首页 > 学术论文知识库 > 毕业论文聚四氢呋喃

毕业论文聚四氢呋喃

发布时间:

毕业论文聚四氢呋喃

产品性能:四氢呋喃,无色透明液体。有乙醚气味。密度。折射率。沸点66℃。凝固点℃。溶于水和多数有机溶剂。易燃烧。在空气中能生成爆炸性过氧化合物。在加压下与氯化氢作用生成1,4-二氯丁烷。用作天然和合成树脂(特别乙烯基树脂)的溶剂,也用于制丁二烯、己二腈、己二酸、己二胺等。产品用途:四氢呋喃是一种重要的有机化工及精细化工原料,广泛应用于树脂溶剂(磁带涂层、PVC表面涂层、清洗PVC反应器、脱除PVC薄膜、玻璃纸涂层、塑料印刷油墨、热塑性聚氨酯涂层);反应溶剂(格式试剂、烷基碱金属化合物和芳基碱金属化合物、氢化铝和氢化硼、甾族化合物和大分子有机聚合物);化学中间产物(聚合生成PTMEG、天然气加味剂);色谱溶剂(凝胶渗透色谱法)。四氢吡咯 分 子 式: C4H9N 分 子 量: CAS No :? 123-75-1 外 观: 无色透明液体 纯 度: ≥ 沸 点: ~℃ 水 分: ≤ 最大杂质: ≤ 性 质: 本品为无色透明液体,有特殊气味,见光或潮湿空气易变黄色,易溶于水,乙醇。具有腐蚀性及易燃性。 用 途: 医药中间体。亦可作为良好溶剂。

ptmeg是聚四氢呋喃,是一种易溶解于醇、酯、酮、芳烃和氯化烃,不溶于酯肪烃和水的白色蜡状固体。当温度超过室温时会变成透明液体。

工业生产最早以糖醛为原料,将糖醛与蒸汽的混合物通入填充锌-铬-锰金属氧化物(或钯)催化剂的反应器,于400-420℃脱去羰基而成呋喃;然后以骨架镍为催化剂,于80-120℃呋喃加氢制得四氢呋喃。

化学性质

易溶解于醇、酯、酮、芳烃和氯化烃,不溶于酯肪烃和水。当分子量增加时,溶解度会降低。在室温下,PTMEG都具有吸水性。其吸水性取决于分子量的大小,最高时可吸收2%的水分。

包装贮运

应贮存在完全封闭并有干氮密封的罐或其它容器里。贮罐必须配有外部或内部加热设备,以使其温度保持在约50℃左右。凝固的PTMEG可在70℃左右加热24小时使其充分熔化,但不应长时间在90℃条件下贮存。

贮存应在阴凉干燥、通风良好处,须远离火源、火花和明火。由于PTMEG具有吸水性和易氧化,因而务必避免暴露于水气和空气中。为防止静电,运输容器要接地。装卸时应用佩戴手套和防护镜,以免眼睛、皮肤接触。

聚四氢呋喃二醇;聚四氢呋喃醚二醇;聚氧四亚甲基二醇;polytetrahydrofuran glycol;PTHF;PTMEG;PTMG 聚四氢呋喃二醇又称聚四氢呋喃醚二醇,英文名称为polytetrahydrofuran glycol,也称为聚丁二醇,聚氧四甲撑醚二醇,简称PTMEG。是分子两端具有羟基的直链聚醚二醇。是由四氢呋喃(THF)在催化剂的存在下,进行阳离子开环聚合得到。分子呈直链式,结构HO-[(CH2)4-O]-H,骨架上连接着醚键,两端为一级羟基,是四氢呋喃(THF)经开环聚合反应而得的高聚物,具有整齐排列的分子结构,赋予它特殊的性质,其制品呈现优异的物理及械性性能,PTMEG型聚氨酯具有良好的耐低 温性、耐水解性、耐盐水性和耐霉菌性。其缺点是PTMEG以羟基封端,所以亲水性增加,容易潮解;又因与氧原子连接的碳原子容易氧化,故易受紫外射线影响。PTMEG随分子量增大,由室温的粘稠液体变成腊状固体。它的物理性质主要由分子量决定,通常 PTMEG的分子量在600—5000之间,能用于弹性材料及弹性纤维的PTMEG的分子量在 1000—2000 之间,应用最多的分子量为1000及 2000两种。在常温下,低分子量的PTMEG为无色液体,分子量较高的PTMEG为白色腊状物。 PTMEG主要用于生产聚氨酯弹性体、聚氨酯弹性纤维(国内称氨纶,国际称Spandex)和酯醚共聚弹性体。国外PTMEG的最大消费市场是氨纶,占40%左右;其次是聚氨酯弹性体,占35%左右;酯醚共聚弹性体占25%左右。PTMEG是生产聚氨酯弹性体制品中十分重要的聚醚多元醇原料。国内PT MEG主要用于氨纶和聚氨酯弹性体生产,用于酯醚共聚弹性体基本上是空白。与常用的环氧丙烷类聚醚相比,PTMEG有如下优点:(1)链段具有较高的柔顺性和规整性;(2)PTMEG主链上没有不饱和键,制得的聚氨酯制品具有良好的耐老化和耐化学性;(3)与聚酯多元醇相比,PTMEG主链上没有酯基,制品具有良好的抗水解性。在各种以脂肪族聚醚为软段的聚氨酯弹性体中,PTMEG型聚氨酯的物理性能最佳,机械强度较大。因此,PTMEG被广泛应用于制备氨纶和高性能聚氨酯弹性体等高档聚氨酯产品中。 是由四氢呋喃在阳离子催化剂存在下开环聚合制成的。生产工艺:在反应釜中加入四氢呋喃,温度降到-5℃以下,于强烈搅拌下滴加发烟硫酸催化剂,保持反应物料低温,搅拌下加入定量的水,升温至70~90℃,蒸出未反应的四氢呋喃单体,经静置分层、中和、过滤、抽真空等工序后,制得聚四氢呋喃二醇。聚四氢呋喃二醇价格较高,一般用于制备高性能的聚氨酯材料,其制品具有优秀的耐低温、耐水、耐油、耐磨以及耐霉菌等性能。

聚丙烯聚合工艺毕业论文

聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 化学和性质 PP是在金属有机有规立构催化剂(Ziegler-Natta型),如δ-TiCl3-(C2H5)2AlCl或TiCl3-(C2H5)3Al(效率300~900克聚丙烯/克TiCl3)作用下,使丙烯单体在控制的温度和压力条件下合成的。因所用催化剂和聚合工艺不同,所得聚合物的分子结构有三种不同类型的立体化学结构,数量也不一样。这三种结构是指等规聚合物、间规聚合物和无规聚合物。在等规聚丙烯(最常见的商品形式)中,甲基原子团都处在聚合物骨架的同一侧,这一结构很容易形成结晶态。等规形式的结晶性赋予它良好的抗溶剂和抗热性能。在前十年期间所用的催化剂技术使非等规异构体的生成达到最少程度,消除了对无价值的无规组分进行分离的必要性,简化了生产步骤。生产聚丙烯的工艺主要有两种:一种是气相法;一种是液体丙烯淤浆法。此外,还有一些老式淤浆工艺装置在运行,它们采用一种液态饱和烃作为反应介质。 比较而言,高密度和低密度聚乙烯都有较高的密度,相当低的熔点和较低的弯曲模量即刚度。这些性能差异导致了最终用途不同。刚度和易定向性使聚丙烯均聚物适合制作各种纤维和用于延展带,而它们较高的耐热性使它们能用于制作硬的高压容器和器具及汽车的模塑部件。 影响聚丙烯均聚物的加工性能和物理性能的主要因素包括:分子量(通常用流速表示);分子量分布(简称MWD);有规立构性和助剂。聚丙烯平均分子量范围从约200 000到 600 000。分子量分布通常用聚合物的重均分子量()与数均分子量()的比值表示, 。该式又称为多分散性指数。 一个聚合物的分子量分布对它的加工性能和最终使用性能有举足轻重的影响。这是因为熔融态的聚丙烯对剪切敏感,即当施加的压力升高时,其表观粘度降低。分子量分布范围宽的聚丙烯比分布窄的更对剪切敏感,因而具有宽范围分子量分布的材料在注塑过程中更易于加工。某些特定的用途,特别是纤维,则要求窄范围的分子量分布。分子量分布与催化剂体系和聚合反应工艺都有关系。常用过氧化物在反应器后面的挤压过程进行化学裂解,使分子量分布范围变窄。这一过程称为控制流变学(CR)过程。 与聚乙烯相比较,等规聚丙烯其独特的分子结构及螺旋状晶体导致其分子链更易受光和热而氧化降解。在通常的加工和最终使用条件下,聚丙烯要经受无规的断链作用,导致分子量降低和流速升高。所有的商品级聚丙烯都含有稳定剂,以便在加工时保护材料,提供令人满意的最终使用性能。对于特别的用途,除了加抗氧剂和紫外线抑制剂外,还须加其它添加剂。例如:在薄膜配方中加入润滑剂和防粘剂,以减少摩擦系数并防止薄膜自身粘连。在包装材料中添加抗静电以消除静电荷。为了提高透明度或缩短模型周期,则需用成核剂。均聚物树脂通常按流速和最终用途分类。流速取决于平均分子量和分子量分布两者。某些特殊用途要求流速高达400分克/分钟,而普通商品均聚物的流速则在分克/分钟的范围以内。流速通常是确定加工特性最主要的因素。 加工和应用 聚丙烯极好的流动性能和宽范围的流速,以及其它独特的聚合物特性相结合,使它具有优异的加工性能。较低的流速能满足挤压带、带状长丝和单丝等的加工要求,还能使成品有抗张强度和低延伸性,同时保持足够的横向完整性,使卷丝机导向装置上的劈裂和粉尘飞扬的情况达到最低程度。为了抵消它们特有的低横向强度和断裂倾向(原纤化),定向程度更高的薄膜到纤维产品,如:粗纤度纺织品、细绳和绳子,通常要求流速在7~20的范围内。含有发泡剂的装饰带条产品是由流速接近于10的聚丙烯挤压而成的,这样才能使熔体强度和定向能力达到适当的均衡。这种聚合物经中等程度的定向,能产生光滑的类似缎于一样的表面效果,产品有足够的横向强度可以延缓断裂。非织布和多丝产品的挤压需要一种低粘度、自由流动的材料,因此,流速极高的聚丙烯用于这些用途。 浇铸PP薄膜大量用于绘图艺术品方面。另外,薄膜可以双轴取向和热变定,使具有极好的机械性能和热性能,应用于各种性能层合材料和包装材料方面。使用管式水冷激工艺可以把PP加工成共挤出吹制薄膜以及单层薄膜。热成型用的挤塑片材要求使用低流速配方的材料,使具有足够的熔体强度。当使用PP挤塑型材时,较低的流速加工性能总是要好些。型材挤压通常限于较小的截面以便能用水急冷保证产品具有足够的韧度。PP还可以挤塑成管状产品,如饮料吸管和饮用水管。PP在线缆涂层方面也有用途。 在用量方面仅次于挤塑的注塑加工很适应聚丙烯的特性。PP良好的流动性能和强韧机械特性,被利用来生产许多种不同类型的具有内在的强韧机械性能的产品。良好的加工性能与极好的抗应力断裂性能产生了优良的模塑成型的密封罩。一般而言,低流速配方材料用于生产厚壁产品和那些要求韧性的产品。高流速的材料用于生产薄壁部件和要求快速加工的产品。 市场 PP均聚物可使用各种加工工艺,生产范围很宽的产品。 挤塑制品是消耗PP的最大市场,而纺织纤维和单丝又是其中最大的部分。长期以来,PP一直是制造纤维的主要原料,这是因为它的着色能力、耐磨损、耐化学品性能以及有利的经济条件。定向和非定向薄膜占据挤塑制品市场的第二大份额,并且是继续保持增长的领域。 接下来,注塑品是PP均聚物的第二大市场,包括容器、密封器、汽车方面的应用、家庭用品、玩具及其它许多消费品和工业方面的最终用途。许多吹塑容器选用聚丙烯,是因为它的良好的隔潮性能和足够的清沏度。鉴于对未来塑料制品的新需求,PP均聚物将继续保持增长。良好的经济方面的条件、良好的机械性能以及重量轻、着色能力强和易于加工等特性,将使PP继续成为本世纪众多应用领域的首选材料。 2.抗冲击型PP共聚物 PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下.然而,通过添加冲击改性剂,可以提高其抗冲击性能。传统改良性为弹性体,通常为乙丙橡胶。普遍认为,遍布于半结晶态聚丙烯基体内的橡胶粒子,能在界面上形成许多应力集中点,防止局部形变,和断裂扩展。抗冲击改性剂一直是在共混时添加进去的,最近,弹性体组分的现场合成已经具有商业重要性。而且,正在宣传用一种新系列的冲击改性剂来代替乙丙橡胶,即Flexomer聚烯烃、Exact塑弹体和Insite聚合物。这些都是烯烃聚合物,它们填补了极低密度聚乙烯和传统乙丙弹性体之间的空白。 化学和性能 等规PP均聚物,是在Ziegler-Natta催化剂体系催化下,由丙烯聚合而成的。乙丙橡胶组分在一系列反应器中合成的,或是预先购买,然后在挤压机内与PP均聚物共混。生成的抗冲击聚丙烯经粒化后出售。现场生产的抗冲击PP共聚物,可以通过选用合适的催化剂组成及反应器条件,来精确地控制其重要的性能。催化剂组成和反应器条件决定基体树脂的结晶度、橡胶组分的组成和数量及总体分子量分布。 抗冲击PP是最轻的热塑性塑料之一,其密度低于1,每磅产品的价格低于PET、PBT、高抗冲击聚苯乙烯和ABS。按比容计,抗冲击PP的单位体积成本低于上述那些树脂和聚氯乙烯(PVC)。仅有HDPE在这方面堪与匹敌。抗冲击型PP通常在适中的温度下加工,范围为350~550°F。抗冲击聚丙烯共聚物具有广谱的熔体流动速率,通常范围为从小于1到约30。具有最高熔体流动速率的树脂,通常是由熔体流动速率较低的材料“减粘裂化”制得。也就是对从反应器出来后的材料进行一步反应,降低平均分子量,从而制得熔体流速更高的产品。抗冲击聚丙烯共聚物对化学品和环境应力断裂有很高的抵抗力。经处理后,材料可具备优良的悬臂梁式冲击强度和较低的加纳尔冲击性能。悬臂梁式冲击强度范围在到大于15英尺·磅/英寸;在-40°F下,加纳尔冲击强度范围为15到300英寸·磅以上。 橡胶组分为聚丙烯提供了冲击强度,却使抗冲击聚丙烯相对于均聚物而言,降低了刚度和热变形温度。加填料的抗冲击聚丙烯共聚物能够忍受更高的温度而不变形。填料一般为玻璃纤维。云母、滑石和碳酸钙。这些聚合物的最终用户应该知道对每一种规格的产品,在不同的熔化强度、熔体流速、刚度和热变形温度之间需作出权衡。 用途 抗冲击聚丙烯的主要商业用途是用在汽车、家用品、器具中的注塑件。它的抗冲击能力、低密度、着色能力和加工性能使它成为理想的材料。具有较高熔体流速的中等抗冲击树脂品级有较高的流动性能,这个特点在注塑大型部件如:汽车面板时特别有用。 高抗冲击能力具有较低熔体流速的树脂(一般小于2),可以转化成抗穿刺性极好的薄膜,这种薄膜的抗冲击能力和耐蒸汽杀菌能力,适合做一次性医疗废品袋。挤压片材可以用热成型法加工成大而厚的部件,如:汽车工业中的护板和汽车车尾行李箱衬里。弹性体组分改良聚丙烯抗冲击性能的机理,在材料受冲击时,可诱导应力白化。大多数用途是以弹性组分在聚丙烯基体中的分散度为基础的。基于与此相反的概念,正在开发新型的保险杠。其结果是形成了一个分子复合结构。 注释 聚丙烯 丙烯的聚合物 英文名称polypropylene缩写PP均聚物 由一种单体聚合而成的聚合物称为均聚物。 高分子 高分子就是那些分子量特别大的物质。常见的分子,我们称它们为小分子,一般由几个或几十个原子组成,分子量也在几十到几百之间。如水分子的分子量为18、二氧化硫的分子量是44。高分子则不同,它的分子量至少要大于1万。高分子物质的分子一般由几千、几万甚至几十万个原子组成,它的分子量也就是几万、几十万、甚至以亿来计算。高分子的“高”就是指它的分子量高。 聚合物 高分子分为天然高分子和人工合成高分子,天然橡胶,棉花等都属于天然高分子。人工合成高分子主要包括:化学纤维、合成橡胶和合成树脂(塑料),也称为三大合成材料。此外,大多数涂料和粘合剂的主要成分也是人工合成高分子。人工合成高分子又被称为聚合物(Polymer)。 如:聚丙烯、聚乙烯等。 共聚物 两种或两种以上的单体或单体与聚合物间进行的聚合称为共聚,共聚得到的产物即为共聚物。分嵌段共聚物、接枝共聚物、无规共聚物、有规共聚物等。 回答者:ldj4231985 - 副总裁 十一级 6-28 14:01 回答者:寂寞不开门 - 秀才 三级 6-28 14:03 聚丙烯 丙烯的聚合物 英文名称polypropylene缩写PP均聚物 由一种单体聚合而成的聚合物称为均聚物。 高分子 高分子就是那些分子量特别大的物质。常见的分子,我们称它们为小分子,一般由几个或几十个原子组成,分子量也在几十到几百之间。如水分子的分子量为18、二氧化硫的分子量是44。高分子则不同,它的分子量至少要大于1万。高分子物质的分子一般由几千、几万甚至几十万个原子组成,它的分子量也就是几万、几十万、甚至以亿来计算。高分子的“高”就是指它的分子量高。 聚合物 高分子分为天然高分子和人工合成高分子,天然橡胶,棉花等都属于天然高分子。人工合成高分子主要包括:化学纤维、合成橡胶和合成树脂(塑料),也称为三大合成材料。此外,大多数涂料和粘合剂的主要成分也是人工合成高分子。人工合成高分子又被称为聚合物(Polymer)。 如:聚丙烯、聚乙烯等。 共聚物 两种或两种以上的单体或单体与聚合物间进行的聚合称为共聚,共聚得到的产物即为共聚物。分嵌段共聚物、接枝共聚物、无规共聚物、有规共聚物等。

摘要:本文通过分析聚丙烯分子的结晶状况,细叙述了成核 的作用、原理以及加入成核剂对聚丙烯性能的影响。关键词:聚丙烯 成核剂 性能聚丙烯具有比重小,拉伸屈服强度、弯曲模量、硬度较高,耐环境应力开裂性好的优点,加之原料来源丰富,价格低廉,非常适合用来注射成型塑料制品。聚丙烯是结晶性聚合物,内部存在着很大球晶,造成聚丙烯的抗冲击强度很低,还会造成制品的后收缩现象严重,严重影响聚丙烯树脂在注塑领域的使用,加入成核剂,生成微晶结构的聚丙烯,对树脂进行改性,实现聚丙烯的高性能化。 1、 聚丙烯分子的结晶状况对性能的影响 高分子材料进行熔体结晶时,最容易形成多角晶粒、树枝状晶粒和球晶,它的大小对聚合物的力学性能,以及物理和光学性能起重要作用。大的球晶通常使聚合物的断裂伸长和韧性降低。2、 成核剂的原理聚合物中的杂质对其结晶过程有很大的影响,有些杂质要阻碍结晶,而另一些杂质能够促进结晶,这些能促进结晶的杂质在聚合物的结晶过程中起晶核的作用,成核剂正是这种能够促进结晶的杂质。在聚丙烯中加入成核剂,能够加快结晶速度,形成细小致密的球晶颗粒,使分子链在较高温度下具有很快的结晶速度,球晶可以比较规整地成长,数目很多,尺寸很小。 聚丙烯加入成核剂后,能促进分子的结晶过程和加快结晶速度,使分子具有微晶结构,这样不但有利于提高产品的抗冲击强度、屈服强度,而且对产品的外观及加工均有一定影响。1、 对拉伸强度的影响成核剂对聚丙烯拉伸性能的影响(见表-1)表--1 成核剂对聚丙拉伸强度的影响添加剂 拉伸强度*10N/㎡ 断裂伸长率 %无 160 20苯甲酸镉 178 80水杨酸铋 201 790草酸钛 235 8502、 对抗冲击强度的影响聚丙烯树脂对冲击的敏感度随着大球晶的形成而增加,尺寸较大的球晶可以发生径向开裂,尺寸较小的球晶或微晶有利提高材料的抗冲击强度,据统计,提高的幅度大约在10 %-30 %。 对于冲击强度应该是有所减小的.3、 增加产品的透明度 因为成核剂加入后形成的微晶结构,聚合物的浊度减少,透明度得以提高(见表-2)。表--2 成核剂加入量与聚丙烯产品浊度的关系试样材料 4030加入量% 浊度% 与标准样相对浊度%2mm厚的PP注塑试样 0 40 30 29 29 874、成核剂可以提高产品的表面硬度微晶结构的增加可以增加产品的表面硬度,通过测试3mm厚的聚丙烯注射试样,结果(见表-3)表--3成核剂加入与聚丙产品硬度关系4030加入量% 洛氏硬度(ASTMD785)0 、加入成核剂可以改善产品的表面光洁度通过加入成核剂4030可以提高有一定颜料配方的材料的表面光洁度(见表-4)。表-4 成核剂加入量与聚丙烯产品表面光泽关系颜料配方 4030加入量% 表面光洁度<20 <601 %3RJ 褐色(Brown41) 0 40 58 741 %B(黑色(Black7) 0 44 50 686、加入成核剂可缩短注射周期,提高生产郊率加入成核剂可以明显缩短注射模具的冷却时间,从而减少整个注射周期,有利于提高生产效率。成核剂等温下对聚丙的结晶时间的影响(见表-5)表-5 不同成核剂浓度聚丙烯等温结晶时间 4030加入量% 115℃ 120℃ 均聚物 共聚物 均聚物 共聚物 0 203 247 172 220 146 195 160 206 128 186 154 191 121 181 137 187 7.减少注射产品的后收缩注射成形制品产出后收缩的原因是因为注射成形时,熔融树脂冷却速度快,分子链来不及结晶就冷却固化了。在聚丙烯熔体中加入成核剂,可以加快结晶速度,形成细小致密的球晶形态。即使注射成形时冷却速度较快,PP依然可以很好的结晶,这样就减少了制品后收缩的程度。8。对产品光稳定性的影响在聚丙烯中加入4030等成核剂对产品的光稳定性无任何影响。(见表6)表-6成核剂对聚丙烯产品光稳定性的影响材料 4030加入量% 人工气候箱中暴露小时㎜厚的PP薄膜 0 4209.对产品长期耐热的影响成核4030的加入不会影响聚丙烯树脂的耐热性。下表 厚的聚丙烯样品放到150c的烘箱中的实验结果。(见表- 7)表-7成核剂对聚丙烯产品耐热性的影响4030加入量% 150℃ 恒温炉脆裂天数(天) 黄色指数0天 黄色指数10天0 15 14 结论:综上所述,在聚丙烯中加入成核剂后,促进分子的结晶过程和加快结晶速度,使分子具有微晶结构,这不但有利用于产品的抗冲击强度、屈服强度、而且可以改善产品的外观,缩短注射周期提高生产率等。随着聚丙烯新产品、新牌号的开发,成核剂将更广泛地应用于聚丙烯新产品开发的各个领域。

①淤浆法。在稀释剂(如己烷)中聚合,是最早工业化、也是迄今生产量最大的方法。②液相本体法。在70℃和3MPa的条件下,在液体丙烯中聚合。③气相法。在丙烯呈气态条件下聚合。后两种方法不使用稀释剂,流程短,能耗低。液相本体法现已显示出后来居上的优势。

聚烯烃毕业论文

UHMWPE辐照交联,添加助剂改性

TbCl3-CdCl2-HCl-H2O()的相平衡 学 生: 指导老师: 年级: 专业: 班级:摘 要 测定了四元体系TbCl3-CdCl2-HCl-H2O()的相平衡溶度数据,绘制了相应的溶度图。该四元体系是复杂体系且有1个新物相化合物4CdCl2· TbCl3·14H2O生成。关键词 四元体系,相平衡,TbCl3 ,CdCl2 一 前 言稀土卤化物与稀碱卤化物所形成的化合物具有特殊的光学性质。文献[1-3]研究了稀土卤化物与稀碱金属卤化物在盐酸介质中的相平衡关系,且发现新化合物CsEuCl8·14H2O、Cs2EuCl5·4H2O、3CsCl·CeCl3·3H2O、CsCl·CeCl3·4H2O具有上转换发光性能。文献[4-6]分别研究了DyCl3-CdCl2- H2O和DyCl3-CdCl2-HCl-H2O()的相平衡,YCl3-CdCl2-H2O和YCl3-CdCl2 -HCl-H2O()的相平衡,在时CeCl3-CdCl2-H2O和CeCl3- CdCl2-HCl-H2O的相平衡,均发现了新的化合物,并且也具有上转换发光性能和较强的荧光性能。为比较过渡元素/稀土氯化物与稀碱金属/稀土氯化物盐水体系中相关系间的差异,丰富盐水相化学,和为合成新的化合物寻找可能的途径,本文在前述研究的基础上研究了在时四元体系TbCl3-CdCl2-HCl-H2O的相平衡关系,发现了1个未见文献报道新物相化合物。 二 实验部分1、试剂及仪器配制TbCl3·6H2O试剂:(1)称取适量Tb2O3固体,放在小烧杯中,加少量水。(2)量取适量浓度为35%的盐酸溶液,缓慢加入到盛有Tb2O3试剂的小烧杯中,搅拌。(3)加热至溶解成无色透明的液体,将其自然冷却。(4)过滤。将滤液加热至产生结晶膜后,自然冷却。(5)抽滤,晶体放入干燥器中自然干燥[1]。化学反应方程式: Tb2O3+6HCl=2TbCl3+3H2O。CdCl2、EDTA、AgNO3、六次甲基四胺、甲基红、二氯荧光黄、二甲酚橙、邻二氮菲均为分析纯试剂。使用蒸馏水。使用仪器:恒温搅拌装置(自制)。2、实验及分析方法设定一系列递变点,按四元体系斜截面布点配样,密封于塑料管中,在的恒温条件下进行搅拌。五天后调整试样的酸度,调节酸度,使各试样酸度一致。将调节过酸度的各试样封闭,继续恒温搅拌。待平衡后,取样,分析液体与湿渣组成。分析方法如下:以甲基红为指示剂,用标准氢氧化钠溶液滴定试样中盐酸的含量;用邻二氮菲掩蔽Cd2+后,以二甲酚橙为指示剂,六次甲基四胺为缓冲溶液,用标准EDTA溶液滴定试样中的三氯化铽的含量;以二氯荧光黄为指示剂,加稍过量碳酸钙固体中和盐酸,加糊精,用标准硝酸银溶液滴定氯离子;用差减法可求得试样中二氯化镉的含量。 三 结果与讨论1、四元体系TbCl3-CdCl2-HCl-H2O的溶度图表1为四元体系TbCl3-CdCl2-HCl-H2O在时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据。图1为相应的溶度图。 由图一知,该体系的溶度曲线由三段构成,分别对应化合物CdCl2·H2O、4CdCl2·TbCl3·14H2O(4:1型)和TbCl3·6H2O。其中4:1 型化合物是固液同成分溶解的化合物,可从体系中直接得到,是未见文献报道表1 四元体系TbCl3-CdCl2-HCl-H2O在时的溶度数据及其在底面三角形TbCl3-CdCl2-H2O上的投影数据液相(%) 湿固相(%)四面体 三角形 四面体 三角形序号 HCl CdCl2 TbCl3 CdCl2 TbCl3 HCl CdCl2 TbCl3 CdCl2 TbCl3 平衡固相平均酸度 = 0 0 --- --- --- --- --- A 2 A 3 A 4 A+B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B+C 13 B+C 14 B+C 15 C 16 C 17 C 18 C 19 C 20 0 0 --- --- --- --- --- C 双饱点组成(平均值):E1: , ; E2: , ·H2O ; B: 4CdCl2·TbCl3·14H2O; C:TbCl3·6H2O图1 四元体系TbCl3-CdCl2-HCl-H2O在三角底面TbCl3-CdCl2-H2O的溶度图的新物相化合物。2、四元体系RECl3-CdCl2-HCl-H2O(RE=La、Ce、Nd、Dy、Tb)间的比较轻稀土元素之间或重稀土元素之间,其相化学行为具有相似性及相异性。如轻稀土元素均有4:1型化合物和9:1型化合物。而重稀土元素有9:2型化合物。本文研究的铽属中稀土元素,其新化合物的类型却为4:1型,说明中稀土元素与轻稀土相比,具有相似性也具有相异性,而与重稀土元素具有相异性。这充分说明稀土元素具有“分组效应”。 四 结论研究了氯化铽与氯化镉在盐酸介质中相关系,绘制了相应的溶度图,在体系中发现和得到了新化合物4CdCl2·TbCl3·14H2O。本文的研究结果为合成新化合物提供了相关系依据。参考文献[1]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (cesium chloride+europium trichloride+hydrogen chloride+ water)quaternary system at T= and the fluorescence spectra of its compounds. J. , 2002,34,1495~1506[2]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Study on phase diagram of (CsCl-CeCl3-HCl-H2O system and the propertier of the Journal of Chemistry,2002,20(9):904-908[3]Wang Hui,DUAN Jin-Xia,TAN Xin-Quan,Phase equilibrium system of CsCl-YCl3-HCl-H2O at T= and its Journal of chemistry,2004,22(10):1128-1132[4]乔占平,卓立宏,王惠.三元体系YCl3-CdCl2-H2O和四元体系YCl3-CdCl2-HCl-H2O()的相平衡及其固相新化合物的研究[J].无机化学学报,2004,20(8):929-932[5] 乔占平,卓立宏,王惠.四元体系LaCl3-ZnCl2-HCl(7%)-H2O()和三元体系ZnCl2-HCl-H2O()相平衡的研究[J].无机化学学报,2003,19(3):303-306[6] 卓立宏,乔占平,郭应臣,王惠. CeCl3-CdCl2-H2O和CeCl3-CdCl2-HCl-H2O的相平衡.物理化学学报,2005,21(2):128-131Phase Equilibrium of the System TbCl3-CdCl2-HCl-H2O at : The equilibrium solubilities of the quaternary system TbCl3-CdCl2-HCl-H2O was determined at and the corresponding equilibrium diagram was systems is complicated with one new compounds 4CdCl2· TbCl3·14H2O. Keywords: quanternary system, phase equilibrium, cadmium chloride, terbium chloride

本科毕业论文需查阅专业文献,如图书馆或电子数据库(中国知网或万方数据库);思路如下:1、确定微胶囊所用的壁材材料属性(聚合物种类、分子量、聚合度,等等)2、确定该材料所加工的规格要求(如厚度)3、选择加工设备和确定加工流程4、确定合成单体(种类、纯度等)、引发剂、聚合原理、反应条件,等5、确定各步骤所需要表征或测试的项目、仪器、测定方法

你是大学生吗?去中国期刊网,或者是万方数据库,这些都是可以检索出各种论文的,连硕博毕业论文都有,从教育网上直接IP登陆下载文献一般是不收钱的,通过大学的网上图书馆就能登陆中国期刊网万方数据库

电催化析氢毕业论文

第一作者:孙华传,李林峰,陈効谦

通讯作者:王春栋*,熊宇杰*

单位:华中 科技 大学,中国科学技术大学

研究背景

文章简介

近日,来自华中 科技 大学王春栋副教授团队和中国科学技术大学熊宇杰教授团队合作,在国际知名期刊 Science Bulletin 上发表题为“Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide”的研究文章。该文章仔细研究了层状双氢氧化物上(LDH)的单原子(SAC)精确位置以及不同单原子含量对催化活性的影响, 并通过理论结合实验的方式系统阐述了单原子与载体LDH之间的相互协同作用。这项工作从单原子精确位置的角度为全电解多功能SAC的设计提供了重要见解。

电催化析氢和尿素氧化的反应机理图

本文要点

要点一 :本文采用乙二醇辅助水热法将单原子 Rh均匀分散到超薄 NiV-LDH纳米片上(Rh/NiV-LDH),并将其同时用于催化 HER 和 UOR。Rh/NiV-LDH具有较高的TOF值,并表现出显著的质量活性,同时具有较低的过电位和较快的HER和UOR反应动力学。

图1. Rh/NiV-LDH电极的制备流程示意图以及结构与微观形貌表征。

要点二: 通过 AC-STEM 和 HAADF-STEM 图像,观察到大量高度分散在NiV-LDH 载体上的 Rh 单原子。FT-EXAFS 拟合结果表明,Rh/NiV-LDH 催化剂中只有 Rh-O 键被探测到( Å),没有任何的金属 Rh-Rh 键( Å)或 Rh-O-Rh 键( Å),进一步证实了NiV-LDH 载体上的 Rh 原子与载体表面的氧成键并以单分散形式存在。DFT 理论计算表明,Rh 原子在NiV-LDH 表面即在的Ni、V 和O 位点顶部的形成能分别为 、 eV 和 eV ,再一次说明Rh 在NiV-LDH表面的单分散构型比在 NiV-LDH 的Ni 和V位上的掺杂构型更具有能量可行性。此外,Rh 原子在 NiV-LDH的 NiV中空位置且垂直面对氧原子构型的形成能最低,说明大部分 Rh 单原子分布在Ni-V中空位置(O 原子的顶部),少部分可能分布在Ni原子或V原子的顶部位置。

图2. Rh/NiV-LDH的光谱表征。

要点三 :测试表明,在碱性介质中,Rh/NiV-LDH阴极催化剂在100 mA cm-2电流密度下的HER过电位为64 mV,且能稳定工作超过200 h,电催化析氢法拉第效率接近100%。此外,Rh/NiV-LDH在100 mV过电位下具有较高HER质量活性( A mg 1)和周转频率(TOF: s 1)。

图3. 制备催化剂在碱性电解质中的电催化析氢(HER)性能。

要点四 :Rh/NiV-LDH 催化电极Rh/NiV-LDH表现出优异的UOR催化活性,仅需要 V即可实现10 mA cm 2。将 Rh/NiV-LDH 催化电极分别作为电解槽的阴极和阳极,并以碱性尿素介质(1 M KOH+ M Urea )为电解液,从而组装简易的 Rh/NiV-LDH (+)//Rh/NiV-LDH (-)双电极尿素电解槽。该电解槽驱动 10mA cm-2时仅需施加的电压, 且能稳定工作超过100 h。当自组装 Rh/NiVLDH(+)||Rh/NiV-LDH (-)电解槽的工作电流密度达到 100 mA cm-2 时,该装置只需要稳定工作 3 h 就可以将电解液中的尿素降解 93%左右,即使循环工作三次,其尿素降解率仍然能保持 90%左右,且能稳定产生 H2, 表明 Rh/NiV-LDH 在大规模节能制氢和净化富尿素废水方面具有巨大的潜力。

图4. Rh/NiV-LDH及其对比样在1 M KOH溶液中的电催化尿素氧化(UOR)和尿素全解性能测试。

要点五 :密度泛函理论(DFT)计算表明,单分散的 Rh 单原子改变了载体 NiV-LDH 的电子结构,优化了氢吸附中间体(H*)的吸附和解吸过程,从而降低了 HER 过程中 Volmer 步骤和Heyrovsky 步骤的反应势垒,进而提升 Rh/NiV-LDH 催化剂的 HER 催化活性。与此同时, 单原子 Rh 位点还优化了 Rh/NiV-LDH 催化剂对尿素分子的吸附和活化,促进了其关键中间体(如 CO*/NH*)的解吸,显著降低UOR反应决速步骤(RDS)的反应能垒,加速 UOR 反应动力学并提升 UOR 催化活性。

图5. 密度泛函理论计算。

总 结

综上所述,AC-STEM、XAS和DFT计算结果表明,通过一步水热合成法成功制备了锚定在NiV-LDH基体上的Rh SACs(位于Ni-V中空位点)。所制备的Rh/NiV-LDH在碱性溶液中对HER和UOR表现出良好的双功能催化活性。DFT计算表明,单分散的Rh单原子改变了载体NiV-LDH的电子结构,降低了HER的Volmer步骤和Heyrovsky步骤的反应势垒。同时,Rh位点也优化了尿素分子的吸附和/或活化,促进了关键中间体(如CO*/NH*)的解吸,这显著降低了UOR决速步骤(RDS)的反应能垒,加快了UOR反应动力学。将Rh/NiV-LDH催化剂分别作为阴极和阳极组装成整体尿素电解槽,其由 V太阳能电池板供电即可使得两个电极上产生大量H2和N2气泡。这表明该催化剂在大规模节能制氢和富尿素废水净化方面具有很大的潜力。本工作对未来具有精确位置的SACs的可控和大规模生产具有一定的启发作用。

文章链接

Huachuan Sun, Linfeng Li, Hsiao-Chien Chen, Delong Duan, Muhammad Humayun, Yang Qiu, Xia Zhang, Xiang Ao, Ying Wu, Yuanjie Pang, Kaifu Huo, Chundong Wang*, Yujie Xiong*.Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Sci. Bull. 2022 .

DOI:

通讯作者简介

王春栋副教授 ,华中 科技 大学光学与电子信息学院/武汉光电国家研究中心双聘副教授、华中卓越学者。2013年于香港城市大学获得博士学位,2013-2015年先后在香港城市大学、香港 科技 大学,荷语鲁汶大学任高级研究助理/副研究员,比利时弗拉芒政府科学基金会FWO学者,鲁汶大学F+研究员,2015年9月起任职华中 科技 大学。研究领域为非贵金属光/电催化剂设计及其在环境和能源中的应用。王春栋副教授是香港城市大学优秀博士论文奖( 2013 年全校 7 个)获得者,获评湖北省“楚天学者”计划楚天学子( 2015 年),澳门大学杰出访问学者(2019),华中卓越学者晨星岗(2020), 是美国材料学会(MRS)会员, 欧洲材料学会(EMRS)会员, 中国化学学会会员。担任 Frontier in Chemistry和Molecules杂志客座编辑, Advanced Powder Materials 杂志特聘编委,Exploration青年编委,Rare Metals青年编委。长期担任 Adv. Func. Mater.,等四十余个国际著名杂志审稿人/仲裁人,塞尔维亚国家自然科学基金和香港研究资助委员会(RGC)国际评审专家。在 J. Am. Chem. Soc.,Energy Environ. Sci., Angew. Chem. Int. Ed., ., Research 等杂志发表 SCI 论文 150 余篇,他引6000余次, H-因子 44,2021年入选全球前2%顶尖科学家榜单和全球前十万科学家榜单。先后主持国家重点研发计划(国际合作重点专项)、基金委面上项目、基金委青年项目、湖北省重点研发计划等项目十余项。

课题组网站:

熊宇杰, 中国科学技术大学讲席教授、博士生导师。1996年进入中国科学技术大学少年班系学习,2000年获化学物理学士学位,2004年获无机化学博士学位,师从谢毅院士。2004至2011年先后在美国华盛顿大学(西雅图)、伊利诺伊大学香槟分校、华盛顿大学圣路易斯分校工作。2011年辞去美国国家纳米技术基础设施组织的首席研究员职位,回到中国科学技术大学任教授,建立独立研究团队。2017年获国家杰出青年科学基金资助,入选英国皇家化学会会士(FRSC)。2018年获聘长江学者特聘教授,入选国家万人计划 科技 创新领军人才。2022年当选东盟工程与技术科学院外籍院士(FAAET(F))、新加坡国家化学会会士(FSNIC)。现任ACS Materials Letters副主编。主要从事基于催化过程的生态系统重构研究。迄今为止,在Science等国际刊物上发表260余篇论文,总引用32,000余次(H指数93),入选科睿唯安全球高被引科学家榜单和爱思唯尔中国高被引学者榜单。2012年获国家自然科学二等奖(第三完成人),2014-2016和2018年四次获中国科学院优秀导师奖,2015年获中美化学与化学生物学教授协会杰出教授奖,2019年获英国皇家化学会Chem Soc Rev开拓研究者讲座奖,2021年获安徽省自然科学一等奖(第一完成人)。

课题组网站:

第一作者简介

孙华传 ,华中 科技 大学光学与电子信息学院的2019级博士,研究方向为高活性金属电催化剂设计合成及其在电解水中的应用,目前以第一作者和共同第一作者的身份在 J. Am. Chem. Soc.、.、Appl. Cata. B-Environ、ACS Appl. Mater. Inter.、Chem. Eng. J.、J. Power Sources 等期刊发表SCI论文8篇,其中2篇入选ESI高被引论文。

Email :

李林峰 ,华中 科技 大学光学与电子信息学院的2020级硕士研究生,研究方向为单原子催化剂及其合成电催化中的应用,以及电催化中的计算材料科学。

Email :

陈効谦 :2011年毕业于长庚大学并获得化学与材料工程专业博士学位,目前担任长庚大学可靠性科学与技术中心的助理教授。目前的研究方向包括电化学能量中电催化剂的原位表征技术的发展转换。

Email :

喜欢就 关注我们吧,订阅更多最新消息

第一作者及通讯作者:李伟(陕西 科技 大学(西安))

共同通讯作者:王传义(陕西 科技 大学(西安))

通讯单位:陕西 科技 大学

论文DOI:

研究亮点

1. 通过简单可控的方法将单原子Pd成功修饰在了CdS NPs表面。

2. 单原子Pd与CdS NPs表面的S原子形成强配位作用,通过协同金属-半导体配位相互作用促进了光诱导载流子自体相向表面的迁移,抑制了CdS光腐蚀现象,提高了光诱导电子利用效率。

3. 单原子Pd修饰CdS NPs后降低了催化水分解产氢能垒,显著增强了其全分解水产氢活性。

研究背景

随着双碳目标的提出,国家对氢能源的发展做出了重要指导,有效推进氢能源的发展。传统产氢手段能耗高,且伴随有二次污染。由于太阳光能来源广泛、使用方便、绿色可持续性等优点,将太阳能转变为方便使用的高附加值化学能无疑是新能源开发的有效途径,具有潜在应用价值。日光诱导全分解水产氢是一种开发氢能源的潜在技术,然而较低的效率阻碍了该项技术的大规模应用推广。因此,开发高效稳定的全分解水产氢催化剂具有理论与实际研究意义。

硫化镉(CdS)是一种低功函且具有优异可见光响应的过渡金属硫化物,在光催化和电催化领域有着广泛的应用。被用于光催化材料时,长时间光诱导容易导致其结构发生严重光腐蚀,极大地影响其光催化性能。如何在提高CdS基光催化剂催化活性的同时,有效抑制其光腐蚀影响,增强其结构稳定性,是需要研究者不断 探索 和解决的关键科学问题。

拟解决的关键问题

本课题通过一步简单诱导还原策略,将单原子Pd修饰在CdNPs表面,实现了协同的金属-半导体配位相互作用,抑制了载流子复合,提高了催化剂量子产率。更为重要的是,高度缓解了CdS光腐蚀影响,赋予其以长时间光电流稳定性,一定程度上解决了光腐蚀导致其催化剂结构不稳定的科学问题。

成果简介

针对CdS光催化剂在光诱导下光腐蚀严重影响其催化性能的科学问题, 陕西 科技 大学(西安)李伟副教授及王传义教授 等人通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同的半导体-金属配位相互作用,其光响应性及界面电荷传导特性均显著增强,有效抑制了其光腐蚀,增强了催化剂结构稳定性。同时,CdS-Pd催化剂表面全分解水产氢过程能垒相较于纯CdS NPs明显降低,从而在模拟日光诱导下达到了纯CdS纳米催化剂110倍的全分解水产氢活性,且表现出良好的耐光性能。

要点1:CdS-Pd复合光催化剂合成

通过简单的一步诱导还原法将单原子Pd修饰在六方相CdSNPs表面,优化并制备出一种CdS-Pd纳米光催化剂。

图复合光催化剂的合成示意图及结构表征。

要点2:CdS-Pd复合光催化剂结构、组成及形貌表征

通过XRD、Raman、XPS、XAFS和ac-STEM等表征研究发现:贵金属Pd是以单原子状态均匀分布在CdS 纳米催化剂表面,且单原子Pd与CdS 纳米催化剂表面的S原子形成了S-Pd配位作用,这有利于促进光诱导载流子的传导。

图复合光催化剂的形貌、晶型及组成分析。

要点3:CdS-Pd复合催化剂模拟日光诱导产氢活性及稳定性

当反应体系pH = 10时,优化后的CdS-Pd纳米催化剂在模拟太阳光诱导下全分解水析氢速率为 μmol·g -1 ·h -1 ,是纯CdS的110倍。如果进一步加入牺牲剂,其半分解水析氢速率可达到 μmol·g -1 ·h -1 。在λ = 420 nm的光波诱导下,其全分解水和半分解水的表观量子产率分别为和。即使在室外日光辐照下,也可以清晰地观察到大量气泡的产生。以上研究表明单原子Pd修饰后的纳米催化剂模拟日光诱导产氢活性显著提高。另外,通过评价该改性催化剂进行模拟日光诱导催化产氢的持久性及再生性,证明Pd单原子修饰后的CdS纳米催化剂具有稳定的光诱导催化活性和良好的结构稳定性。

图复合光催化剂的催化产氢性能、持久性和重复使用性。

要点4:CdS-Pd复合光催化剂的协同作用增强光-电化学性能及机理分析

通过光-电化学各项表分析可知:Pd单原子修饰后的CdS纳米催化剂表现出良好的电子-空穴对分离特性,且由于协同的半导体(CdS)-金属(Pd)配位相互作用加快了载流子自体相向表面的迁移,有效抑制了CdS的光腐蚀,延长了光生载流子寿命,从而在长时间光诱导下呈现高密度且稳定的光电流信号。

图4. CdS-Pd复合光催化剂的光-电化学性能表征及机理分析。

要点5:CdS-Pd复合光催化剂的DFT计算及催化机制分析

通过DFT计算分析可知:CdS-Pd纳米催化剂表面全分解水产氢能垒相较于纯CdS NPs明显降低,且支撑了S-Pd配位键形成的可能性。最终证明氢气生成的主要活性位点为催化剂表面的S位点,而表面单原子Pd则促进了水分子的分解。综上所述,在模拟日光诱导下,CdS基体生成大量光诱导载流子,并快速迁移至表面。H 2 O分子首先在催化剂表面Pd位点处被分解为氢质子中间体和OH-离子,氢质子进一步在S位点处获得电子被还原成氢气,而OH - 离子则在CdS表面被光生空穴氧化为O 2 分子。由于该催化剂协同的金属-半导体作用机制,O 2 分子与部分光诱导电子作用被快速转化为超氧自由基(O 2 +e - O 2•- ),所以该催化剂更适合于在模拟日光诱导下催化水分解产氢应用。

图5. CdS-Pd复合光催化剂的DFT计算及全分解水机制

小结与展望

综上所述,针对纯CdS半导体光诱导过程中光腐蚀影响导致其结构稳定性较差的科学问题,本研究通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同配位作用,其光响应性及界面电荷传导特性均显著增强,光诱导电子-空穴对复合抑制效果明显。同时,单原子Pd修饰后的纳米催化剂明显降低了全分解水产氢过程的能垒,从而在模拟日光诱导下达到纯CdS纳米催化剂近110倍的全分解水产氢活性,并表现出优良的催化活性与结构稳定性。本研究对于通过简单有效的制备方法合成稳定且高效的全分解水产氢CdS基光催化剂具有理论与实际研究意义。

参考文献

W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, T. Ma, J. Li, C. Wang, Pd single-atom decorated CdS nanocatalyst for highly efficient overall watersplitting under simulated solar light. Appl. Catal. B-Environ . 2021, DOI: .

作者介绍

李伟 ,陕西 科技 大学 化学与化工学院,副教授。从事光催化剂结构设计及合成、光催化污水处理、太阳能光伏氢能源生产相关研究。目前已发表国际SCI论文30余篇,总被引频次1000余次。部分研究被《Appl. Catal. B-Environ.》、《J. Mater. Chem. A》、《Environ. 》、《ACS Sustainable .》、《Chem. Eng. J.》、《ChemCatChem》、《Electrochim. Acta》等期刊报导。

王传义 ,陕西 科技 大学特聘教授。德国洪堡学者、英国皇家化学会会士、国家外专局高端外国专家创新团队负责人、德国洪堡基金会联合研究小组中方负责人、陕西 科技 大学特聘教授、武汉大学兼职教授、博士生导师。应邀担任中国可再生能源学会光化学专业委员会委员、中国感光学会光催化专业委员会委员及中国环境科学学会特聘理事、国家 科技 奖励和国家重点研发计划项目会评专家及国家基金委等机构项目评审专家。从事光催化技术在环境与能源领域的应用研究。

声明

析氢催化剂毕业论文

近日,《催化学报》在线发表了中国石油大学(北京)戈磊教授团队在光催化解水领域的最新研究成果。该工作报道了结合动力学和热力学对PtPd修饰硫化镉锌纳米棒高效光催化制氢的机理研究。论文第一作者:张临河硕士,论文通讯作者:戈磊教授。02背景介绍双金属合金是目前最有效的共催化剂之一。与单金属纳米粒子相比,双金属纳米粒子由于其独特的微观结构和优良的催化性能而具有巨大的催化潜力。Pt具有较高的功函数和较低的质子还原能力,被认为是最有效的贵金属助催化剂。本课题组研究发现,在氢气生产过程中,PtPd合金作为助催化剂的光催化性能高于Pt。这一现象可以通过PtPd合金的热力学结果来理解,而反应动力学在光催化制氢中也起着重要作用。因此,利用热力学和动力学相结合的方法来研究改进析氢活性的PtPd共催化剂的性质和机理是很有必要的。

01 导读

二维材料由于其独特的电子结构和原子构型已经被广泛研究用于电催化领域,特别是催化析氢反应。之前的诸多研究成果已经表明二维材料的边缘处为催化反应提供了活性位点。然而,相比于二维材料基面而言,其边缘原子数毕竟是少量,所以调控激发其基面大量原子参与催化反应是提高其整体催化活性的重要研究内容。目前,报道的优化方法主要是通过在二维材料基面上构造原子空位(肖特基缺陷)或者掺杂异原子来提高其基面催化性能。这些方法或催化活性有待提高或需要消耗贵金属等等。所以如何简便地在二维材料基面上精准构造一类具备高效催化活性的原子缺陷结构,一直以来都是具有挑战性的科学难题。

02 成果掠影

近日, 苏州大学李彦光教授、天津理工大学罗俊教授、湖南大学刘松教授以及华东理工大学戴升教授(共同通讯) 联合在国际著名期刊 Nature Communications 上发表题为“Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution”的文章。 许杰、邵功磊以及唐璇 为本文共同第一作者。作者们首次在单层MoS2基面上制备出弗兰克尔新型缺陷结构,并借助球差校正电镜解析出不同缺陷的原子结构,最后通过微纳电化学装置巧妙测试出单层MoS2基面上不同缺陷结构的电催化析氢性能。结果表明一定浓度的弗兰克尔原子缺陷结构甚至比Pt单原子掺杂在MoS2基面上的析氢催化性能更加优异。本文为研究不同种类原子缺陷结构对催化活性的影响提供了新思路和研究对象。

03 核心创新点

1、首次在单层MoS2上制备出弗兰克尔原子缺陷结构,并通过球差校正电镜确认其原子构型。

2、通过微纳电化学装置测量出单层MoS2基面上不同原子缺陷结构的电催化析氢性能,结合理论计算分析出不同缺陷结构表面的电荷分布对其催化活性影响。

04 数据概览

图1:单层MoS2基面上不同原子缺陷结构对应的原子像。

(a-c)单层MoS2原子像及原子模型;(d-f)单层MoS2上弗兰克尔缺陷结构原子像及原子模型;(g-i)单层MoS2上Pt单原子掺杂原子像及原子模型。

图2:单层MoS2基面上不同原子缺陷结构电催化性能测试。

(a)微纳电化学装置示意图;(b)单层MoS2上暴露的基面区域,用于测试的窗口;(c-d)MoS2基面上不同原子缺陷结构对应的电催化性能指标。

05 成果启示

本文作者们在单层MoS2基面上通过简易手段首次构造出一类新型原子缺陷结构(弗兰克尔缺陷)用于高效催化析氢反应。结合理论计算等手段,表明不同缺陷结构会直接影响二维材料基面上电荷分布情况,进而直接决定其催化活性。另外,本文也为研究各类不同原子缺陷结构对催化剂性能的影响提供了很好的思路。

文献链接:Jie Xu, Gonglei Shao, Xuan Tang, et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Commun. 13, 2193 (2022).

.

第一作者:孙华传,李林峰,陈効谦

通讯作者:王春栋*,熊宇杰*

单位:华中 科技 大学,中国科学技术大学

研究背景

文章简介

近日,来自华中 科技 大学王春栋副教授团队和中国科学技术大学熊宇杰教授团队合作,在国际知名期刊 Science Bulletin 上发表题为“Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide”的研究文章。该文章仔细研究了层状双氢氧化物上(LDH)的单原子(SAC)精确位置以及不同单原子含量对催化活性的影响, 并通过理论结合实验的方式系统阐述了单原子与载体LDH之间的相互协同作用。这项工作从单原子精确位置的角度为全电解多功能SAC的设计提供了重要见解。

电催化析氢和尿素氧化的反应机理图

本文要点

要点一 :本文采用乙二醇辅助水热法将单原子 Rh均匀分散到超薄 NiV-LDH纳米片上(Rh/NiV-LDH),并将其同时用于催化 HER 和 UOR。Rh/NiV-LDH具有较高的TOF值,并表现出显著的质量活性,同时具有较低的过电位和较快的HER和UOR反应动力学。

图1. Rh/NiV-LDH电极的制备流程示意图以及结构与微观形貌表征。

要点二: 通过 AC-STEM 和 HAADF-STEM 图像,观察到大量高度分散在NiV-LDH 载体上的 Rh 单原子。FT-EXAFS 拟合结果表明,Rh/NiV-LDH 催化剂中只有 Rh-O 键被探测到( Å),没有任何的金属 Rh-Rh 键( Å)或 Rh-O-Rh 键( Å),进一步证实了NiV-LDH 载体上的 Rh 原子与载体表面的氧成键并以单分散形式存在。DFT 理论计算表明,Rh 原子在NiV-LDH 表面即在的Ni、V 和O 位点顶部的形成能分别为 、 eV 和 eV ,再一次说明Rh 在NiV-LDH表面的单分散构型比在 NiV-LDH 的Ni 和V位上的掺杂构型更具有能量可行性。此外,Rh 原子在 NiV-LDH的 NiV中空位置且垂直面对氧原子构型的形成能最低,说明大部分 Rh 单原子分布在Ni-V中空位置(O 原子的顶部),少部分可能分布在Ni原子或V原子的顶部位置。

图2. Rh/NiV-LDH的光谱表征。

要点三 :测试表明,在碱性介质中,Rh/NiV-LDH阴极催化剂在100 mA cm-2电流密度下的HER过电位为64 mV,且能稳定工作超过200 h,电催化析氢法拉第效率接近100%。此外,Rh/NiV-LDH在100 mV过电位下具有较高HER质量活性( A mg 1)和周转频率(TOF: s 1)。

图3. 制备催化剂在碱性电解质中的电催化析氢(HER)性能。

要点四 :Rh/NiV-LDH 催化电极Rh/NiV-LDH表现出优异的UOR催化活性,仅需要 V即可实现10 mA cm 2。将 Rh/NiV-LDH 催化电极分别作为电解槽的阴极和阳极,并以碱性尿素介质(1 M KOH+ M Urea )为电解液,从而组装简易的 Rh/NiV-LDH (+)//Rh/NiV-LDH (-)双电极尿素电解槽。该电解槽驱动 10mA cm-2时仅需施加的电压, 且能稳定工作超过100 h。当自组装 Rh/NiVLDH(+)||Rh/NiV-LDH (-)电解槽的工作电流密度达到 100 mA cm-2 时,该装置只需要稳定工作 3 h 就可以将电解液中的尿素降解 93%左右,即使循环工作三次,其尿素降解率仍然能保持 90%左右,且能稳定产生 H2, 表明 Rh/NiV-LDH 在大规模节能制氢和净化富尿素废水方面具有巨大的潜力。

图4. Rh/NiV-LDH及其对比样在1 M KOH溶液中的电催化尿素氧化(UOR)和尿素全解性能测试。

要点五 :密度泛函理论(DFT)计算表明,单分散的 Rh 单原子改变了载体 NiV-LDH 的电子结构,优化了氢吸附中间体(H*)的吸附和解吸过程,从而降低了 HER 过程中 Volmer 步骤和Heyrovsky 步骤的反应势垒,进而提升 Rh/NiV-LDH 催化剂的 HER 催化活性。与此同时, 单原子 Rh 位点还优化了 Rh/NiV-LDH 催化剂对尿素分子的吸附和活化,促进了其关键中间体(如 CO*/NH*)的解吸,显著降低UOR反应决速步骤(RDS)的反应能垒,加速 UOR 反应动力学并提升 UOR 催化活性。

图5. 密度泛函理论计算。

总 结

综上所述,AC-STEM、XAS和DFT计算结果表明,通过一步水热合成法成功制备了锚定在NiV-LDH基体上的Rh SACs(位于Ni-V中空位点)。所制备的Rh/NiV-LDH在碱性溶液中对HER和UOR表现出良好的双功能催化活性。DFT计算表明,单分散的Rh单原子改变了载体NiV-LDH的电子结构,降低了HER的Volmer步骤和Heyrovsky步骤的反应势垒。同时,Rh位点也优化了尿素分子的吸附和/或活化,促进了关键中间体(如CO*/NH*)的解吸,这显著降低了UOR决速步骤(RDS)的反应能垒,加快了UOR反应动力学。将Rh/NiV-LDH催化剂分别作为阴极和阳极组装成整体尿素电解槽,其由 V太阳能电池板供电即可使得两个电极上产生大量H2和N2气泡。这表明该催化剂在大规模节能制氢和富尿素废水净化方面具有很大的潜力。本工作对未来具有精确位置的SACs的可控和大规模生产具有一定的启发作用。

文章链接

Huachuan Sun, Linfeng Li, Hsiao-Chien Chen, Delong Duan, Muhammad Humayun, Yang Qiu, Xia Zhang, Xiang Ao, Ying Wu, Yuanjie Pang, Kaifu Huo, Chundong Wang*, Yujie Xiong*.Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Sci. Bull. 2022 .

DOI:

通讯作者简介

王春栋副教授 ,华中 科技 大学光学与电子信息学院/武汉光电国家研究中心双聘副教授、华中卓越学者。2013年于香港城市大学获得博士学位,2013-2015年先后在香港城市大学、香港 科技 大学,荷语鲁汶大学任高级研究助理/副研究员,比利时弗拉芒政府科学基金会FWO学者,鲁汶大学F+研究员,2015年9月起任职华中 科技 大学。研究领域为非贵金属光/电催化剂设计及其在环境和能源中的应用。王春栋副教授是香港城市大学优秀博士论文奖( 2013 年全校 7 个)获得者,获评湖北省“楚天学者”计划楚天学子( 2015 年),澳门大学杰出访问学者(2019),华中卓越学者晨星岗(2020), 是美国材料学会(MRS)会员, 欧洲材料学会(EMRS)会员, 中国化学学会会员。担任 Frontier in Chemistry和Molecules杂志客座编辑, Advanced Powder Materials 杂志特聘编委,Exploration青年编委,Rare Metals青年编委。长期担任 Adv. Func. Mater.,等四十余个国际著名杂志审稿人/仲裁人,塞尔维亚国家自然科学基金和香港研究资助委员会(RGC)国际评审专家。在 J. Am. Chem. Soc.,Energy Environ. Sci., Angew. Chem. Int. Ed., ., Research 等杂志发表 SCI 论文 150 余篇,他引6000余次, H-因子 44,2021年入选全球前2%顶尖科学家榜单和全球前十万科学家榜单。先后主持国家重点研发计划(国际合作重点专项)、基金委面上项目、基金委青年项目、湖北省重点研发计划等项目十余项。

课题组网站:

熊宇杰, 中国科学技术大学讲席教授、博士生导师。1996年进入中国科学技术大学少年班系学习,2000年获化学物理学士学位,2004年获无机化学博士学位,师从谢毅院士。2004至2011年先后在美国华盛顿大学(西雅图)、伊利诺伊大学香槟分校、华盛顿大学圣路易斯分校工作。2011年辞去美国国家纳米技术基础设施组织的首席研究员职位,回到中国科学技术大学任教授,建立独立研究团队。2017年获国家杰出青年科学基金资助,入选英国皇家化学会会士(FRSC)。2018年获聘长江学者特聘教授,入选国家万人计划 科技 创新领军人才。2022年当选东盟工程与技术科学院外籍院士(FAAET(F))、新加坡国家化学会会士(FSNIC)。现任ACS Materials Letters副主编。主要从事基于催化过程的生态系统重构研究。迄今为止,在Science等国际刊物上发表260余篇论文,总引用32,000余次(H指数93),入选科睿唯安全球高被引科学家榜单和爱思唯尔中国高被引学者榜单。2012年获国家自然科学二等奖(第三完成人),2014-2016和2018年四次获中国科学院优秀导师奖,2015年获中美化学与化学生物学教授协会杰出教授奖,2019年获英国皇家化学会Chem Soc Rev开拓研究者讲座奖,2021年获安徽省自然科学一等奖(第一完成人)。

课题组网站:

第一作者简介

孙华传 ,华中 科技 大学光学与电子信息学院的2019级博士,研究方向为高活性金属电催化剂设计合成及其在电解水中的应用,目前以第一作者和共同第一作者的身份在 J. Am. Chem. Soc.、.、Appl. Cata. B-Environ、ACS Appl. Mater. Inter.、Chem. Eng. J.、J. Power Sources 等期刊发表SCI论文8篇,其中2篇入选ESI高被引论文。

Email :

李林峰 ,华中 科技 大学光学与电子信息学院的2020级硕士研究生,研究方向为单原子催化剂及其合成电催化中的应用,以及电催化中的计算材料科学。

Email :

陈効谦 :2011年毕业于长庚大学并获得化学与材料工程专业博士学位,目前担任长庚大学可靠性科学与技术中心的助理教授。目前的研究方向包括电化学能量中电催化剂的原位表征技术的发展转换。

Email :

  • 索引序列
  • 毕业论文聚四氢呋喃
  • 聚丙烯聚合工艺毕业论文
  • 聚烯烃毕业论文
  • 电催化析氢毕业论文
  • 析氢催化剂毕业论文
  • 返回顶部