panda熊猫陈
1. T.Jiang,J.Zhao, and M.Wei, A new technique of quaternion equality constrained Least Squares problem, J. Comput. Appl. Math., 2007, in press (SCI)2. T.Jiang, L.Chen,Algebraic algorithms for Least Squares in quaternionic quantum theory, Comput. Phys. Commun., (176)2007:481-485 (SCI)3. T. Jiang, X. Cheng, L. Chen, An algebraic relation between consimilarity and similarity of complex matrix and its applications, J. Phys. A: Math. Gen, 2006, 39, 9215 (SCI)4. T.Jiang, Cramer ruler for quaternionic linear equations in quaternionic quantum theory,Rep. Math. Phys., 2006, 57(3):463 (SCI)5. T. Jiang, Algebraic methods for diagon. of a quaternion matrix in quatern. quantum theory,J. Math. Phys. , 2005, 46 (5)(SCI)6. T.Jiang and M.Wei, On a Solution of the Quaternion Matrix Equation and Its Application,Acta Math. Sinica, 2005, 21(3)(SCI)7. T.Jiang, An algorithm for quaternionic linear equations in quaternionic quantum theory,J. Math. Phys., 2004, 45 (11): 4218 (SCI)8. T.Jiang, An algorithm for eigenval. and eigenvec. of quaternion matrices in quatern. mech.,J. Math. Phys., 2004, 45 (8): 3334 (SCI )9. T.Jiang and M.Wei, On solutions of the matrix equations X-AXB=C and X-A {\overline X} B=C,Lin. Alg. Appl., 367(2003),225 (SCI )10. T.Jiang and M.Wei, Equality constrained least squares problem over quaternion field,Appl. Math. Lett., 16(2003),883(SCI)11. T.Jiang, Chen Li, Generalized Diagonalization of a Matrix over Quaternion Field, Appl. Math. Mech., 1999, 20(11):1297 (SCI)12. T. Jiang, J. Zhao, M. Wei, Solution of the matrix equation A\hat X-XB=C,Advances in Matrix Theory and Appl.,2006, ( ISTP)13. T.Jiang, M.Wei, On reduction of a complex matrix to triangular or diagonal by consimilarity,Numer. Math . (J .Chin. Univ.), 2006, 2, 107-11214.T.Jiang, Y.Liu, M.Wei, Quaternion generalized singular value decom position andapplications,Appled Math. (J. Chin. Univ.), 2006, 21(1):11315. T.Jiang and M. Wei, An Algorithm for Jordan canonical form of a quaternion matrix,Numer. Math.(J.Chin.Univ.), 2003,12(1):4316. 姜同松, 魏木生,四元数矩阵的实表示与四元数矩阵方程,数学物理学报, 2006,417. 姜同松,四元数矩阵的对角化及其算法,工程数学学报, 2005, 22(1): 17918. 姜同松,四元数的一种新的代数方法,力学学报,2002,119. 姜同松,关于《再论约束最小二乘问题》的注记,计算力学学报, 2003,120. 姜同松,四元数矩阵Jordan 标准型简单证明和算法, 应用数学, 2001,14:204
玉面小达摩1986
1. Sun Qing, Zhang Ling, Zhou Jinxiong, Shi Qingxuan, Experimental study of the semi-active control of building structures using the shaking table, Earthquake Engineering and Structural Dynamics, 2003, Vol.32, pp2353-2367. ( SCI检索: 749NF)2. Sun Qing, Zhang Ling, Zhou Jinxiong, An adaptive beam model and dynamic characteristic with magnetorheological material, Journal of Sound and Vibration, 2003, Vol.261, No.3, pp465-481.( SCI检索:663FD)3. Sun Qing, Zhang Ke, Zhou Jinxiong, Zhang Ling, New magnetorheological damper and its application on semi-active control of structural seismic responses, International Proceeding of 2002ISSST, 2002, 376-382. ( ISTP检索:BV71C)4. 孙清,张可,王学明,文建波,周进雄,张陵,可变阻尼结构的振动台试验研究, 建筑结构学报, 2003,Vol.24,No.6,11-17.5. 孙清,张陵,史庆轩,周进雄,磁流变阻尼器对结构地震反应的滑模变结构控制, 计算力学学报, 2003,Vol.20,No.5,546-552.6. 孙清,张可,周进雄,张陵,新型磁流变阻尼器对结构地震反应的控制, 西安交通大学学报, 2003,Vol.37,No.1,92-95.7. 孙清,张智谦,周进雄,张陵, 时滞对结构振动半主动控制效果的影响, 应用力学学报, 2002, Vol.19,No.3,77-80.8. 赵鸿铁,薛建阳,孙清,戴红,型钢混凝土框架模型的振动台试验, 西安建筑科技大学学报, 1996,Vol.28,No.4, 360-363.9. 孙清,周进雄,张陵, 磁流变阻尼器控制相邻结构地震反应分析研究, 世界地震工程, 2005, Vol.21,No.1,101-107.10. 孙清,张陵,结构振动半主动控制的时滞补偿研究, 机械科学与技术, 2005, Vol.24,No.5,505-509.。
《史记·大宛列传》《汉书·匈奴传》《汉书·西域传》《魏书·西域传》《资治通鉴·汉纪十二》《资治通鉴·宋纪四》《乌孙研究》,王明哲、王炳华著,新疆人民出版社,全国
EI工程索引期刊列表,期刊影响因子1 北京工业大学学报 北京工业大学 0.403 103482 北京科技大学学报 优先出版期刊北京科技大学 0.550 1505
《住宅与房地产》等
相当牛的期刊,除计算机学报和软件学报,应该就是它了。肯定是EI。如果楼主能在上面发表相当不错。
[1] Wang Baojun, Shi Bin, Hilary I. Inyang. 2008. GIS-Based Quantitative Analysi