吃要吃好的
三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=9.46万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!
洛洛智久
魔域SF新开QQ魔域魔域私服下载您当前的位置:首页 > 新开QQ魔域写一写三角函数一家的几个小故事 时间:2010-11-10 22:41:40 来源:作者:12.任你角度大到天涯天涯,让我用引诱公式将你瞬间秒杀,完美世界有私服吗.14.他们一家的小儿子sec和小女儿csc,还没长大,还得靠tan哥哥和cot姐姐来解决艰苦8.cos有的时候蛮无聊的,把人家好好的阿尔发和贝塔硬是弄得分居,成果上往调处的还是她.4.tan很寂寞很寂寞,于是数学家看不下往了,发明了cot陪陪他15.有的时候角度会阴险的穿上尽对值防护罩,这时候请信分类讨论哥16.信分类讨论哥!不挂科!5.tan找不到妈妈cos时,就会方一下然后往找1,于是在根号叔叔的辅助下,找回了cos7.sin倒是感到x蛮酷的1.sin和cos不得不说的故事~有一天,sin方了一下,cos也方了一下,无Wúこ聊滴み→,他们于是相爱了,空气的压力.成了完善的113.当碰到所有招式的对付不了的角度时,三角函数一家也尽不会气馁,他们还有大杀器:帮助角11.但分类讨论哥永远不会摈弃tan,事实上他从未摈弃过任何人That's all3.sin和cos有一天除了一下,于是tan出生了6.cos一直不爱好别人叫她原名:y/r.y太丑,r弯弯的也不好看9.sin也会做差未几的事.但他比拟懒.不变号10.tan也想学爹妈做差未几的事,成果他碰到y轴老大哥罩着的一帮角就确定没辙了,pai公公有时也会四分之一下耍耍他.2.三角函数家有许很多多招式.但是始终遵守着“奇都变了偶还不变.符号他妈还要看象限,Say Goodbye、言.”三角函数趣味记忆.《sin和cos的故事》杂文 2010-12-11 16:01:35 阅读45 评论0 字号:大中小 订阅 .1.有一天,sin方了一下,cos也方了一下,他们于是相爱了.成了完美的1 2.三角函数家有许许多多招式.但是始终遵循着“奇都变了偶还不变.符号他妈还要看象限.” 3.sin和cos有一天除了一下,于是tan诞生了 4.tan很寂寞很寂寞,于是数学家看不下去了,创造了cot陪陪他 5.tan找不到妈妈cos时,就会方一下然后去找1,于是在根号叔叔的帮助下,找回了cos 6.cos一直不喜欢别人叫她原名:x/r.x太丑,r弯弯的也不好看 7.sin倒是觉得x蛮酷的 8.cos有的时候蛮无聊的,把人家好好的阿尔发和贝塔硬是弄得分居,结果上去调停的还是她.9.sin也会做差不多的事.但他比较懒.不变号 10.tan也想学爹妈做差不多的事,结果他遇到y轴老大哥罩着的一帮角就肯定没辙了,pai公公有时也会四分之一下耍耍他.11.但分类讨论哥永远不会抛弃tan,事实上他从未抛弃过任何人 12.任你角度大到天涯海角,让我用诱导公式将你瞬间秒杀.13.当遇到所有招式的对付不了的角度时,三角函数一家也绝不会气馁,他们还有大杀器:辅助角 14.他们一家的小儿子sec和小女儿csc,还没长大,还得靠tan哥哥和cot姐姐来解决困难 15.有的时候角度会阴险的穿上绝对值防护罩,这时候请信分类讨论哥 16.信分类讨论哥!不挂科。
在直角三角形中,各边长度两两之间的比值是锐角的函数.每个锐角有6个三角函数,记做正弦(sin)、余弦(cos)、正切(tan或者tg)、余切(cot或者ctg)、正割(sec)、余割(csc)。
关于某个角A的三角函数:(直角三角形中) sin A=角A的对边/三角形的斜边 cos A=角A的邻边(不是斜边)/斜边 tg A=角A的对边/角A的邻边=sin A/cos A ctg A=角A的邻边/角A的对边=1/tg A sec A=斜边/角A的邻边=1/sin A csc A=斜边/角A的邻边=1/cos A 三角函数可以推广到任意角。这里由于时间问题不说了。
早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,但那大都是天文观测的副产品.例如,古希腊门纳劳斯著的《球面学》,提出了三角学的基础问题和基本概念.50年后,另一个古希腊学者托勒密著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多也表述出古代印度的三角学思想;其后的瓦拉哈米希拉最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯.
雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表.
最先使用三角学一词的是德国数学家皮蒂斯楚斯,他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形和测量两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.
16世纪三角函数表的制作首推奥地利数学家雷蒂库斯.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表.
第一步:先从勾股定理下手,学会一些勾股数,
下面提供几组:
3、4、5; 5、12、13
7、24、25; 8、15、17
9、40、41; 11、60、61
12、35、37; 13、84、85
15、112、113; 16、63、65。。
看出规律来了吗?要多少有多少。
可是很多数学老师教了一辈子,
都没有懂。你一会,就有自信了。
第二步:以直角三角形为例,只要相似,
每个三角形自己的边与边的比例是
不会变的,与大小无关。弄懂相似与全等。
第三步:用勾股定理算出特殊角的边与边的比例
三个特殊角:30度、45度、60度
然后算出 正弦 = 对边 :斜边
余弦 = 邻边 :斜边
正切 = 对边 : 邻边
余切 = 邻边 : 对边
将一些特殊角的函数值练熟,以后
非常有用。
第四步:熟悉单位圆、象限、位相、振幅、
频率的概念。熟悉图形。
第五步:学解简单的三角方程。
第六步:学会积化和差、和差化积。
第七步:学会三角反函数。
第八步:进入极限、微积分。
以上意见供您参考。学习主要靠想,想通了就会了。
三角函数主要利用三角形内的边角关系去解决类似的函数模型的问题。
楼主问它的主要用处,于生活中去套用的话,还真没有什么大的用处。其实说得更白一点,数学上所学函数有很多甚至可以说晦涩难懂,学来根本与实际生活无半分关系,但是仍然有人前仆后继的去学,为什么呢,大抵逃不出以下两个原因,一是每个领域都必须有人去研究有人去得出成果,为这个原因去学的都是数学界的佼佼者;二是为了拿到将来能在社会上得以安身立命的敲门砖,即拿到一个还算满意的毕业证书,而数学,函数都是这条路上的必经之路。
我们一生中记事起十多年学数学,不一定是所学知识为有什么用,而是在十多年的数学熏陶以后忘掉所学具体知识而留下的那些数学思维,才是我们真正有用的东西。加油,不管你是哪个学段,都不要为了有用而学,因为我们学来的是思维,是逻辑。
[数学论文] 如何培养学生学习数学的兴趣[原创] [数学论文] 数学概念学习的几种方法[原创] [数学论文] 简谈分数“1/2”和小数“0.5” 的重
三角学与天文学早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的
【摘要】:在数学学习的过程中,我们发现有些题目存在着很多种解法,就会使我们多这些解法产生想一探究竟的想法。在尝试多种解法来解答问题时,需要从多个角度进行思考。这
原文链接:几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计
开拓学生自主学习的新天地