香雪海Jackie
摘 要:在近几年整个数学考查中,把数学思想方法和知识,技能融为一体,放到突出位置,而数学思想方法的呈现形式是隐蔽的,是蕴含在具体的题目中的,学生很难从教材中获取。这就要求教师在教学过程中站在方法论的高度,通过基础知识的教学,通过例习题训练,使学生需不断地通过这些例题和习题进行"提炼"和"概括",仔细体会,认真思考,在不断地思考体会中把这些思想方法进行内化,转换为自己的能力,反过来用这些思想方法指导解题,在不断的反复中把数学知识和数学思想方法融为一体, 使学生领会其中数学思想方法的精神实质,并在应用在形成习惯和观念,系统地掌握它们,以便在解题中自觉地加以应用,使自己的能力达到一个新的高度。 中国论文网 关键词:方程思想 提炼 概括 渗透 体会 内化 方程思想是将所求的量设成未知数,用它表示问题中的其他各量,根据题中隐含条件,列方程(组)通过解方程(组)或对方程(组)进行研究,以求得问题的解决。方程思想方法是中学数学中一个极其重要的思想方法,在考试中屡见不鲜,如何在教学过程进行“提炼”和“概括”,让学生仔细体会,认真思考。笔者曾作以下方面初探,现不揣浅陋班门弄斧,亦作引玉之砖就教于同行。 首先,在知识发生过程中适时的渗透 数学课堂教学内容从总体上可分为两个层次:一个称为表层知识,包含概念、性质、法则、公式、公理、定理等基本内容;另一个称为深层知识,主要指数学思想和方法。表层知识是深层知识的基础,具有较强的操作性,学生只有通过对教材的学习,在掌握与理解了一定的表层知识后,才能进一步学习和领悟相关的深层知识。而数学思想方法又是以数学知识为载体,蕴涵于表层知识之中,是数学的精髓,它支撑和统率着表层知识。因而教师在讲授概念、性质、公式的过程中应不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层知识,从而让学生思维得到有益的训练,只灌输那些死板的概念、公理、定理等,而不重视数学思想、数学方法的教学,显然不利于学生对知识的掌握,当然也不利于学生对知识的运用。只有让学生在推导、运用过程中搞清数学的内在逻辑,领悟数学与其他各学科知识的联系,让学生亲身体验数学思维的严密性,并在此基础上掌握数学的思维与解决问题的方法。中学阶段数学知识中蕴含着十分丰富的方程思想,如代数应用题,解三角,求函数解析式,数列以及在解析几何,向量及空间向量在立体几何中的应用中都涉及。因此教师应特别重视这些知识的教学,有意识地渗升华。由于方程思想在不同年级(或不同章节)中要求的层次不尽相同,这就要求教师在教学中认真学习新课标,研究大纲,钻研教材,备好每一节课,把渗透方程思想的教学设计要相关的知识点上落实,做到《数学教学大纲》中提出的“精心设计”教学过程的要求。还有方程思想方法主要体现在方法的思考过程,在课堂教学中把这些讲透,将结论的发生过程“返璞归真”地交给学生,让学生亲自参与“知识再发现”的过程,经历探索过程的磨砺,汲取更多的思维营养。高中数学人教版必修五第二章第三节中的例2的设置,目的是建立等差数列前n项和与解方程之间的联系。已知几个量,通过解方程得出其余的未知量。本例题的教学要求要让学生体会方程思想,要引导学生认识到等差数列前n项和公式,就是一个关于an,a1,n或d,a1,n的方程,使学生以能把方程思想和前n项和公式相结合,解决等差数列前n项和问题。
emilylovejay
初中数学方程教学方法研究论文
【摘要】 在新的教学背景下,每一门科目的教师都在不断寻找最简便有用的授课方法。方程是一种解决问题的方法,在数学、物理、化学等学科中都有广泛的运用,因此教师要利用教学课堂把方程这一知识点详细地给学生进行讲解,使学生可以运用好这一解题方法。在数学的具体授课中,教师要从学生的审题、列方程、解方程、验证方程等各个环节进行讲解,学生要熟练掌握方程这一知识点,运用这一知识点可以解决很多数学问题。通过教师方程的课堂讲解,学生能够学会独立分析问题,学会亲自动手动脑解决问题,开拓自己的学习潜能。通过教师的课堂讲解,学生能更快地明白解题思路,同时掌握更多的学习方法与技能。本文对初中数学中方程教学的有效方法应用进行了深入探究,对相应的问题提出了解决方法。
【关键词】 初中数学;方程教学;方法应用
初中数学中方程知识的教学占据着一定的比重,这一知识点可以贯穿到很多的学习内容中,并成为初中数学题目中解题的基础方法。对于方程教学来说,教师不仅要重视学生的解题思路和方程规律特点的讲解,还要对实践操作中的审题环节、作业反馈出现的问题重点关注。通过这样的方式,才能促进学生对于方程更高效的学习,更透彻更全方位地掌握方程知识。教师在制定教学计划的时候,要进行教材内容的分析,确定好教学主题,明确授课目的,做好知识点的衔接贯通、技巧讲解、教学逻辑性等方面的设计。通过这样的教学方法的制定,激发学生对于方程学习的兴趣、启发学生动脑思考能力,从而促进学生该学科成绩的提升。
一、培养学生的方程意识与思维
初中方程授课主要集中在一元一次方程、二元一次方程与一元二次方程的学习,不一样的形式在解题的运用方法方面也有很大的差异。因此,学生在学习过程中要掌握好每个方程的定义以及解题方法,加减法的运用在方程中是非常广泛的,教师在课堂中要利用理论性的教学方式来为学生讲解方程的不同定义以及意义,让学生通过教师课堂的'讲述分清方程的用法,尤其在选择填空题的解题方法中,教师可以引导学生做题的方法,可以运用画图的方式直接作题。在常见的题型中,如果题面上几何与方程没有太多联系,教师就要通过教学引导,引导学生运用代入方式来构建方程的形式来答题。学生刚接触方程就去解答问题往往还不熟练,因此教师要时刻提醒学生用方程的思想去回答问题,使学生形成习惯,建立高效的方程运用思想。要让学生了解到,题目中给了很多的数量关系,学生就要采取构建式子的形式去解答问题,从而利用方程去解答问题。教师通过这样的方式指导学生答题,既可以培养学生利用方程思想解决问题的习惯,又可以培养学生的动脑思考能力,从而教师也达到了制定的教学计划。
二、一题多变式教学方式应用于方程授课
在初中应用题教学过程中,教师首先要引导学生对应用题要有大概的了解,在把题意读懂的基础上进行分析解答,同时教师可以利用一道习题进行改编,使学生学会举一反三。例如:一个生产队有玉米400亩,收玉米340000斤,平均每亩产多少斤?这是一道求平均数的问题,通过教师的引导又可以发现:如果没有告诉我们总量,那么我们可以先求出总产量。这道题又可以改变成另外一种形式:一个生产队有玉米400亩,分两组收割,第一组收割180000斤,第二组收割160000斤,那么平均每亩产多少斤玉米?因为方程的形式并不是一成不变的,学生可以在这道应用题的基础上进行改编,再变成另外一道方程习题。教师也可以通过小组竞赛的方式来激发学生做题的动力,教师把学生分为几个小组,同时让小组成员进行讨论,看哪个小组能改编的题目最多、最新颖。通过这样的方式,学生可以在旧知识的基础上得到新的东西,从而学生的动脑能力也得到了极大的提高。
三、一题多解式的教学方法应用于方程授课
在初中数学中,应用题是学生拿分数的一项题型,应用题可以培养学生解决问题、分析问题的能力,应用题的解决方法是多种多样的。教师可以鼓励学生多分析,用多种方式去解决应用题。学生想出的解决方法越多,越有助于培养学生独立分析问题的能力,还要思考简单的解决步骤,这样就不会束缚自己的思想,从而思维也得到了锻炼。例如:小红和小明在400米的环形跑道上练习长跑,同一时间同一地点向相同的方向出发,已知小红的速度是8米每秒,小明的速度是10米每秒。那么请问小红跑了几圈以后,小明就可以超过小红一圈?这道题有很多的解答方式,教师可以先指导学生运用普通的解答方式解答问题,接下来要引导学生利用方程去解答问题,从中让学生对比两种解答方法有什么差异或相同之处。从各种角度去寻找不同的解决方式,让学生从不同的解法中获得启发。教师用鼓励的形式去激励学生的动脑能力,在数学的学习中解题的思路有很多种,在答案正确的基础上,学生的思路没有绝对的对与错,教师可以通过引导把学生的思路引到简单的解题方式中,从中也培养了学生的独立思考能力,提升学生对于数学解题的兴趣。通过初中数学中方程的授课,学生对方程有了大概的认识。通过习题的练习,培养了学生独立动脑思考能力及分析问题、解决问题能力,激发了学生对于数学学习的兴趣。用方程的形式解决实际遇到的问题,这种解题方式很高效,这种新形式的解题方法在教学中也许不能立即看出效果,教师要对学生进行长久的训练以及培养,让学生熟记这一解决问题的方法及思路。通过长时间的练习,学生提升了分析问题的能力,养成了推理判断的习惯以及自主解决问题的能力。教师也要随时进行新的授课方法的引进,对自己的授课方式进行总结与完善,从而真正提高学生的课堂效率,达到授课的教学目的。
【参考文献】
[1]卢春华.初中数学教学反思刍议[J].中学教学参考,2016(31):90-90.
[2]刘廷超.刍议在初中数学教学中数学思想和方法的渗透[J].科学咨询,2015(51):130-130.
数学教学中渗透数学精神与思想论文是我为数学专业的同学带来的论文范文,写论文时可以作为参考哦。 数学教学中渗透数学精神与思想论文【1】 【摘 要】古人言“勤学善思
论文 3000字 换25的积分,不可能的事
当线性方程组的规模比较大时,采用高斯消元法需要太多时间。这时就要采用迭代法求解方程组了。高斯消元法是一个O(n^3)的浮点运算的有限序列,在经过有限步计算之后理
法学毕业论文的准备工作(一)搜集材料所谓准备,主要就是充分占有资料,研究、参考他人的看法。材料越多越好,材料不够就写不出好文章。读的书看的论文很少,知识贫乏,是
有关法学与爱的三个话题请允许我在开头就突兀地提出自己新近的一个小想法:我坚信,法学的内在,正是一代又一代法律人对人类所怀有的巨大的爱。是的,这个念头有一些乌托邦