米莱vicky
论文?我觉得可以写因式分解中如何将基本解题方法引申至奥赛等级——比如从一些基本公式、方法开始,十字相乘法,换元法,主元法什么的。 顺便再加一点自己的感悟和理解应该会比较好一点。个人意见。
没腰的麦兜
换元的方法有:局部换元、三角换元、均值换元等。 换元的种类有:等参量换元、非等量换元(一) 代数换元法例 解方程 —=1解 :令=t ( t0 )则=1+t于是有: (1)-(2) 得:t = 2 代入(2)得:2x2-3x-2 = 0 解之得:x1 = 2, x2 = -经检验知:x1 = 2和 x2 = -均为原方程的解。例2 求证: ( )证明:令 y = 则:x2+2 = y2+1从而原式 = 所以 小结:例1小结:通过换元避免了常规解法中两次平方的复杂运算,使问题更加容易解决。此曰:代数换元法。例2通过换元使问题更加明朗。再用均值证明不等式。例3求函数y = sinxcosx + sinx + cosx的值域解: 令 t = sinx + cosx = sin(x+)则 t[] 而 sinxcosx = [(sinx+cosx)2-1] =(t2-1)所以y =(t2-1)+t =(t+1)2-1当t = -1时,ymin = -1当t =时, ymax =+故函数的值域为 [-1,+] 。 (二)常量换元法例4 已知f(x) = 2x5+3x3-x2-4x+12, 求f(1-)的值。解:设1-= x 则x2+2x-1 = 0 ∵ 2x5+3x3-x2-4x+12 = (2x3-4x2+13x-31)(x2+2x-1)+71x-19 = 71x-19 ∴ f(1-) = 71(1-)-19 = 52-71小结:利用常量换元法构造零因子,使计算量大大减小。充分体现常量换元法在解题中的精妙作用。问题推广:例5已知f(x-3) = 2x2+5x-6, 求f(x)的解析式。解:令x-3 = t 则x = t+3把x = t+3代入f(x-3) = 2x2+5x-6 得:f(t) = 2(t+3)2+5(t+3)-6 = 2t2+17t+27所以 f(x) = 2x2+17t+27小结:常量换元法是求函数解析式的常见方法。 (三)比例换元法例6 若== 求证:sin2(α-β)+ sin2(β-γ)+ sin2(γ-α)=0证明: 设=== 则x=Rtan(θ+α) y=Rtan(θ+β) z=Rtan(θ+γ)sin2(α-β)= 〔cos2(θ+β)-cos2(θ+α)〕sin2(β-γ)= 〔cos2(θ+γ)-cos2(θ+β)〕sin2(γ-α)= 〔cos2(θ+α)-cos2(θ+γ)〕将上述三式相加得:sin2(α-β)+ sin2(β-γ)+ sin2(γ-α)=0小结:注意题型结构特点,类似比例式子,利用适当换元,通过三角运算,使问题化繁为简,更容易解决。 (四)标准量换元法例7设a1,a2 ,a3,…,a2004均为实数,若a1+a2+a3+…+a2004=2004 …… (1) …… (2)求证:=2004证明:令a1=1+m1, a2=1+m2, a3=1+m3 , …,a2004=1+m2004由(1)式可得:m1+m2+m3+…+m2004=0 …… (3)由(2)式可得(1+m1)2+(1+m2)2+(1+m3)2+…+(1+m2004)2=2004将其展开并将(3)代入,化简得:=0故:m1=m2=m3=m2004=0即:a1=a2=a3=…=a2004=1所以: 小结:例中选“1”作为“标准量”,把a1,a2 ,a3 …a2004都用“1”和辅助量m1,m2,m3, …,m2004表示。此种方法为“标准量换元法”。 (五)三角换元法例8(1)以知x>0,y>0,且,求x+y的最小值 (2)解不等式: 解:(1)设=cos2θ, sin2θ (0<θ<)则x+y==10+tan2θ+9cot2θ≥10+2 tanθ3cotθ=16故:当tanθ=3cotθ 即,此时 x=4 , y=12(x+y)min=16(2) 令x=2sinθ (-) 则不等式化为:2cosθ≥2sinθ解之得:-从而-2≤2 sinθ≤1 即 -2≤x≤1说明:若变量x的取值范围可转化为:-1≤x≤1或-1
数学是一门与实际生活联系密切的学科,最终服务于生活,高效率课堂教学模式的建立首要条件是转变教学观念,建立以学生为主体的学习模式。本文是我为大家整理的浅谈小学数学
初中数学教学论文范文 在社会的各个领域,大家或多或少都会接触过论文吧,论文可以推广经验,交流认识。那么一般论文是怎么写的呢?以下是我帮大家整理的初中数学教学论文
当代大学生优秀传统文化研究论文 在日复一日的学习、工作生活中,大家对论文都再熟悉不过了吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。那么,怎么
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!
中国知网是一个综合性的学术资源库,提供包括学术论文、专利、标准、会议论文、学位论文等多种学术资源的检索与下载服务。如果您需要进行中国知网的二次开发,以下是一些常