐趣,增强学习积极性,形成应用意识,创新意识,达到开发潜力,提高能力的目的。
二、作业设置多样化,正确评价学生
新课程则要求作业既要有巩固和检查功能,也要有深化和提高功能,还要有体验和发展功能。所以我们布置作业时,内容上宜注意突出开放性和探究性,形式上要体现新颖性和多样性,容量上要考虑量力性和差异性。作业形式可以有解答题、探究题、想一想、动手做一做等。开展同学间作业相互纠错。注意作业评判的过程性和激励性,作业批改不能只是简单的一勾一叉和打个分数,而要重视学生在解题时的思维过程。同时要以学生的发展为出发点,尽量使用一些鼓励性的评语,既指出不足,又要保护学生的自尊心和进一步学习的积极性。
例如在结束了扇形统计图知识的学习后,我布置学生自定主题,设计一个扇形统计图,并涂上彩色作为作业上交。学生们确定的主题很多,设计出的扇形统计图也美丽自然。比如调查学校或班级同学姓氏、同学年龄、出生月份或生肖星座、男女生比例、喜欢的电影或歌曲类型、喜欢的明星类型、喜欢的科目或书籍类型、喜欢的颜色、喜欢的饮料或水果、近视情况、家庭人口数量、长短发、爱好的体育活动或球类、团员和非团员比例、拥有QQ号和上网时间、上学使用的交通工具、课余时间的安排,林林总总,让人目不暇接。三、多关注和赞赏学生,使学生健康成长
使学生身心处于最佳状态,建立和谐的师生关系是教学相长的前提。从讲台上走下来,到同学们中间,从权威者的角色转变为组织者引导者的角色,不但做学生的良师,也做他们的益友。只有当学生从心理上认同这位老师了,他们学起这个科目来自然就会有更大的信心和兴趣。
尊重每一位学生,努力挖掘他们的闪光点。尤其不能歧视那些学习上有困难的'学生。鼓励他们只要讲究学习方法,坚持不懈地付出努力,大家都能成才。须知,由于每个人的先天和后天的成长条件不尽相同,自然会造成能力上的差异,但这并不是他们将来能否成功的惟一决定因素。况且人的智力和能力发展有先后快慢之分,即使是那些大名鼎鼎的科学家小时候的学习成绩也未必是一流的。我们不经意的偏见和冷眼也许会让世界少了一个爱迪生。学生王某,初中刚入学时数学不及格,一直以来对这门学科带有极大的恐惧心理。我通过观察发现,该生实际上有学习潜力,主要是从小没有养成良好的学习习惯,以致成绩不理想,信心不足。于是平常注意对她多加鼓励,定期给她指导科学的学习方法,并结合其实际情况给她制定了阶段学习目标,加强基础知识的巩固,培养其学习兴趣。通过三年来的努力,该生的中考数学成绩已经跃居中上。由此可见,教师的鼓励支持是学生找回自信、勇于努力进取的最佳良方。
对那些爱动脑筋,有较强思维能力的学生可以通过组织兴趣小组等活动,积极引导,大力培养其兴趣爱好,鼓励他们发展自己的爱好特长,不断超越自我。
在小学数学教学中往往会存在一定比例学习困难的学生,并且随着年级的增高,知识难度的增加,这些学生所占比例也越来越大。能否有效地转化“学困生”,提高学困生的学习能力成为课堂教学成败的重要一环。因此,教师要转变角色,更多地站在中学数学教学困生的立场考虑问题,关心爱护每一位学困生,提高自身的教学艺术,运用多种教学方法和激励方式,激发学困生的学习兴趣,帮助他们树立学习的信心,提高学习能力。
在小学数学教学中,由于学生兴趣、学习习惯、学习基础等多方面的差异,导致部分学生学习兴趣低落,数学基础不扎实,学习浮躁,缺乏概括归纳、举一反三的能力,学习能力下降,我们把这样特征的学生简称为学困生。怎样才能使学困生的学习能力逐渐得到提升和发展呢?下面结合实际教学情况,我谈几点自己的心得体会。
一、教师要转变角色,树立全心全意为每一位学生服务的理念,尊重理解,关心爱护每一位学困生
(一)立德才能树人
数学教师不仅要授业、解惑,更要精于传道,必须转变教师一言堂,学生整节课侧耳倾听坐冷板凳的现状。教师要有意识地提问、倾听学困生的困惑,为什么思路出现了分歧?他们掌握知识重难点的薄弱环节出现在哪里?我采用哪种方法能够降低知识的梯度,使学困生容易理解接受呢?
(二)尊其师才能信其道,数学教师立德才能育人
教师只有课前心中装着学困生,课堂上眼中有了学困生,课后辅导环节中关照学困生,真诚地尊重、关心爱护每一位学困生的心理感受和尊严,学困生就能从潜移默化地授业的数学教师的一言一行中得到熏陶和感染,喜欢上数学教师,喜欢上数学课程。
二、提高教学艺术,树立教师人格魅力,激发学生的学习兴趣
(一)想方设法,千方百计地积极调动学困生的学习兴趣就显得非常重要
教师的语言是一门艺术,而数学教师恰如其分又精湛的语言也有助于提高学困生的学习兴趣。例如,新课数字叙述式的导入,复习课开门见山式的启发,练习课煽情期盼挑战式的语言,这些方式都有助于激发学困生跃跃欲试,体验成功快乐的数学学习兴趣。
(二)数学教师要重视研究教法,改进教法
传统粉笔加黑板的方法是难以打造高效数学课堂的,而应因地制宜地采用多媒体课件、幻灯片、电子白板等现代教育技术,不仅有助于提高学困生的学习兴趣,简洁明了的媒体展示,更有利于帮助学困生理解与突破知识重难点。
(三)采用自主探究合作等启发式教学
采用自主探究合作等启发式教学,应重点在于精准的点拨探索、体验、实践活动能充分调动学生思维的积极性,尤其更能培养学困生的动手实践能力和创新精神。教师要使用艺术性的数学语言来活跃课堂气氛,对于一些抽象概念可以让他们在玩中体会,加深对知识的理解,师生互动找出适合学困生自己的学习方法。
三、灵活运用教学方法,提高学困生学习数学的能力
(一)低起点,师生劳逸结合
数学课堂不同的年级要疏密有度,既要有适宜快乐的课堂练习,也要有降低学生脑力疲劳,思维迟钝时鼓励式的课堂小插曲:低年级的拍手操,中年级的数字接龙,高年级的数学故事链接拓展。在设置课堂作业时,数学教师要高低有梯度,既要优选优等生“吃不饱”的挑战性练习题,也要精选中等生“吃不好”的典型例题,更要筛选学困生“吃不了”的失误测试题,不求多,不求快,只求学困生融会贯通知识点,这样学困生就会触类旁通,举一反三,数学能力逐步提高。
(二)多归纳,勤练习,培养数学习惯
大部分学困生与正常学生除思维的差异外,差异主要表现在数学学习习惯方面。我们数学教师既要善于运用数学语言帮助学困生积累知识,更要充分运用线段图、集合圈等多种练习方法,帮助学困生总结归纳知识重难点,自觉养成细心认真、一丝不苟的心理品格,培养严谨踏实的良好数学学习习惯,提高学习效率,为学困生的全面可持续发展打下扎实的数学基础。
(三)及时反馈,建立民主和谐的新型师生关系
数学教师在激发学困生学习兴趣的同时,更要培养学困生克服困难的自信、解决困难的果敢坚毅、在师生共同互助中理想必胜的信念。数学教师要善于捕捉时机,在学困生遇到困难时要及时与其谈心谈话,循循善诱,以科学家和名人的成长经历告诉学生要有志气,保持学习的旺盛势头,办法总比困难多。在学困生取得点滴进步时,全班师生都要为他们鼓掌喝彩,使他们获得继续学习的动力,轻松接受新的学习任务!
四、重视课堂的激励评价,使学困生获得成就感
(一)书面作业评价,鼓励进步
数学课堂作业是学生课堂数学技能的体现。在学困生的书面作业上批阅评价,目的是为了全面了解学生的数学学习历程,激发学生的学习和改进教师的教学。例如,我在个别学困生数学作业中采用“等级+评语”的评价方法。用这种方法批阅点评学困生作业,既能启迪思维,又可以指明努力方向,学困生的主体地位真正得到了充分尊重。
(二)课堂口头表扬、榜样示范、学生自评,有助于学困生树立学习自信
数学课堂上,学生的口头表达是学生数学思维逻辑严密性的具体表现。例如,我建议学困生在数学作业中用画“笑脸”“哭脸”的方式自评当天作业的书写、做题正确率,改进学习方法,促进学生发展。
事实上,家长与学校教师的互动的评价,更能树立学困生的责任感。让家长每天对学生在家里对数学学习的态度,完成作业的情况等方面作出评价,学困生也能在家长的评价中体会到父母的关心爱护,不断增强主动学习的责任感。
综上所述,数学教师转变观念,激发学困生学习兴趣,灵活运用多种教学方法,激励评价等因素,无疑是提高学困生数学知识与技能、过程与方法、情感态度价值观这个“三维目标”的关键环节。
老师们你们很难找到网上关于教师论文的写法,今天给你带来了一点教师论文发表的建议。第一步:看到学校图书馆,翻看所有的杂志,找出教师可能发表论文的刊物并分类:分类刊
《中学教学参考》★★《小学教学参考》★★《中国体卫艺教育》(山东)★★《中学生数理化》★★《素质教育论坛》《中学课程辅导》教师版★★《教师》《中学英语之友》★★
亲你好,海洋学领域国际知名期刊Frontiers in Marine Science在线发表了由上海交通大学海洋学院张召儒副教授、周朦教授与合作者的研究论文“
化工类专业学术论文发表怎么投稿,今天给大家推荐几本很不错的学术期刊杂志,如下: 2. 《化学工程与装备》杂志于1972年创刊,是由中国科学技术部、国家新闻出版总
首先就是要了解在评职称过程当中自己是选择什么样的期刊了解单位是否对期刊有特殊的要求。有特殊要求的话就根据相应的标准来进行投稿就可以了。目前在我国的投稿方式,主要