首页 > 学术论文知识库 > 人工智能协同创新研究论文

人工智能协同创新研究论文

发布时间:

人工智能协同创新研究论文

目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。以下是我精心整理的浅谈人工智能发展的大学期末论文的相关资料,希望对你有帮助!

人工智能发展现状与未来发展

一、人工智能概述

人工智能自诞生几十年来, 在崎岖的道路上取得了可喜的进展。目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。人工智能虽然取得了快速的发展,但像许多新兴学科一样,人工智能至今尚无统一的定义。人工智能的发展引起了学术界的关注,尽管学术界有各种不同的说法和定义,但就其本质而言,人工智能是研究、设计和应用智能系统,来模拟人类智能活动的新学科。人工智能的目的就是利用各种自动化机械或者智能机器,来模仿、延伸和扩展人类的智能思维,从而实现计算机网络管理的人性化。

二、人工智能的研究历史

(一)1956年-1970年

人工智能诞生于一次历史性的聚会。为使计算机变得更“聪明”,或者说是计算机具有智能,1965年夏季,在美国达特莫斯大学举行了一次为期两个月的夏季学术研讨会。10位来自美国神经学、心理学、数学、信息科学和计算机科学方面的杰出科学家,在一起共同学习和探讨了用机器模拟人类智能的有关问题,并提议正式采用了“人工智能AI”这一术语。从而,一个以研究如何用机器来模拟人类智能的新兴学科——人工智能诞生了。

(二)1971年-80年代末

在科学上,前进的道路从来就不是平坦的,成功和失败、顺利和挫折总会交织在一起。人工智能也是如此,自它诞生至发展一段时间后,就遇到了不少的问题。在这种困难的环境下,仍有一大批人工智能的学者潜心研究。他们在总结前一段研究工作经验、教训的同时,从费根鲍姆“以知识为中心”开展人工智能研究的观点中找到了新的出路。

(三)20世纪80年代至今

人工智能逐步向多技术、多方法的综合集成与多领域、多学科的综合发展。其他学科的学者陆续将本学科的理论与方法向人工智能渗透,从而导致人工智能出现研究多学科交叉的现象。各学科对人工智能的渗透反映了目前人工智能发展的一种趋势,其渗透的结果现在还不是很明显,还需要时间的考验。目前,人工智能技术正在向大型分布式多专家协同系统、大型分布式人工智能、广义知识表达、并行推理、综合知识库、多种专家系统开发工具、大型分布式人工智能开发环境和分布式环境下的多智能协同系统等方向发展。

三、人工智能应用领域

目前 , 人工智能在许多领域都得到了应用,其应用领域如下:

(一)在企业管理中的应用

刘玉然在《谈谈人工智能在企业管理中的应用》中提到要把人工智能应用于企业管理中,认为要做的工作就是弄清楚人的智能和人工智能的关系,从企业的发展目标出发,深入了解人工智能的内涵,搭建人工智能的应用平台,研究并开发企业智能化软件,这样一来,人工智能就能在企业决策中起到关键的作用。

(二)在医学领域中的应用

人工智能在国外发展很快,在医学方面取得了很大的成就。国外最早将人工智能成功应用于医疗诊断的是MYCIN专家系统。美国及其他发达国家的科学家已成功研制出了用于人类血管治疗的微型机器人,此外,在不久的将来,就会制造出能够在毛细血管里自由活动的机器人。20世纪80年代初,我国已成功将人工智能应用于医学,且在这方面有了新的突破,例如许多高等院校和研究机构共同开发了基于人工智能的医学计算机专家系统,并成功地应用于临床。

(三)在矿业中的应用

第一个将人工智能专家系统应用于矿业的是美国的专家系统PROSPECTOR,该系统用于勘探评价、区域资源估值和钻井井位选择等等,为矿业的开采带来了方便。1980年以来,美国的矿业公司在人工智能上加大了投资,其中矿山局匹兹堡研究中心与其它单位合作开发了用于煤矿开发的专家系统。

(四)在技术研究中的应用

人工智能在技术研究中的应用,首先是应用于超声无损检测与无损评价领域。在超声无损检测与无损评价领域,目前主要广泛采用专家系统对超声损伤中缺陷的性质,大小和形状进行判断和归类。此应用节省了许多人力,另外这些技术的应用,使得无损检测的定位、定性和定量的可靠性有了大幅度提高,为无损评价奠定了良好的判定基础。

(五)在电子技术方面的应用

人工智能在电子技术领域的应用由来已久。随着网络的迅速发展,网络问题日益突出,网络技术的安全成了我们关心的重点。因此在传统技术的基础上进行网络安全技术的改进,,大力发展挖掘技术、免疫技术,及开发智能机器,人工智能技术在这方面为我们提供了可能性。

四、人工智能的发展现状

国外发展现状。目前,人工智能技术在发达国家发展很快。尤其是在美国,发展更为迅速。在人工智能技术领域十分活跃的IBM公司,在智能电脑方面有了新的突破,成功地生产了具有人脑千分之一智力的电脑,而且正在开发功能更为强大的超级电脑。据其内部消息透露,预计该超级电脑研制成后,其智力水平将大致与人脑相当。除了IBM公司外,其他公司也加紧了这方面的研究,估计在未来几年内其成果更为惊人。

国内发展现状。二十一世纪是信息化时代,作为现代信息技术的精髓,人工智能技术必然成为新世纪科学技术的前沿和焦点。在我国,很长一段时间,专家们都把研制具有人行为特征的类人性机器人作为奋斗目标。机器人的发展水平不仅与计算机科技水平相关,而且与一个国家工业的各方面的发展水平密切相关。中国科技大学在国家基金的支持下,经过十年攻关和钻研,于2000年,成功地研制出我国第一台类人性机器人。

五、未来发展

人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生; 另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。

人工智能一直处于计算机技术的前沿,其研究的领域和方向在很大程度上将决定了计算机技术的发展方向。今天,已经有很多人工智能产品融入了我们的日常生活。将来,人工智能技术的发展将会给我们的学习、生活、工作带来更大的影响。

下一页分享更优秀的<<<浅谈人工智能发展的大学期末论文

“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!

对《人工智能》专业选修课教学的几点体会

摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。

关键词:人工智能 优选教材 考核方式内容 手段 实践

人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。

一、优选教材

目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。

二、考核方式

在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。

三、教学内容调整

对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。

四、教学手段的改进

(一) 激发学生的学习兴趣

经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。

(二) 借助多媒体教学

多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论

我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。

五、实践教学

实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。

人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。

参考文献

[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.

[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.

[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.

[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.

本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。

下一页分享更优秀的<<<人工智能结课论文

人工智能与创新创业关系研究论文

一、要了解人工智能的创新性,先要知道它的含义。 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。 二、人工智能的创新性 从科学层面看,人工智能跨越认知科学、神经科学、数学和计算机科学等学科,具有高度交叉性;从技术层面看,人工智能包含计算机视觉、机器学习、知识工程、自然语言处理等多个领域,具有极强专业性;从产业层面看,人工智能在智能制造、智慧农业、智慧医疗、智慧城市等领域的应用不断扩大,具有内在融合性;从社会层面看,人工智能给社会治理、隐私保护、伦理道德等带来新的影响,具有全面渗透性。 人工智能的发展史是相关学科不断交叉融合、遵循不同范式的发展过程。从符号主义、逻辑推理、知识工程到连接主义,从大数据驱动小任务到小数据驱动大任务,从神经形态类脑智能到量子计算智能,人工智能的新范式不断增强人类认识世界的能力。传统的科学研究引入新范式后,研究效能得到了极大提升。 人工智能创造各种技术帮助人类理解复杂的拥有巨量信息的世界。计算机视觉技术利用感知世界的每一个像素,增强人们观察场景的敏锐度。自然语言处理技术通过深度语义分析,改善人和机器的交流互动。知识计算引擎与知识服务技术帮助我们搜集获取海量知识,进而挖掘关系,形成新的知识图谱。自主无人系统可以利用其不怕热、不怕冷、不怕压等特性,涉足人类无法到达或难以忍受的极端环境,帮助我们探测未知世界。 为人类改造世界形成新业态,增强产业发展能力。根据对人工智能应用的需求,可将人工智能产业分为三个层次:以AI芯片和软件为框架的基础层;以语音识别、计算机视觉、自然语言交互为主的技术层;以智慧医疗、智能安防、自动驾驶等“人工智能+”为代表的应用层。人工智能与传统产业的融合,不仅能提高产业发展的效率,更可以实现产业的升级换代,形成新业态,构成新的创新生态圈,催生新的经济增长点。 为人类管理自身构建新模式,提高社会治理能力。社会规范有序是人类的共同愿望,人工智能嵌入社会治理是实现这一目标的重要手段。人工智能技术可以消除政府和公众之间的信息不对称,及时预测和感知突发舆情;通过对汇聚到一起的多种传感器感知到的社会公共情况进行连续监测,智能预警各种公共安全事件。 人工智能的快速发展,给人类发展带来了新的机遇。通过科学研究的牵引、应用技术的交叉,人工智能必将推动人类社会实现创新式发展。

目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。以下是我精心整理的浅谈人工智能发展的大学期末论文的相关资料,希望对你有帮助!

人工智能发展现状与未来发展

一、人工智能概述

人工智能自诞生几十年来, 在崎岖的道路上取得了可喜的进展。目前,人工智能集计算机学科、神经生物学、语言学等多种学科于一体,引起了众多学科的日益关注,已发展成为一门具有广泛应用的交叉学科。人工智能虽然取得了快速的发展,但像许多新兴学科一样,人工智能至今尚无统一的定义。人工智能的发展引起了学术界的关注,尽管学术界有各种不同的说法和定义,但就其本质而言,人工智能是研究、设计和应用智能系统,来模拟人类智能活动的新学科。人工智能的目的就是利用各种自动化机械或者智能机器,来模仿、延伸和扩展人类的智能思维,从而实现计算机网络管理的人性化。

二、人工智能的研究历史

(一)1956年-1970年

人工智能诞生于一次历史性的聚会。为使计算机变得更“聪明”,或者说是计算机具有智能,1965年夏季,在美国达特莫斯大学举行了一次为期两个月的夏季学术研讨会。10位来自美国神经学、心理学、数学、信息科学和计算机科学方面的杰出科学家,在一起共同学习和探讨了用机器模拟人类智能的有关问题,并提议正式采用了“人工智能AI”这一术语。从而,一个以研究如何用机器来模拟人类智能的新兴学科——人工智能诞生了。

(二)1971年-80年代末

在科学上,前进的道路从来就不是平坦的,成功和失败、顺利和挫折总会交织在一起。人工智能也是如此,自它诞生至发展一段时间后,就遇到了不少的问题。在这种困难的环境下,仍有一大批人工智能的学者潜心研究。他们在总结前一段研究工作经验、教训的同时,从费根鲍姆“以知识为中心”开展人工智能研究的观点中找到了新的出路。

(三)20世纪80年代至今

人工智能逐步向多技术、多方法的综合集成与多领域、多学科的综合发展。其他学科的学者陆续将本学科的理论与方法向人工智能渗透,从而导致人工智能出现研究多学科交叉的现象。各学科对人工智能的渗透反映了目前人工智能发展的一种趋势,其渗透的结果现在还不是很明显,还需要时间的考验。目前,人工智能技术正在向大型分布式多专家协同系统、大型分布式人工智能、广义知识表达、并行推理、综合知识库、多种专家系统开发工具、大型分布式人工智能开发环境和分布式环境下的多智能协同系统等方向发展。

三、人工智能应用领域

目前 , 人工智能在许多领域都得到了应用,其应用领域如下:

(一)在企业管理中的应用

刘玉然在《谈谈人工智能在企业管理中的应用》中提到要把人工智能应用于企业管理中,认为要做的工作就是弄清楚人的智能和人工智能的关系,从企业的发展目标出发,深入了解人工智能的内涵,搭建人工智能的应用平台,研究并开发企业智能化软件,这样一来,人工智能就能在企业决策中起到关键的作用。

(二)在医学领域中的应用

人工智能在国外发展很快,在医学方面取得了很大的成就。国外最早将人工智能成功应用于医疗诊断的是MYCIN专家系统。美国及其他发达国家的科学家已成功研制出了用于人类血管治疗的微型机器人,此外,在不久的将来,就会制造出能够在毛细血管里自由活动的机器人。20世纪80年代初,我国已成功将人工智能应用于医学,且在这方面有了新的突破,例如许多高等院校和研究机构共同开发了基于人工智能的医学计算机专家系统,并成功地应用于临床。

(三)在矿业中的应用

第一个将人工智能专家系统应用于矿业的是美国的专家系统PROSPECTOR,该系统用于勘探评价、区域资源估值和钻井井位选择等等,为矿业的开采带来了方便。1980年以来,美国的矿业公司在人工智能上加大了投资,其中矿山局匹兹堡研究中心与其它单位合作开发了用于煤矿开发的专家系统。

(四)在技术研究中的应用

人工智能在技术研究中的应用,首先是应用于超声无损检测与无损评价领域。在超声无损检测与无损评价领域,目前主要广泛采用专家系统对超声损伤中缺陷的性质,大小和形状进行判断和归类。此应用节省了许多人力,另外这些技术的应用,使得无损检测的定位、定性和定量的可靠性有了大幅度提高,为无损评价奠定了良好的判定基础。

(五)在电子技术方面的应用

人工智能在电子技术领域的应用由来已久。随着网络的迅速发展,网络问题日益突出,网络技术的安全成了我们关心的重点。因此在传统技术的基础上进行网络安全技术的改进,,大力发展挖掘技术、免疫技术,及开发智能机器,人工智能技术在这方面为我们提供了可能性。

四、人工智能的发展现状

国外发展现状。目前,人工智能技术在发达国家发展很快。尤其是在美国,发展更为迅速。在人工智能技术领域十分活跃的IBM公司,在智能电脑方面有了新的突破,成功地生产了具有人脑千分之一智力的电脑,而且正在开发功能更为强大的超级电脑。据其内部消息透露,预计该超级电脑研制成后,其智力水平将大致与人脑相当。除了IBM公司外,其他公司也加紧了这方面的研究,估计在未来几年内其成果更为惊人。

国内发展现状。二十一世纪是信息化时代,作为现代信息技术的精髓,人工智能技术必然成为新世纪科学技术的前沿和焦点。在我国,很长一段时间,专家们都把研制具有人行为特征的类人性机器人作为奋斗目标。机器人的发展水平不仅与计算机科技水平相关,而且与一个国家工业的各方面的发展水平密切相关。中国科技大学在国家基金的支持下,经过十年攻关和钻研,于2000年,成功地研制出我国第一台类人性机器人。

五、未来发展

人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生; 另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。

人工智能一直处于计算机技术的前沿,其研究的领域和方向在很大程度上将决定了计算机技术的发展方向。今天,已经有很多人工智能产品融入了我们的日常生活。将来,人工智能技术的发展将会给我们的学习、生活、工作带来更大的影响。

下一页分享更优秀的<<<浅谈人工智能发展的大学期末论文

人工智能的发展(智能算法的辅助与协调)让创业更加容易,生产力提高,做事更容易,3D打印机等出现跟意味着材料学等基础科学将会得到更多的社会资源的倾斜,假如往后看二十年,手工店与工艺坊、工作室、再拓展到智能化工厂,可能会出现以设计师为主导的,以用户受众为中心的品牌创业,人们的创新理念在得到普遍认可的情况下更容易获得成就;人工智能的发展让创业更加难,资源的整合往往容易出现垄断,资源整合虽然更加容易调控,但是随着而来的是个体或者团体对于资源整合把控带来的垄断风险,创业创新的人们与之更容易产生不可调和的矛盾。(例如作者与平台等、创作可以看做创业,而平台则决定了创业的受众等)如果没有制度以及政策的帮助,那么未来的人工智能将会进一步改变社会形态,从而大规模大范围影响创业人士。

供应链企业协同创新研究论文

供应链与物流有着密切联系,在现阶段如何协调物流与供应链的相互关系,已经成为管理方向的一个重要研究课题。只有协调好物流和供应链的相互关系,才能使企业...

联想供应链整合:最复杂的问答题中国优势“21世纪的竟争是供应链与供应链的竟争.’对以PC硬件为主营业务的联想集团来说,这句话的重要性毋庸置疑。1月巧日,联想集团负责全球供应链的两位副总裁郭明磊和宋红由于个人原因离开联想,她们的工作暂时由联想高级副总裁杰瑞·史密斯代管。之前郭明磊在联想主要负责供应链组织和管理体系整合、网络优化以及流程和IT建设.而宋红则负责全球物流管理尤其是服务能力、成本控制及质量管理的工作。1997年以来,联想一直稳居中国电脑市场销量第一,业绩的持续增长背后,自2000年开始的供应链整合与优化工作居功至伟。2000年,联想在国内企业中率先成功实施了ERP,随后在当时的供应链管理部的领导下,又历时两年完成了SCM系统项目。与此同时,联想开始着手建立供应链组织管理体系。由物流部门领导的VMI(供应商管理库存)项目开创了联想与供应商和海关协同的先河,而且重新规划了采购物流的网络布局,通过与供应商的可视化库存协同管理,实时监测库存水平,令联想在按单生产产品时库存从原来的14天缩减到5天.CTO(客户定制)流程优化项目提升了客户定制产品的交付能力,是联想后来迅速崛起的直销业务的技术保障.电子招标等采购新模式的探索,更大幅降低了联想的采购成本。根据业务需求的变化,联想供应链还实施了端到端的“双模式”提速项目,逐步设计和建立起以北京、上海、深圳惠阳3个工厂为中心,分布在全国39个分拨配送中心的物流网络。此后联想的订单交付率、现金周期、供应链成本等指标得到大幅度优化,其中交付水平提升巧个百分点,现金周期优化10天,供应链成本降低加%以上,均达到行业最优水平。作为以上成就的见证,连续几年,供应链CTO、VMI、双业务模式一供应链提速等项目均获得联想最佳团队奖.郭明磊也因对联想供应链的巨大贡献,获得2004年联想个人荣誉最高奖—联想奖。宋红则因全球物流组织整合后业绩突出和多年来对干联想供应链的重要贡献,荣获2005年度联想奖。经过2002一2004年的一系列优化,联想在中国市场打造的黄金供应链.其响应速度和成本控制方面已经超越了戴尔,联想在中国的成本只是戴尔的l/4左右,其响应速度只需要4天(戴尔为1周)。这一供应链为之后联想中国区业务的厚积薄发莫定了基础。合并之后,来自原IBM和戴尔的供应链高管对联想中国的供应链均表示叹服。完成对IBMPC的收购后,联想面临的一个新难题是,如何将中国区供应链与全球供应链对接。然而,两大IT系统的无法融合和企业内部价值链的协同困难,使这一工作的复杂度超乎想象。成本压力原IBMPC业务2001年亏损亿美元,2002年亏损亿美元,2003年亏损亿美元,截至2以)4年中累计亏损亿美元.2的5年5月完成收购IBMPC后,新联想的国际业务业绩扭亏压力极大。“要业绩就要先改供应链”,老联想和联想国际的供应链整合成为首要的工作。合并之后巨大的成本压力加大了供应链整合的急迫性。加05年,业界曾爆出联想与IBM就IGS服务、市场支持、内部使用购买、策略性融资及资产处置服务、过渡服务等达成收购协议规定。有煤体称,收购之后联想为这笔费用每年支付额约为l亿美元。2003年IBMPC产品保修支出额为亿美元,如此算来,一年1亿美元似乎不为多。但20(抖年联想的纯利才亿港元,供应链所承受的节约成本的压力可想而知.据说联想内部曾提出,哪怕只节省1%的采购成本,即大约1亿美元,“就多出了一个(老)联想的利润”。准时交付、成本控制和保障质量,是当时联想确定的供应链整合的目标体系。联想发现,在一个遍及全球的供应链下,准时交付和物流成本压力两者之间的矛盾被“放大”(blow一uP)。准时交付会增大成本,低成本物流又很可能增加库存积压。举例来说,南美某市场的组装厂向联想总部下一个订单,需要3000套“开天”主板和7000套“扬天”主板。从中国工厂到南美洲需要4个星期的海运时间,联想台式电脑的机箱一般是走海运,主板走不走海运成为一个问题:如果空运,运费高但能即时交货;如果把主板置于机箱中海运,可以节省昂贵的空运费。但问题在于4周之后,当3000套“开天”和7000套“扬天”主板海运到南美某国,当地市场需求却已经发生变化,需要3000套“扬天”和7000套“开天”主板,则多出的4000套“扬天”只能折成库存成本,缺少的4000套“开天”需要工厂加急制造,可能还需要空运。因为计划不准或供应链运行不畅造成的库存积压,将会吃掉企业本就不高的毛利。在产品的生命周期很短、关键零部件月平均贬值2%、行业毛利率降至5%以下的PC行业,以上情形是相当可怕的。在效率与成本之间,联想尝试了很多解决之道,比如签下价格更有竞争力的物流商,拒绝海外工厂的空运要求,降低销售成本等,但其实问题的根本在于,国际业务现有IT系统的预测能力有限。长远来看,治本之策只能是提高销售端(前端)与供应链(后端)之间的“协同”能力,提高销售端对几个星期之后市场需求的预狈d能力。早年自己开发的系统,原IBMPC的IT系统无法单独从整个IBM的系统中分离出来。由于IBM的产品线非常长,除了PC,还有大型机、服务器等产品,其供应链并不是专门为PC设计的,成本高且效率低,无法适应PC产品的激烈市场竞争对于效率和成本的需要。系统的分而治之给联想造成的额外成本是巨大的。两个系统之间的差距有几组数据可以反映:比如市场上有新的CPU产品推出,联想要发布一个新型号或新配置,在联想国际的系统里要花4至5星期才能完成,而在联想中国的系统里,仅仅需要两小时;对供应链中核心的资源需求计划,国际的系统只能一周调整一次,而联想中国则是一天两次;在原IBMPC的系统,客户退货的信息通过IT系统反馈到后端,往往是在一两周之后。而且分布在欧美高成本地区的供应链资源(人员、工厂等)的成本比联想高很多。由于中国工厂和国际工厂的系统独立运行无法对接,集团总部拿不到最准确的汇总数据。联想就某一物料(比如硬盘)向一家供应商下单时,需要下5张订单,分别指向联想原来在中国的三个工厂、在中国的OEM厂商、在欧洲的OEM厂商、在美国的OEM厂每一个环节精准性的要求都很高,一定要得到企业方方面面环环相扣的支持与配合才能实现良好的运转状态,哪一个环节做不好,都“联想发现,在一个遍及全球的供应链下,准时交付和物流成本压力付会增大成本,低成本物流又很可能增加库存积压商、位于深圳的合资公司原长城国际(HPC)。不能把5张订单合为l张,是因为同一个物料的系统编号,联想的是8位,IBM是7位。这就如同两个小区的门牌号一个是3位,一个是4位,现在虽然两个小区合并,但门牌号未变,邮递员仍然需要往返于两个小区各送各的信,因为他无法判断地址分布规律。系统分立谁都知道,改造一个旧世界往往比建立一个新世界更加复杂和痛苦。联想对此的感触恐怕格外的深。因此,联想的海外业务目前仍使用IBM内部协同联想CEO阿梅里奥曾对新联想的全球供应链系统提出两项要求,一是达到供需平衡,二是达到成本最低。供应链的优化存在“木桶理论”效应,不能有短板,其效率提升对企业会影响整个系统的效率。原IBMPC是一个单纯的“产品驱动”型部门,联想的业务模式则是以“产品+销售模式”为驱动。这两种模式下,供应链在公司里的角色定位是一个服务型部门,在协同前后端的权限上有限,供应链部门没有能力去要求销售端怎么做,只有一些建议权。经过多年的业务沉淀,联想国际业务的流程过于复杂和繁琐,在前后端不协同的情况下,可能的后果便是由于销售预测不准导致的产能不均衡。2005年10月,在完成对IBMPC业务收购交易半年后,联想宣布提前半年完成第一阶段“以稳定为要”的整合,独立运行半年的联想中国和联想国际进行了全面、深度的组织和业务整合。当时身为联想中国COO的刘军受命领两者之间的矛盾被‘’放大”。准时交导全球供应链组织。一支由原联想、IBMPCD以及外部引进人员组成的全球供应链管理团队开始了艰难的供应链改造历程。其中原联想高级副总裁乔松继续领导已经于2005年第一批整合的全球采购组织.原联想供应链副总裁郭明磊负责分管供应链战略、流程和运营管理.原联想物流运作部总经理宋红负责全球物流。计划部门、全球制造和前端客户交付服务和商务则由原IBMPCD负责人掌管。原联想中国和IBMPCD的供应链组织设计区别不大,新联想供应链需要解决的是流程和业务模式方面的挑战:公司内部各环COE成立之后的主要工作有三件,一是管理存货.二是管理前端到后端的预测.三是降低产品线的复杂度,新联想的系统中一共有5000多个整机型号,实际上订单集中在其中的巧00个,但每次下单都要在系统中全部“跑一遍“,加大了额外成本.联想正在对产品机型和设计工序进行调整,逐渐减少对某些供货商的依赖。新联想的业务覆盖100多个国家和地区,全球物流网络效率的提升颇为重要。全球物流团队为联想全球原材料及产成品的运输、进出口贸易、分拨及配送提供支持。整合一年后,全球物流部门通过组织和流程重组,以及与物流合作伙伴战略合作关系的建立,极大地缩短和稳定了物流发货到交付的周期,使得物流成本下降超过巧%,通过运输质t控制使货物丢失/货损降低了50%。供应链网络优化是新联想供应链实现效率提升和成本控制的必要条件,在供应链战略部门的领导下,新联想充分考虑贸易环境、适者生存很多人将戴尔和联想的供应链作比较,但应该说,客观上很难评价哪一家公司的供应链是最好的,只有更适合的。供应链作为企业价值链中非常重要的一个环节,必须与公司战略、业务发展及业务模式相匹配。以联想的T(交易型)模式和R(关系型)模式划分标准来看,戴尔只有R模式,并很少发布新产品。戴尔的生产线都是ceU生产线,每一台机台上面有一张机器的要求规格,生产线上一个操作员装一台机器。在这种生产模式下,戴尔真正强大的地方在于有一套系统可以推测将来的销售状况和成本,淮确预测整条产业链上的边际空间,并通过管控上游的供货和价格水准来保证利润的最大化。比如戴尔如果对3个月后PC的价格降幅可以进行准确预测,便能在一些大的订单上做出正确判断。在以供应链为驱动的戴尔模式下,供应链是企业价值链的最核心环节,销售端能卖什么货由供应链决定。业界流行一种说法,戴尔销售人员下单时,系统有绿灯、黄灯、红灯三种灯,下单之前,销售人员要看该产品是哪种灯绿灯下单7天就能交货.黄灯14天能交货,红灯则需要有一定权限的销售人员才能下单,即使下了还不一定能按时交货,可能需要28天.但联想在供应链上的复杂度更高。联想是一家定位于不断创新的公司,有着很长的产品线并不断发布新品,创新文化带来的产品多样化,必然给其供应链带来压力.联想必须基于多种业务模式和多种客户覆盖的前提下去设计和提升供应链,要在一个供应链平台上运行双模式;联想既有一字排开的拉动型的流水线,又有呈环形分布的推动型的ceU线。联想等于是在两条供应链上作战,平衡得好,两种模式可以互补,进一步降低管理成本—当然,挑战也更大。》

供应链管理与客户关系管理一体化的必要性与路径论文

现如今,大家都不可避免地会接触到论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。为了让您在写论文时更加简单方便,下面是我为大家整理的供应链管理与客户关系管理一体化的必要性与路径论文,欢迎阅读,希望大家能够喜欢。

摘要:

供应链管理作为企业管理中的新兴理论框架,对于企业竞争力的提升有着推动作用。本文针对供应链管理与客户关系管理的融合进行了研究分析,以实现企业实时响应客户需求,并提高实现需求的能力,进而实现供应链上资源的优化配置,最终提高企业的核心竞争力。本文首先对供应链管理和客户关系管理的内容进行了相关论述,其次分析了供应链管理中的客户关系管理,从三个方面提出了供应链管理与客户关系管理一体化的必要性,最后重点从五个方面阐述了供应链管理与客户关系管理的融合,旨在为不断提升企业可持续发展能力以及综合实力提供依据。

关键词:

供应链管理;客户关系管理;一体化;供应链;融合研究;

1、供应链管理的内容

随着市场环境的不断变化,以及市场竞争的日益激烈,企业传统的管理模式已经不再适应,其表现出了诸多的问题。如产品库存积压量越来越大、对信息资源的利用率不高、企业承受的社会压力大、对于用户需求的多样化无从下手等。现代化企业的发展不能仅依靠自身的资源,纵向一体化、自给自足的时代已经一去不复返,处于经济市场环境下的现代化企业必须要积极借助其他企业的资源,才能实现自身的可持续发展,所以供应链管理的内容也因此而产生。在供应链管理中,核心竞争力是其中的重要内容。企业核心竞争力,是不容易被竞争对手所效仿的,能够为企业带来较高经济效益的能力。企业在进行供应链管理中,对企业的核心业务是由企业来开展,而非核心业务可以进行外包,从而为企业降低经营成本、实现资源的优化配置,提升企业效益。

2、客户关系管理的相关内容

客户关系管理,顾名思义,即对与企业有关系的客户进行的管理活动。与企业有关系的客户包括:企业分销商、合作伙伴、企业客户等,通过对客户关系进行管理,从而更好地留住客户,以提升企业业绩,实现企业的营销目的。对客户关系进行管理,其最终的目标是留住已有的客户,将占领市场份额转变为占领客户份额,以使企业与客户维持良好的关系,利用客户关系的管理从而开发更大的价值。企业的客户关系管理,是企业进行营销的一种重要策略,也是改善企业和客户关系的管理机制。通过建立已有的客户信息档案,并采取个性化的需求服务,不断强化跟踪,提高信息服务客户的能力和水平,与客户保持良好的关系,为其提供优质的服务,不断提高其忠诚度和信赖度,以最终实现企业的营销目标。

3、供应链管理中的客户关系管理

在现代化企业的发展中,客户是企业发展的根本,而与客户建立良好的关系是企业赖以生存的源泉,在提升客户服务水平的基础上,实现企业的低成本运营,同时结合客户的需求,可以不断提升市场的反应度,为客户提供更多的选择。在供应链管理的过程中,要不断加强对客户实际需求的深入理解,并因此赢得客户,从而占领市场,现代化的企业管理不能只注重内部管理,对客户的管理以及以客户的满意度为宗旨是管理的最终目标。企业应站在客户的角度去开发和探寻市场,根据此制定生产计划,并投入生产,最终以满足客户需求为目标,将企业生产的产品最终转化为经济效益。现阶段,客户对于产品的要求不单体现在质量上,而对服务质量也提出了较高的要求。目前在产品存在严重同质化的过程中,如何将自己的产品与其他产品进行区分,不仅企业难以作出判断,对于客户而言更是难以区分。因此要求企业不断给产品进行增值服务,企业通过对客户关系的管理,对产品进行细节上的改进,以使产品不断增值。企业应不断提升客户的服务水平,而客户服务所包含的范围非常广泛,对于货品的送达、售后服务的质量等都包含在内。产品要在客户要求的时间和地点予以送达,产品的价值才能得到真正的体现,进而提高客户的满意度。企业一体化的供应链才能为客户提供满意的服务,提高客户的忠诚度。与此同时,在最短的时间内对客户的需求进行响应,是企业能力的重要体现。

4、供应链管理与客户关系管理一体化的必要性

供应链管理的基本思想要始终坚持以消费者为核心,时刻以消费者的需求为根本出发点,这是开展高效供应链管理工作的前提。在实际供应链管理中,往往忽视了这个核心要素,而将更多的关注度放在了供给因素上。而供应链管理的最终目的是,减少供应链中的一些不确定因素,从而降低成本投入;减少库存,最终提高服务水平,为消费者提供优质的服务。在供应链中存在很多的不确定因素,但其中最为核心的是消费者的需求;而对消费者需求相关的信息进行分析和整理,才能最终降低供应链中的不确定因素,从而提高整个供应链的效率。

、现代化企业发展的必然趋势

在现代化企业发展的过程中,单纯依靠供应链管理,对客户的需求无法掌握,则会导致企业进行盲目的生产,库存的大量积压,最终使企业走向衰败;如果仅凭借对客户关系的管理,则信息也会出现闭塞,其信息无法提供给供应链系统,会影响企业的整体发展,从而不利于企业的长足发展。在供应链不断发展的过程中,是传统供应链向电子商务供应链的过渡转变,其核心要素是不变的,即始终坚持以消费者需求为核心。现代化企业之间的竞争,已经逐渐转变成为了解消费者需求以及满足消费者需求能力的竞争,同时也可以理解为是供应链管理的竞争。在此基础上,只有实现供应链管理与客户关系管理的一体化发展,以消费者需求为中心,展开拉动式的供应链管理,不断向灵活性高、经营成本低的模式进行转变,才是现代化企业发展的必然趋势;将供应链管理与客户关系管理进行高度融合,才是企业发展的核心方向。

、实现供应链的高效化管理,降低企业经营成本

企业在进行供应链管理中,其与客户管理实行一体化,能够根据客户的需求不断调整和优化供应链,由此来降低企业的经营投入成本,同时也能加强对客户关系的管理。通过两者的一体化融合,不仅能够提高消费者的满意度,使其对需求的判断过程得到简化,同时以客户需求为基础进行生产和服务,使大规模定制成为可能,而这是企业竞争力提升的关键。企业通过大规模的定制,按需制造,降低了库存,节省了经营成本,使生产的目的.性更强,客户的满意度也因此得到提升,最终为企业经济效益的提升奠定基础。

、增强了企业的综合竞争力

在现代化的企业供应链管理中,横向联合是时代发展的必然趋势。在传统行业市场的拓展中,只注重纵向集成,往往认为只要能够自给自足便可以万事大吉,而这在现代化企业发展中已经不再适应,企业在经营生产中普遍采取了外包的模式,有的甚至将供应链变为了虚拟的机构。在此过程中,企业要积极关注市场的需求,不断了解市场中消费者的需求,时刻以消费者的需求为根本,一旦企业无法与客户保持紧密关系,则信息的流通将会出现闭塞,从而影响企业经营活动的正常运行。而企业将供应链管理与客户关系管理进行一体化,则对企业竞争力的提升有着很大的推动作用,企业整体成本会大大降低;以客户需求为根本出发点,能够提高供应链的工作效率以及灵活性,从而提高企业管理系统的整体性能。

5、对供应链管理与客户关系管理的融合研究

、将客户与供应链连接起来

将供应链与客户进行连接,即交易数据之间实现共享,可以从一定程度上降低库存量。另外在供应链中的相关数据可以使工作人员之间保持高度的联系,当一线工作人员接收订单后,对产品信息以及相应的库存有清晰的了解,从而为客户提供准确无误的产品信息。与此同时,这些信息内容通过网络可以实现共享,以方便供应链中的其他使用者进行查阅。

、实现了供应链的高效运作

在企业的生产系统中,其生产计划体系所包含的内容众多,即生产计划、采购计划、销售计划、财务计划等。这些计划功能统一集中到了供应链系统中,而在供应链系统的每个环节中,各生产计划之间必须要保持高度的统一,以确保其协同运作和推进。另外,营运计划要对整个供应链进行监督和预测,以能够及时针对供应链中的要求提出问题,并不断优化和完善供应链的各个环节,从而实现供应链的高效运转。在实际操作中,可以利用先进的科学技术,不断提升各项业务流程的自动化水平,提高工作人员的能力水平,以加快供应链的运转效率。

、倾听市场的需求信息

随着市场的不断发展,企业更应该不断关注市场的变化,通过营销手段以及相关的信息技术去了解市场的需求,确保供应链上各业务活动能够有效进行,以实现供需的平衡。与此同时,通过对客户关系进行管理,企业应该积极利用信息技术,拓宽业务范围和创新业务模式,抓住市场先机,从而提高市场的占有率。

、不断加强企业和客户的关系管理

企业与客户关系有很多种形式,而不单体现在销售过程中,同样存在于营销以及售后服务过程中。因此企业应该全面管理与客户发生的各种关系,应该与客户保持良好的高效沟通,这对于提升企业营销能力、降低营销成本以及提升企业与客户的关系起着至关重要的作用。

、使企业与客户有一种互动式关系,促进企业与外界的沟通

不同的客户有着不同的产品需求,因此企业与客户的沟通交流要讲究方式、技巧,要开展高效的沟通,避免无效的沟通。根据客户的喜好,进行有针对性的交谈,以客户满意为宗旨,为其提供优质的服务,提高客户对企业的满意度,从而为企业带来潜在客户打下基础,同时促进企业与外界的沟通。现阶段,随着网络技术的不断发展,绝大多数企业都开展了网上客户服务业务,客户可以通过线上来咨询相关产品和问题,而不再受时间和空间的限制,随时随地开展咨询服务,这在无形中提高了企业和客户的黏度,使客户与企业之间的互动更为灵活和便捷。

参考文献

[1]张诏友基于电子商务时代的电商供应链管理策略[J]经济管理文摘2021<11):189-190.

[2]杨蓉,朱杰稳定客户关系抑制了企业精准扶贫行为吗?一基于中国A股上市公司的实证研究[J]金融与经济,2021(5):42-51.

[3]彭甜探讨零售企业的供应链管理[J].商业经济,2021(5):97-98.

[4]孙雅妮,王君宜经济政策不确定性、信息披露质量与客户关系稳定度[J].当代财经2021(4):125-136.

[5]江伟,底璐璐,刘诚达商业信用与合作型客户关系的构建一基于提供给大客户应收账款的经验证据[J]金融研究,2021(3):151-169.

[6]徐瑶之,华迎供应链视角下商业信用与银行信贷间的动态关系研究[J].金融与经济,2021(2):4-10.

[7]张继德,韩月,李坤璟.客户关系、竞争战略与费用黏性一基于沪深A股制造业上市公司数据[J]北京工商大学学报(社会科学版),2021,36(1):46-55.

[8]朱焱,李文玉基层供应链金融支持实体经济发展的瓶颈因素及应对策略[N].金融时报2021-06-0711.

[9]杨明歌,李莹梁小珍基于微分博弈的供应链企业社会责任管理[J/OL].上海大学学报(自然科学版):1-142021-06-4-t.

[10]张丰.供应链整合与中小企业经营策略一以铭威五金公司为例J]现代商业,2020(24):15-17.

[11]范兴兵基于大数据的第三方供应链物流企业客户关系管理研究一以安徽CJ供应链物流有限公司为例[J].吉首大学学报(社会科学版).2019,40(S1):126-128.

最新国际论文人工智能研究

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!

浅谈逻辑学与人工智能

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1 人工智能学科的诞生

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2 逻辑学的发展

逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3 逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4 人工智能——当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5 结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

人工智能研究的一个重要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。 以下是我精心整理的机器人与人工智能论文的相关资料,希望对你有帮助!

人工智能与智能机器人探析

【摘 要】 人工智能(AI)是研究使计算机来模拟人的某些思维过程和智能行为的学科,是二十一世纪三大尖端技术之一。AI未来的发展必将越来越广泛,越来越深入,越来越快地向着人类智能的方向逼近。伴随着人工智能和智能机器人的发展,为人类文化生活提供了新的模式。

【关键词】 人工智能 大脑智能 智能机器人

0 引言

人工智能(Artificial Intelligence),英文缩写为AI,是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机。二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。

1 人工智能的发展历程

(1)人工智能的思想萌芽可以追溯到十七世纪的巴斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德摩尔根提出了“思维定律”,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器”,它被认为是计算机硬件,也是人工智能硬件的前身。1936年,24岁的英国数学家图灵提出了“自动机”理论,把研究会思维的机器和计算机的工作大大向前推进了一步,在定义智慧时,图灵做出了解释,如果一台机器能够通过称之为图灵实验的测试,那它就是智慧的,图灵实验的本质就是让人在不看外型的情况下不能区别是机器的行为还是人的行为。(2)上世纪三四十年代,维纳、弗雷治、罗素的数理逻辑,和丘奇、图灵的数字功用以及计算机处理发展促使了1956年夏Dartmouth会议上人工智能学科(由“人工智能之父”麦卡锡提出,麦卡锡曾是Stanford人工智能实验室主任)的诞生20世纪60年代以来,采用生物模仿来建立功能强大的算法,包括进化计算等,人工生命以进化计算为基础,研究自组织、自复制、自修复以及形成这些特征的进化和环境适应。70年代以来,Conrad等研究人工仿生系统中的自适应、进化和群体动力学,提出不断完善的“人工世界”模型。80年代,人工神经网络再度兴起促进人工生命的发展。(3)1992年贝兹德克提出计算智能。专家系统在90年代兴起,模拟人类专家解决领域问题。

2 人工智能的研究

强人工智能的观点认为有可能制造出真正能推理和解决问题的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。弱人工智能的观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。现在主流科研集中在弱人工智能上,强人工智能的研究则处于停滞不前的状态下。

目前人工智能主要研究内容是:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面,分布式人工智能与多智能主体系统、人工思维模型、知识系统、知识发现与数据挖掘、遗传与演化计算、人工生命应用等等。未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。

3 人工智能的应用

IBM公司“deep blue”电脑击败了人类的世界国际象棋冠军,美国Sandia实验室建立了国际上最庞大的“虚拟现实”实验室,拟通过数据头盔和数据手套实现更友好的人机交互。国际各大计算机公司相继开始将人工智能作为其研究内容,几乎包括所有IT企业,以及很多金融巨头,纷纷建立自己的人工智能产业部,利用“智能”来解决问题。无人驾驶车的诞生,打破了汽车靠人驾驶的时代。

MIT开发出了SHRDLU,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,它头一次让人知道计算机可以代替人类专家进行工作。在理论方面,计算机开始有了简单的思维和视觉,而不能不提的是人工智能语言Prolog语言诞生了,它和Lisp一起几乎成了人工智能工作者不可缺少的工具。

4 人工智能的影响及发展必须注意的问题

(1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类最终认识自身智能的形成。(2)人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。

伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。

5 智能机器人

智能机器人具有类似于人的智能,它装备了高灵敏度的传感器,因而具有超过一般人的视觉、听觉、嗅觉、触觉的能力,能对感知的信息进行分析,控制自己的行为,处理环境发生的变化,完成交给的各种复杂、困难的任务。而且有自我学习、归纳、总结、提高已掌握知识的能力。目前研制的智能机器人大都只具有部分的智能,和真正的意义上的智能机器人,还差得很远。

6 结语

当然,虽然人工智能一直都处于计算机技术的最前沿,但人工智能的发展也并不是一帆风顺的,并不象我们期待的那样迅速,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷。人工智能的问题的在于,一方面哲学、认知科学、思维科学和心理学等学科所研究的智能层次高而抽象;另一方面AI逻辑符号、神经网络和行为主义所研究的智能层次太基本。由于对中间机制知之甚少,这种背景下提出的各种AI理论,就只能是或者完全不同于人类思维,与人类的思维模式相距太远,同时在人类思维方式的理解上也有待突破,不然很难形成更新的AI框架和理论体系。尽管如此,多学科的联合协作研究也带来了足够引人注目的增长。因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,我们相信它会给世界带来难以预料的变化。

人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的思维方式和方法产生了深刻的变革。以下是我精心整理的浅谈人工智能发展的大学论文的相关资料,希望对你有帮助!浅谈人工智能发展的大学论文篇一 浅谈人工智能技术的发展 1、人工智能的概念 人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支,它探究智能的实质,并以制造一种能以人类智能相类似的方式做出反应的智能机器为目的。人工智能的产生和发展首先是一场思维科学的革命,它的产生和发展一定程度上依赖于思维科学的革命,同时它也对人类的思维方式和方法产生了深刻的变革。人工智能是与哲学关系最为紧密的科学话题,它集合了来自认知心理学、语言学、神经科学、逻辑学、数学、计算机科学、机器人学、经济学、社会学等等学科的研究成果。过去的半个多世纪以来人工智能在人类认识自身及改造世界的道路上扮演了重要角色。一直以来,对人工智能研究存在两种态度:强人工智能和弱人工智能,前者认为AI可以达到具备思维理解的程度,可以具有真正的智能;后者认为研究AI只是通过它来探索人类认知,其智能只是模仿的不完全的智能。 2、人工智能的发展 对于人工智能的研究一共可以分为五个阶段。 第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:对问题求解的方法过度重视,而忽视了知识重要性。 第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。 第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。 第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学诞生的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。 第五个阶段是20世纪90年代后。网络技术的出现和发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。 3、人工智能可否超过人的智能 那么人工智能可否超过人的智能呢?关于这个问题可以从下面几个方面来分析: 首先,从哲学量变会引起质变的角度来说,人工智能的不断发展必定会产生质的飞跃。大家都知道,人工智能从最初的简单模拟功能,到现在能进行推理分析 (比如计算机战胜了国际象棋世界冠军),这本身就是巨大的量变。在一部科幻电影中,父亲把儿子生前的记忆输人芯片,装在机器人中,这个机器人就与他的儿子死去时具有相同的思维和记忆,虽然他不会长大。从技术的角度来说,科幻电影中的东西在不久的将来也可以成为现实。到那个时候,真的就很难辨别是人还是机器了。 第二,有的人会说,人工智能不会超过人的智能,因为人工智能是人制造出来的,所以不可能超过人的智能。对于这个观点,我们这样想一想,起重机也是人造出来的,它的力量不是超过人类很多吗?汽车也是人制造出来的,它的速度不也远超过人类的速度吗?从科学技术的角度来说,智能和力气、速度一样,也是人的某个方面的特性,为什么人工智能就不能超过人类的智能呢? 第三,还有的人认为,人工智能是人制造的,必有其致命的弱点,所以人的智能胜于人工智能。我认为这一点也不成立,因为人与机器人比较,也可以说有致命弱点,比如说人如果没有空气的话,就不能生存,就好比是机器人没有电一样。再比如,人体在超过一定的温度或压力的环境下,不能生存,在这一点上,机器人却可以远胜于人类。因此,在弱点比较方面,我认为人工智能的机器人并不比人差,在某些方面还远胜于人类。 第四,随着科学技术的发展,人工智能不单需要逻辑思维与模仿。科学家对人类大脑和精神系统研究得越多,他们越加肯定情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能不仅在于赋予它情感能力。 4、结束语 人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术、控制科学与技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

人工智能最新论文

人工智能的设计与开发进一步完善了传统AI在DOTA等即时战略游戏中的不足,从玩家的角度出发,设计出针对各个水平层次的人工智能。以下是我精心整理的人工智能实现的论文的相关资料,希望对你有帮助!

DOTA游戏中人工智能的设计与实现

引言

DOTA游戏以及所有的即时战略游戏中,人工智能(AI)是不可或缺的一大工具。新手玩家通过对AI的对战初步了解整个游戏的规则、战斗方式、英雄特性等。在非联网的情况下,AI也是玩家的唯一对手。

传统AI:战斗模式单一,反应速度缓慢,行动指令呆板,无法较好的分析战场形势与战斗情况。水平低,容易被玩家识别出设计好的指令,从而导致轻易击杀,影响游戏的娱乐性。

创新AI:模拟人类思维,有了较高的智商的。新手玩家能够通过与AI的对战,逐渐学会游戏的玩法,提升对游戏的认识,而并不像以前的直接与人类对抗导致被高端玩家蹂躏。

此外,创新型AI不只面向新手玩家,基于AI具有水平高、套路广、懂得随机应变等特点,同时能够使得高水平玩家从与AI的对战也能获得乐趣,进一步提升用户体验。

算法核心功能

AI的核心功能包括控制中心、巡查系统和指令中心。巡查系统好比AI的眼睛和大脑,AI通过巡查系统来获取游戏数据并且分析这些数据;巡查系统分析的结果传达给指令中心,经过指令中心处理后转化成指令信号传达给控制中心;控制中心将信号转化为AI的具体行为[1]。具体功能如下:

核心功能实现

巡查系统

设一个角色当前生命值为H、攻击力为A、防御力为D、魔法值为M,四个技能分别为A1、A2、A3、A4且对应的四个技能强度分别为P1、P2、P3、P4、技能的冷却程度为C1、C2、C3、C4。

若对于任意一个技能An得知其剩余冷却时间为Yn、冷却的总时间为Zn,则必然存在线性函数fn使得技能冷却程度Cn为:

Cn=fn(Yn,Zn),Cn∈[0,1]

计算技能冷却程度在高端游戏局中对技能冷却的掌握程度很大程度上体现了一个玩家游戏水平,当技能冷却程度约为0时代表这个技能刚刚进入冷却时间,对于一些靠技能为主的英雄代表丧失战斗力;当技能冷却程度即将到达1时,英雄即将恢复战斗力且在其等于1时瞬间恢复大量战斗力。而这个恢复的过程往往是出乎意料的。在这个恢复战斗力过程即是考验玩家技术含量的过程,如撤退、普通攻击、走位或衔接其他策略方案等[2]。

则对于任意技能An技能强度Pn与冷却程度Cn和其他参数X的对应关系如下所示:

Pn=fc(Cn,X)

自我学习功能

AI的自我学习使得AI在实际战斗中能够不断地提升自己的水平。为了实现这一块功能,我们一改传统直接给AI编程固定的套路,让AI知道自己有何种技能、属性,并且告诉AI各种行为将会产生的结果,让AI自己计算当前情况下最有效的套路,这样的设计让AI在复杂的实际游戏战斗中能够有出色的表现[3]。

指令中心

指令中心是将信号转化为实际行动的系统功能模块。

比如指令中心接受到控制中心传来的一个“ATTACK”指令,那么指令中心将对英雄下达攻击指令,并反馈给控制中心此次指令的结果,如英雄被击晕了,那么此次指令必将是执行不了的,那么将反馈给控制中心一个被击晕的信号,控制中心立马重新计算应对措施。

控制中心

各个子系统通过控制中心连接成一个完整的AI系统,控制中心接受各个子功能的数据和分析结果,然后向指令中心发布指令。

例如在实际战斗中,一个具有控制技能的高爆发法师,首先他看见他的正前方有一名敌人,通过知己知彼系统,AI得知目标敌人的战斗力比自己低,可以击杀。接着AI开始思考击杀策略,通过自我学习系统,AI计算出了最优方案:先通过走位靠近目标敌人,然后试用控制技能将其制服,在控制技能期间AI对目标敌人进行普通攻击,当控制技能快要结束时AI放出大招将其击杀。知己知彼、自我学习系统计算出的结果传达给控制中心,控制中心对指令中心发布指令,于是AI就行动了起来。

3.结论

人工智能的设计与开发进一步完善了传统AI在DOTA等即时战略游戏中的不足,从玩家的角度出发,设计出针对各个水平层次的人工智能。玩家的需求才是游戏设计的根本,玩家的体验才是游戏设计的目标,保证玩家出色的游戏体验,才能让游戏有更大的市场竞争力。

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!

浅谈逻辑学与人工智能

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1 人工智能学科的诞生

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2 逻辑学的发展

逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3 逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4 人工智能——当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5 结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

  • 索引序列
  • 人工智能协同创新研究论文
  • 人工智能与创新创业关系研究论文
  • 供应链企业协同创新研究论文
  • 最新国际论文人工智能研究
  • 人工智能最新论文
  • 返回顶部