• 回答数

    2

  • 浏览数

    281

水果西瓜太郎
首页 > 期刊论文 > 注意机制研究论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

畅吃无阻

已采纳

该文包括引言、第1-4章共五个部分.引言部分阐述了网络医学信息检索策略的研究背景和理由,提出从用户角度研究网络医学信息检索策略的必要性 和重要性.第1章围绕网络医学信息检索策略这一核心问题,从医学搜索引擎检索语言、医学搜索引擎分类、医学搜索引擎检索规则、医学搜索引擎性能比 较与评价、网络医学信息检索策略构建等五个方面对目前网络医学信息检索所取得的理论与实践研究成果进行综述,从静态角度对网络医学信息检索策略 问题进行探讨.第2章依托网络医学信息检索理论,从影响网络医学信息检索效率的人文因素研究这一薄弱环节入手,以医学用户为调查对象,以检索策略的 制定与检索结果的反馈调节为研究内容,自行设计"网络医学信息资源检索策略用户调查表",在四个单位10个场所共分发调查表183份,回收调查表180份 ,其中有效问卷145份.采用定性和定量相结合的方法,对145名临床医务工作者、医学生、医学科研人员关于网络医学信息资源检索策略问题16个方面的征 询结果进行统计与分析,对医学用户网络信息检索特征及规律、校园网用户和非校园用户检索行为差异有了一系列的研究发现.第3部分在问卷调查的基础 上针对临床医生检索策略构建能力进一步展开实证分析.研究分两个阶段进行:鉴于网络医学用户年轻化特征突出,第一阶段以临床住院医生为实验对象 ,设计具体的检索测试问题和实证访问卷,收集与检索策略构建能力有关的5个方面的资料,通过考察、分析实验对象构建检索策略的思维活动,了解他们对 信息检索方法的实际掌握程度,并对其全面获取证据的能力进行初步评估.第二阶段开展对比研究,比较实验对象之间、实验对象与医学信息检索专家之间 在制定检索方案时的思维活动差异,对造成检索结果差异的原因进行了剖析.研究表明不同的信息认知能力将导致不同的信息检索行为,从而产生不同的信 息利用结果.作者就如何全面获取证据提出了参考建议,同时结合检索经验,初步摸索出一套针对性的医学专业搜索引擎选择策略及其查询模式.第4章对第 2章与第3章的研究结果进行回顾,发现实证分析进一步验证与澄清了第2章中的相关调查结果.作者认为用户信息认知行为的研究应该受到关注,技术因素 与人文因素相结合,既是全面解决医学信息资源管理与利用问题的指导思想,也是未来的研究趋势.针对调查方法、分析手段的不足和局限,作者指出网络 医学信息检索策略研究的结果只是初步、探索性的,鉴于网络医学信息检索策略目前尚缺乏系统的理论指导框架,提出引进循证医学的相关思想与方法,进 一步完善、优化网络医学信息检索策略构建指南. 4.期刊论文 潘萍.PAN Ping 基于网络环境的信息检索策略 -现代电子技术2007,30(4) 网络信息资源的检索和利用已经成为人们获取信息的主要方式,但要迅速、准确地获取所需要的信息,必须掌握一定的网络检索技术和检索策略.主要 阐述了网络环境下影响信息检索的两个主要因素和采取相应的检索方法和策略以更快、更准确地检索需要的信息. 5.期刊论文 KANG Yan-xing 引文检索策略的探讨 -情报科学2005,23(8) 引文检索是一种比较复杂的信息检索,在具体的引文检索中,如何制定优良的检索策略是一个关系到能否获得满意检索结果的核心问题.本文就引文检 索的实际工作中所触及到的一些常见的典型问题提出了若干探讨性的意见. 6.期刊论文 刘肖静 网络信息资源的收集与利用--检索策略和技巧 -现代情报2004,24(11) 文中针对当前网上信息检索的困难,通过介绍网络检索工具的性能,提出合理的检索策略,并列举了一些设置关键词的技巧. 7.期刊论文 张冬梅 浅议网络环境下的信息检索 -网络财富2009,""(22) 本文论述了信息检索的含义、特点和策略.阐明了如何利用网络快速而准确地获得有效信息资源. 8.期刊论文 燕慧泉 手工检索与计算机信息检索在检索策略之拟定和优化方面的分析比较 -现代情报2003,23(12) 本文通过手工检索和计算机检索在检索策略的制定及执行方面进行比较,指出了两者在策略的拟定和优化方面的区别. 9.期刊论文 王征清.成全.Wang Zhengqing.Cheng Quan 信息检索策略研究 -情报探索2007,""(4) 分析影响信息检索效率的要素,并从各个要素层面提出了相应的信息检索策略,以期指导用户的信息检索行为. 10.学位论文 吴清锋 基于内容的中草药植物图像检索关键技术研究 2007 论文工作针对基于内容的中草药植物图像检索问题,在系统分析已有关键技术及发展趋势基础上,对中草药植物叶子图像的领域特征提取、层次化 检索策略、基于显著轮廓曲线的图像检索、基于视觉注意的花卉图像检索等问题进行了系统、深入和较为全面的研究。这些研究内容不但是基于内容的 中草药植物图像检索亟待解决的关键问题,也是图像处理和信息检索领域的研究重点,具有重要的理论意义和实际应用价值。论文的主要工作和贡献如 下: (1)对基于内容图像检索领域的一些关键技术作了深入的研究分析,包括:颜色、形状、纹理等常用的图像底层视觉特征和高层语义特征的描述,图 像相似性度量准则,图像数据库特征索引,检索系统性能评价,相关反馈等;并对基于内容图像检索领域的主要研究方向进行了阐述;最后还给出了部 分原型系统的比较分析结果。 (2)叶子作为植物的重要器官,它的识别与分类在整株植物的识别与分类过程中占有重要的地位。使用颜色、纹理、形状等通用的视觉特征并不能取 得很好的检索效果,因此论文从植物形态学角度,分析并提取了中草药植物叶片的叶形、叶脉、叶齿等领域视觉特征,并且将所提取的特征归类为全局 特征和局部特征,在此基础上,构建了一个层次化检索策略,并进行了实验分析。实验表明:应用领域特征的检索较传统的检索更有效,并且,层次化 检索策略在提高系统检索速度的同时,又保证具有较高的检索精度。 (3)非标准环境下采集到的中草药植物叶子图像,一般具有复杂的背景,遮挡现象普遍存在,这都极大地影响着检索的效果。受到神经心理学中形状 感知研究的启发,我们将非经典感受野抑制机制引入到图像边缘检测中,保留图像中叶子的轮廓,同时抑制复杂背景中的短小边缘,并且使用获取的轮 廓曲线的特征来代表图像的形状特征。然后采用“综合多对多”的匹配策略来度量图像间的相似性,取得了良好的匹配效果。 (4)一般情况下,非标准环境下采集到的中草药植物花卉图像,花卉区域具有比背景更加突出的特征属性。利用人类视觉选择性注意机制研究的成果 ,首先对图像进行分析,综合视觉注意模型和传统的区域生长法,来定义和获取用户感兴趣的区域,然后采用一种新的“一对一”的匹配策略来度量图 像间的相似性,解决了图像的注意性匹配问题。实验证明:上述方法简单有效,降低了信息处理的计算量,提高了系统的效率。 总之,我们在基于内容的中草药植物图像检索方面,首次运用比较先进的图像匹配与检索方法与技术,对中草药图谱检索问题做了有开拓性意义的 研究工作,特别是提出的“植物叶子图像的领域特征提取与层次化检索"、“图像显著轮廓提取与综合轮廓匹配”、“基于视觉注意的感兴趣区域提取与 花卉图像检索”等具体方法,对于推动中草药植物图像自动检索研究领域的技术发展,有着重要的学术价值和具体的应用意义。 引证文献(2条) 1.田质兵.谈春梅 科技电子资源检索的探讨[期刊论文]-大学图书情报学刊 2003(2) 2.董建成 网上医学信息检索策略初探[期刊论文]-中华医学图书情报杂志

141 评论

好奇怪的样子哦

SDNET: MULTI-BRANCH FOR SINGLE IMAGE DERAINING USING SWIN 最近,流行的transformer具有全局计算特性,可以进一步促进图像去雨任务的发展。本文首次将Swim-transformer引入图像去雨领域,研究了Swim-transformer在图像去雨领域的性能和潜力。具体来说,我们对Swim-transformer的基本模块进行了改进,设计了一个三分支模型来实现单幅图像的去雨。前者实现了基本的雨型特征提取,而后者融合不同的特征进一步提取和处理图像特征。此外,我们还采用jump connection来融合深层特征和浅层特征。实验表明,现有的公共数据集存在图像重复和背景相对均匀的问题。因此,我们提出了一个新的数据集Rain3000来验证我们的模型。 Transformer[28]最初是自然语言处理(NLP)领域的一个模型,用于并行处理单词向量,以加速模型推理。它的全局计算特性适用于远距离传递特征。这正是计算机视觉领域中卷积运算所不擅长的。Dosovitskiy等人[29]将图像分割成16x16个图像块,将不同的图像块作为不同的词输入到transformer中,提高了图像分类的精度。近年来,人们从深度[30]、多尺度[31]等角度应用transformer来完成相关任务。然而,Transformer也有不可忽视的缺点,例如计算量与图像大小之间存在二次关系,这限制了它的应用环境。Liu等人[32]提出的Swin-transformer使用滑动窗口使模型具有线性计算复杂度,通过跨窗口连接改善了窗口间的信息交换,最终提高了模型在图像分类、目标检测和实例分割等方面的性能。 本文提出了一种新的图像去雨网络SDNet,它是利用Swim-transformer强大的特征表示能力构建的端到端去雨网络。具体地说,我们改进了Swim-transformer的基本模块,重新设计了一个双分支模型,实现了单图像去雨。前者实现了基本的雨型特征提取,后者融合了不同分支的特征。此外,我们采用jump connection来融合深度特征和浅层特征,以提高网络模型的性能。 本文贡献如下: 最近有大量的研究工作将transformer引入CV域,并取得了良好的效果。具体来说,Dosovitskiy等人[29]将图像分成16X16个图像块,然后将其拉伸成一维向量,然后送入网络中完成图像分类任务。Chen等人[38]提出了一种基于卷积运算的transformer与Unet相结合的TransUnet方法,实现医学图像的分割。蒋等[39]设计了与对抗生成网络结构相同的图像生成transformer。transformer中的self-attention导致模型计算直线增长,导致transformer不能在低计算能力的硬件上运行。Liu[32]提出了一种利用滑动窗口方法使网络计算线性增长并加速网络推理的方法。我们的方法是基于这种方法来实现一个单一的图像去雨任务的融合特征。 本文的方法是基于这种方法[32]来实现一个单一的图像去雨任务,融合不同分支的特征、深度特征和浅层特征。 Transformer是一个功能强大的网络模块,可以取代CNN操作。但其中的Muti-Head Attention导致模型的计算量迅速增加,导致transformer模型无法在许多底层硬件中测试和使用,注意力的数学表达式如下:本文使用一个简单而强大的前馈网络作为主干,如图2所示。SDnet网络基本上由三个多分支融合模块组成,称为MSwt,一个多分支模块MSwt-m和两个基本block模块。此外,还增加了跳转连接,目的是融合深特征和浅特征,以提高网络去雨的性能。为了更灵活地构建网络,提出了Basic-block的概念,并设计了两个三分支特征融合块。如图4和图5所示,与后者相比,前者有一个用于融合特征的附加基本块。数学表达式如下: 其中F(·)表示基本块的操作。x表示模块Mswt的输入。这种设计的思想来源于自我注意中的多头注意机制。通过学习F1、F2、F3,可以自适应地学习不同的特征。将输入映射到不同的子空间,分别提取不同的特征。与自我注意不同的是,我们对提取的特征求和,而不是级联操作。通过F4融合增加的特征,实现进一步的特征提取。由于设计思想来源于多头注意机制,多分支具有与该机制相同的特点,即在一定范围内,分支越多,模型性能越好。为了平衡模型的规模和模型的性能,我们选择了三个分支进行特征提取。 虽然transformer可以保持特征在长距离传播,但是仍然需要在网络中结合深特征和浅特征,为此我们设计了一个没有特征融合的Mswt模块,我们称之为Mswt-m,如图5所示,其数学表达式如下: F1、F2、F3将输入映射到三个不同的空间进行特征提取,对提取的特征求和,然后与第二个Mswt模块的输出求和,再经过一个基本块,实现深度特征和浅层特征的融合,如图2中的小跳跃连接所示,而图2中相对较长的跳跃连接则考虑了主要特征中包含的丰富的空间和纹理信息,有助于完成深度特征中缺失的纹理信息。 其中,O为雨图像,B为对应标签。是绝对差(SAD)之和,用于计算相似预测图像和标签之间的像素损失,如等式6所示。SSIM(结构相似性)是结构相似性,最初用作评估两个图像内容的结构相似性的度量。Ren等人[41]证明了SSIM作为损失函数在图像降额任务中的有效性的负面作用,其数学表达式如等式7所示。尽管使用该损失函数可以获得高SSIM度量,但图像仍然存在失真和低峰值信噪比(PSNR)。identity loss(等式8)由CycleGAN[42]导出,CycleGAN[42]用于约束生成图像的颜色丢失,这里我们使用它来约束图像去雨后的图像样式,这减少了图像失真,提高了网络性能。α , β , λ 是SAD损失、SSIM损失和identity loss的系数。在本文中,分别设置为0.2、4和1。 实验使用Tesla V100 16G GPU进行训练,使用Pytorch框架1.7.0和(Adam)[43],初始学习率为5× 10−4,减少到5× 10−5和5× 10−6当训练迭代次数分别为总迭代次数的3/5和4/5时。输入模型的图像大小设置为231×231. batch size为5。 我们提出了一个全新的数据集用于网络训练和消融实验。该数据集是从ImageNet中随机抽取的10万幅图像,保证了图像的多样性。从Efficientderain[12]降雨模式数据集中随机选择一到四种降雨模式,并添加到选定的图像中。我们最终选择了3000张合成图像作为训练集,400张作为测试集。我们把这个数据集命名为Rain3000。此外,我们还使用公开的数据集Rain100L和Rain100H[44]来验证SDnet模型。两个公开的数据集都包含1800个训练图像和200个测试图像。 使用SSIM和PSNR作为评价指标,这两种指标已被广泛用于评价预测图像的质量。PSNR是根据两幅图像之间的像素误差来计算的,误差越小,值越大,图像越相似,除雨效果越好。相反,图像去雨的效果越差 首先,本文提出了一种基于Swin-transformer的三分支端到端除雨网络,它充分利用了Swin-transformer强大的学习能力,用一种改进的Swin-transformer代替卷积运算,并设计了一个多分支模块来融合不同空间域的信息,使用跳转连接来融合深特征和浅特征。此外,我们提出了一个新的数据集,由3000个训练对和400个测试对组成。该数据集是基于ImageNet生成的,具有丰富的背景和雨型组合,便于模型的推广。我们提出的模型在数据集Rain3000和公共数据集Rain100L、Rain100H上都达到了最佳性能。我们的工作还有些不足。例如,在参数数目相同的情况下,哪种方法更适合于并行或串行的图像去噪任务还没有详细探讨。以及是否可以使用多个不同大小的滑动窗口来实现窗口间的进一步信息交换,以提高网络降容的性能。此外,我们正在使用更简单的前馈网络,更复杂的网络仍然值得研究

108 评论

相关问答

  • 幼儿园意识形态管理机制研究论文

    意识形态工作机制和意识形态阵地管理制度 一、意识形态工作机制 (一)意识形态工作主体责任定期报告机制 各坊每季度汇报意识形态工作,各部门成员要把意识形态工作作为

    牛牛1223 2人参与回答 2023-12-09
  • 细胞凋亡机制的研究和意义论文

    提高新陈代谢能力、促进全球物质循环、保持循环系统的稳定。

    有名无姓123 7人参与回答 2023-12-06
  • 实现机制研究论文

    员工激励机制探究论文 就企业而言,激励机制是企业为有效激励员工而建立的一套有机的激励制度和措施的集合,看看下面的员工激励机制探究论文吧! 摘 要 本文阐述了员工

    五十岚零 4人参与回答 2023-12-10
  • 目标检测注意力机制研究现状论文

    论文: Coordinate Attention for Efficient Mobile Network Design 目前,轻量级网络的注意力机制大都采用S

    小胖怡情 2人参与回答 2023-12-08
  • 改革机制研究论文

    自己写!!!!!

    大白包小白 5人参与回答 2023-12-11