首页 > 学术论文知识库 > 泰勒展开式逼近的研究论文

泰勒展开式逼近的研究论文

发布时间:

泰勒展开式逼近的研究论文

只要去搜英文版的 数学分析 就行了,上面肯定会有,《Mathematical Analysis》。搜英文的文献最好去Google

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n (泰勒公式,最后一项中n表示n阶导数) f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^n (麦克劳林公式公式,最后一项中n表示n阶导数) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 泰勒 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。

公式定义 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x。)+f'(x。)(x-x。)+f''(x。)/2!*(x-x。)^2,+f'''(x。)/3!*(x-x。)^3+……+f(n)(x。)/n!*(x-x。)^n+Rn(x) 其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x。的相乘。)编辑本段证明 我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。麦克劳林展开式 :若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1) 由于ξ在0到x之间,故可写作θx,0<θ<1。麦克劳林展开式的应用 : 1、展开三角函数y=sinx和y=cosx。 解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx , f'''(x)=-cosx , f(4)(x)=sinx…… 于是得出了周期规律。分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0…… 最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。) 类似地,可以展开y=cosx。 2、计算近似值e=lim x→∞ (1+1/x)^x。 解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项: e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n! 当x=1时,e≈1+1+1/2!+1/3!+……+1/n! 取n=10,即可算出近似值e≈。 3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位) 证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。编辑本段泰勒展开式原理 e的发现始于微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 ...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数. 计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数. 若将指数函数 ex 作泰勒展开,则得 以 x=1 代入上式得 此级数收敛迅速,e 近似到小数点后 40 位的数值是 将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由 透过这个级数的计算,可得 由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i, 另方面, 所以, 我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的. 甲)差分. 考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列 u 的差分 还是一个数列,它在 n 所取的值以定义为 以后我们干脆就把 简记为 (例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ... 注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推. 差分算子的性质 (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) 其中 ,而 (n(k) 叫做排列数列. (iv) 叫做自然等比数列. (iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分 给一个数列 (un).和分的问题就是要算和 . 怎么算呢 我们有下面重要的结果: 定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则 和分也具有线性的性质: 甲)微分 给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即 若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子. 微分算子的性质: (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) Dxn=nxn-1 (iv) Dex=ex (iv)' 一般的指数数列 ax 之导函数为 (乙)积分. 设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割: ;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0). 若这个极限值存在,我们就记为 的几何意义就是阴影的面积. (事实上,连续性也「差不多」是积分存在的必要条件.) 积分算子也具有线性的性质: 定理2 若 f 为一连续函数,则 存在.(事实上,连续性也「差不多」是积分存在的必要条件.) 定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g'=f,则 注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心! 上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样. 我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此. 甲)Taylor展开公式 这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清 两个问题:即如何选取简单函数及逼近的尺度. (一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是 此式就叫做 f 在点 x0 的 n 阶 Taylor 展式. g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身. 值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在. 利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」. 复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单. 当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式. (二) 对于离散的情形,Taylor 展开就是: 给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指: 答案是 此式就是离散情形的 Maclaurin 公式. 乙)分部积分公式与Abel分部和分公式的类推 (一) 分部积分公式: 设 u(x),v(x) 在 [a,b] 上连续,则 (二) Abel分部和分公式: 设(un),(v)为两个数列,令 sn=u1+......+un,则 上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然. (丁)复利与连续复利 (这也分别是离散与连续之间的类推) (一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r) 根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式. (二) 若考虑每年复利 m 次,则 t 年后的本利和应为 令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert 换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答. 由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推. (戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推) (一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有 (二)Fubini 重积分定理:设 f(x,y) 为定义在 上之可积分函数,则 当然,变数再多几个也都一样. (己)Lebesgue 积分的概念 (一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和. (二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积. Lebesgue 的想法是对 f 的影域 作分割: 函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和 让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分.余项 泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数] 泰勒余项可以写成以下几种不同的形式: 1.佩亚诺(Peano)余项: Rn(x) = o((x-a)^n) 2.施勒米尔希-罗什(Schlomilch-Roche)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p) [f(n+1)是f的n+1阶导数,θ∈(0,1)] 3.拉格朗日(Lagrange)余项: Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 4.柯西(Cauchy)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 5.积分余项: Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n! [f(n+1)是f的n+1阶导数]

泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数] 泰勒余项可以写成以下几种不同的形式: 1.佩亚诺(Peano)余项: Rn(x) = o((x-a)^n) 2.施勒米尔希-罗什(Schlomilch-Roche)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p) [f(n+1)是f的n+1阶导数,θ∈(0,1)] 3.拉格朗日(Lagrange)余项: Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 4.柯西(Cauchy)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 5.积分余项: Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n! [f(n+1)是f的n+1阶导数]

泰勒八年研究论文

一、介绍: 《课程与教学的基本原理》一书,被誉为现代课程领域最有影响的理论构架,而作者泰勒更是被誉为“现代课程理论之父。” 《课程与教学基本原理》凝聚了泰勒的心血。在20世纪二十年代,当经济危机的阴云笼罩着美国,经济大萧条对学校课程提出了新的挑战。经济大萧条所引起的失业问题让劳动市场上的中学毕业生难有立足之地,加剧了教育与社会现实的矛盾。在这样的背景下,一场对美国教育的实践产生重大影响的运动——“八年研究”轰轰烈烈地开展了,“八年研究”对泰勒影响很大,也正是在这场实践中泰勒的课程原理逐渐形成,并运用于指导实践中去。 据泰勒的回忆,这本书最初是诞生于“八年研究”一次午餐的餐巾纸上。当然,这并不会消减这本书的价值,实践证明,这本书不仅推进了美国教育发展,也深刻影响了世界其他国家课程编制。如今课程改革的春风正席卷着中国教育,这本书一定能为我们提供许多有益的参考。 二:解读《课程与教学的基本原理》: 制定教育目标的必要性(达到一定目标所需的条件):目标是人们有意识地追求的对象,即学校教职人员所要实现的宗旨。如果我们要制定一个教育计划并力图改进它,就有必要对想要达到的教育目标有一个明确的概念 泰勒的《课程与教学基本原理》是围绕着四个问题展开研究(基本结构)的: (一):学校应达到何种教育目标(确定目标) 针对第一个问题,学校应该达到哪些教育目标? 这也就是我们说的确定目标问题: 首先,学校教育目标的制定绝不能仅仅依靠任何一个单一的信息来源,而是应当综合考虑各种因素。泰勒认为主要应当分析的三种来源包括(一般性目标)学习者本身、当代社会生活实际和学科专家的建议。其中,尤以对学习者本身的研究最为重要,包括需要和兴趣两个方面。这里的“需要”指的是对照学生现状与公认的常模后发现的差异,是教育者期待通过教育活动的实施给学生行为带来的改变。 对当代校外生活的研究:针对以对当代生活的研究为基础获得教育目标中要素主义、进步主义等的争议,文中给出的回应就是 1.对选取的目标进行检验并遵循公认的教育哲学。 2、选择持久重要的关键领域,且有利于实践学生校内所学的知识。 3、兼顾校外生活和学生的兴趣。 如何对校外生活进行研究? 1、将生活内容进行分解 例:健康、家庭、娱乐、职业、宗教、消费、公民生活 2、对不同的社会团体的考察 3、查看过去两三年的民意测验、社区里的健康资料 学科专家对教育目标的建议: 由于该领域的教育目标技术性、专业性太强,不适合在校学生;对于不想从事此业的人没有作用。因此,建议为,①使特定学科能发挥广泛功能 例如:科学课 a.促进个人及公众的健康 b.帮助人们对自然资源加以利用和保护 c.使人们像科学家一样认识世界、人与世界的关系 ②该学科能为其他的大量功能作出贡献,而这些功能基本上是该学科所要关注的 例如:科学课 a.在个人领域:有助于个人健康,满足自我肯定的需要;培养使人满意的世界观;形成广泛的兴趣;获得审美满足感 b.在个人与社会关系领域:建立日益成熟的人际关系 c.在社会与公民的关系领域:满足学生负责任的参加社会重大活动的需要;帮助人们获得社会的认可。 其次,通过分析上述三个来源所得出的教育目标必定数量繁多,甚至还有可能在内部存在一些冲突和矛盾,因此需要哲学和学习心理学这两道筛子来筛选。学校教育哲学和社会哲学的过滤将确保目标的一致性和合理性;对学习心理学的关注则考量目标是否符合学生身心发展的规律。只有这样,才能选择有高度准确性、适切性的目标。 教育和社会哲学:概括出令人满意的价值观,选择出一组数目较少、及其重要又协调一致的目标,当学校接受某些价值并作为基础时,就意味学校在教育计划中要体现该价值观(概括出人们认为对令人满意并有效的生活来说不可缺少的价值观,采纳与价值相一致的目标——承认人类每个个体作为人的重要性,无论种族、国籍、社会、经济状况/为人们广泛参加各种社会团体所有方面的活动提供机会/鼓励多样化的个性而要非求单一类型的个性/有信心以理智的方式来处理重大问题,而非依赖专制或贵族团体权威。) 思考:受过教育的人应该去适应社会还是改变社会? 如果学校相信教育的基本功能是教人们适应社会,则会着力强调对现实社会的服从,对现存社会形态的忠诚,及坚持运用当代生活方法的能力;反之,则会更注重学校的改革功能,更加注重批判性分析、应对新问题的能力、独立性和自我指导等。 学习心理学(教育目标选择的标准) a.在最低层面上,使我们分辨出人类的哪些变化是可以期望通过学习获得的,哪些是不可以的。(区分成熟的作用与教育的作用) b.在较高层面上,使我们分辨出哪些目标是可行的,哪些需要花很长时间才能实现,哪些是在该年龄阶段无法实现的。(学生学习的阶段性和关键期)例如,精读课文,需要有经验内的词汇量和关联体验。 c.将可实现的教育目标安排到各年级。(提高课程设置的有效性) 最后,还要用有利于选选择学习经验和指导教学的形式来陈述一系列的目标。泰勒在书中分析了已有的几种目标陈述的形式和分别存在的弊端,由于一个阐述清晰的目标具有行为和内容两个方面的维度,泰勒着重介绍、推荐了利用二维表格进行目标表述的方法。泰勒认为,二维表格能直观清晰地呈现目标的行为和内容,有助于开展课程编制和教学实施的后续工作。 (二):提供哪些教育经验才能实现这些目标(选择经验) 第二个问题就是如何选择可能有助于达到教育目标的学习经验:   首先,“学习经验”的含义是指学习者与他对作出反应的环境中的外部条件之间的相互作用,学生的学习取决于他自己做了些什么,而不是教师做了些什么。   泰勒提出选择学习经验的有五条一般原则: 1、为了达到某一目标,学生必须实践这个目标所隐含的那种行为。 2、必须使学生由于实践教育目标所隐含的那种行为而获得满足感。 3、学习经验所期望的反应,是在学生力所能及的范围之内的。 4、 有许多特定的经验可用来达到同样的教育目标。 5、同样的学习经验往往会产生几种不同的结果。 能有效地达到教育目标的学习经验数量众多,特征不一,但可以把注意力放在一些主要特征上,即学习经验是否有助于培养思维技能,有助于获得信息,有助于形成社会态度,有助于培养兴趣等。我们可用多种学习经验达到某一目标,同一学习经验也可以用来达到多个目标。因此,设计学习经验的过程,并不是用一种机械的方法为每一个特定目标制定明确规定的学习经验。相反,这是一种比较富有创造性的过程。 举例说明学习经验应该具有的特征: 1、培养思维技能的经验 它所隐含的行为是将两个或者是两个以上的观念联系起来,而不是单纯地记忆和重复这些观念。当学生遇到他们无法立即得到答案的问题时他们更有可能被引导进行各种类型的思维,这些问题不应该是在教科书或者是其他参考资料中立即找到答案的,解决问题的某些步骤在学生不同的成熟阶段是需要区别对待的(把握学生的关键期)。 2.有助于获取信息的经验:只有将经验视为功能性的,即有助于学生解决问题,或者有助于引导学生实践等,这样的目标才最重要。在很多情况下,提供的学习经验容易产生一些比如学生死记硬背、没有理解的记忆而导致的快遗忘率、碎片式记忆这样有缺陷的经验,因此,提供的建议有:学生在解决问题同时获取信息、只选择值得记忆的重要信息、设置让学生印象深刻的情境、频繁使用重要的信息项目。 3.有助于培养社会态度的经验:学(四):如何评估学习经验的有效性/我们怎样才能确定这些目标正在得到实现(评价结果) 评估能够较全面的考察这些学习经验的方案是否真的能够指导教师去实现期望的结果。(为什么制定好方案后要进行评估) 泰勒认为,评价是一个确定实际发生的行为变化的程度的过程,评价这个概念有两个重要的方面:第一,它寓意评价必须评估学生的行为,因为教育所追求的正是这些行为的变化。第二,它寓意评价在任何时候都必须包括一种以上的评估,因为要了解变化是否已经发生,必须先在早起作出一次评估,再在后期做出几次评估才有可能确定所发生的变化。 泰勒提出教育评估应该进行至少两次评估:一次是在教育计划早期进行, 另一次是在后期进行, 从而测量在这个期间学生行为发生的变化。评估过程可以分为三个步骤:第一步就是要明确教育目标的概念, 以便了解这些目标实际上达到的程度;第二步是要确定使学生有机会表现教育目标所隐含的那种行为的情境;第三步是设计各种评估工具和方法。 评估的方法有纸笔测验、交谈、问卷、观察、抽样、记录等。对于评估结果, 泰勒认为, 不应该只是一个单一的分数或单一的描述性术语, 而应该能够反映学生目前状况, 评价本身就是让教师、学生和有关人士了解教学的成效。 针对以上四个问题,泰勒展开了一系列研究得出了结论,但是泰勒并不是给大家现成的答案,毕竟这没有一个永恒正确而且唯一的答案,更多时候这需要考虑到课程编制过程中所遇到的各种情境。泰勒如同一个手提明灯的智者为我们指引着通向课程编制道路的方向。 三:泰勒的反思和发展: (一)更加关注学生的能动性       强调把学生看成是一个积极能动、有目的性的人,在当时的美国,大量课程研究项目,通常是由学科专家来确定目标的,因而很少关注到学生的兴趣和需要,泰勒在修正和补充的基础上,完成了选择学习经验的10条原则, (二)泰勒强调学生的课外学习 泰勒指出,以往的教育和课程理论,往往只重视学生在学校里的学习,忽视了学生课外学习的研究和利用。他提出“学习发生在哪里”的问题,并且认为学习不仅仅发生在学校中,也发生在家庭、社会中。学生不是只能在学校中学到东西,在其他媒体中也同样能够学到。 他认为学生在校外建设性地参与学习的机会太少了,而培养学生的目的恰恰就是为了使他们将来能够建设性地参与社会,使他们学的的知识和技能更好的服务社会和个人。学校提供一些重要的教育经验,给予学生以指导。 根

首先来看下八年研究的起因:20世纪20年代,美国的进步主义教育广泛地影响了小学和初中,但在改革中也遇到了这样的问题:过去的进步教育改革实验没有升学的压力,但是20年代以后,尽管美国中学招收学生的人数不断增加,但由于各种原因,往往只有六分之一的中学毕业生有升学的机会,特别是在1929年,资本主义世界又发生了经济危机,学生中学毕业后就业十分的困难。另外,当时的中学课程受学院和大学入学考试的支配,只重视学生的学业成绩,但对学生其他方面的能力很少考虑,这使得大量的中学生毕业后很难找到合适的工作。而当时的进步教育改革实验没有考虑与大学升学挂钩的问题。这样学生参加升学考试遇到的困难就很大,这一切都引起了人们广泛的不满。 对此,进步教育改革者并不肯认帐,他们认为大学升学制度有问题,大学升学考核的重点在于知识的记忆,而忽视了大部分教育的价值,因而引起了人们对中小学课程以及中学与大学关系进行重新评价的思考。为了进一步推动中等教育的改革,使进步教育的原则在中小学得到推广,从而引发了“八年研究”的实验。当1941年“八年研究”结束时,以泰勒(Ralph W Tyler)为首的学院追踪研究组,对“八年研究”的结果进行了评价。评价所采用的方法是挑选1475组大学生,每一组两个学生,一是实验学校的学生,一是其他学生的毕业生。在挑选时尽可能地考虑到这两个学生在性格、年龄、学习能力、家庭状况及社会背景等方面情况的相同性。经过对照研究,得出了如下的结论,参加实验的30所中学的毕业生具有以下的特点:1)学年平均总分稍高;2)在大学学习的4年中,更容易获得学术上的荣誉;3)在学术上似乎具有更强的好奇心;4)似乎具有更正确、系统和客观的思维能力;5)似乎对教育的涵义有更清楚地认识;6)在遇到新的环境时,往往表现出更高的智谋;7)与对照组一样,具有相同的分折问题的能力,但是他们解决问题的方法更为有效;8)越来越多地参与组织学生的团体;9)在获得非学术方面更有高的比率;10)在职业选择上有更好的倾向性;11)积极关心国内和国际事务。 从学院追踪研究组的研究来看,“八年研究”是成功的。尽管并不是所有的实验设想都得到了体现,但实验本身所要证明的却得到了验证:按照进步主义的教育原则实施的中学教育,既能很好地完成中学的传统的职责,为大学输送合格的人才,又能促进学生多方面的发展,而这一切是原有中学教育所难以达到的目的。“八年研究”不仅对美国大学入学要求和中学课程产生了深远的影响,而且还孕育了泰勒的课程原理。”1949年,泰勒正式出版了《课程与教学的基本原理》一书,总结了他在“八年研究”中的成果。该书1981年曾按美国的《卡潘》(Kappan)杂志评为自1906年以来对学校课程领域影响最大的两本著作之一,现已经成为“现代课程理论的经典著作,是试图理解这个领域的后继著作的人必读书。”在该书中,泰勒把课程编制的主要步骤列为四个问题:1)学校应该达到哪些教育目标?2)提供哪些教育经验才能实现这些目标?3)怎样才能有效地组织这些教育经验?4)我们怎样才能确当这些目标正在得到实现?概括地说,课程应分为教学目标、学习活动、课程内容的组织以及教学评价四个基本的要家。这就是现代美国课程领域中产生广泛影响的“泰勒原理”。 “‘泰勒原理’被公认为课程开发原理最完美,最简洁、最清楚的阐述,达到了科学化课程开发理论发展的新的历史阶段,《课程与教学的基本原理》也因而被誉为现代课程理论的圣经。”瑞典学者胡森(H.Husen)也曾评价说:“泰勒的课程基本原理已经对整个世界的课程专家产生了影响。……不管人们是否赞同‘泰勒原理’,不管人们持什么样的哲学观点,如果不探讨泰勒提出的四个基本问题,就不可能全面地探讨课程问题。”事实上,泰勒原理研究的范式现在仍然在课程领域中占支配的地位。由此可见,“八年研究”对课程理论的发展同样也作出了巨大的贡献。

函数逼近研究现状论文

20世纪初在一批杰出的数学家,包括С.Η.伯恩斯坦、D.杰克森、 瓦莱-普桑、.勒贝格等人的积极参加下,开创了最佳逼近理论蓬勃发展的阶段。这一理论主要在以下几个方面取得了很大进展: 在逼近论中系统地阐明函数的最佳逼近值En(ƒ)(借助于代数多项式来逼近,或者对2π周期函数借助于三角多项式来逼近,或借助于有理函数来逼近等等)的数列当n→∞时的性态和函数ƒ(x)的构造性质(可微性、光滑性、解析性等等)之间内在联系的理论统称为定量理论。下面叙述的定理比较典型地反映出函数的构造性质与其最佳逼近值之间的深刻联系。杰克森、伯恩斯坦、A.赞格蒙证明:2π周期函数ƒ(x)具有满足条件 或 的r阶导数ƒ(r)(r=0,1,2,…)的充分必要条件是,ƒ(x)借助于三角多项式的n阶最佳一致逼近值(简称最佳逼近,简记为)满足条件 ,式中的M,A是不依赖于n的正的常数。对于【α,b】区间上的(不考虑周期性)连续函数借助于代数多项式的逼近值与函数构造性质间的联系也有和上述结果相类似的定理,不过情况比周期函数复杂多了。这一问题是在50年代由苏联数学家Α.Ф.季曼、Β.К.贾德克解决的。杰克森、伯恩斯坦等人的工作对逼近论的发展所产生的影响是深远的。沿着他们开辟的方向继续深入,到20世纪30年代中期出现了.法瓦尔、Α.Η.柯尔莫哥洛夫关于周期可微函数类借助于三角多项式的最佳逼近的精确估计以及借助于傅里叶级数部分和的一致逼近的渐近精确估计的工作。这两个工作把从杰克森开始的逼近论的定量研究提高到一个新的水平。从那时起,直到60年代,以С.М.尼科利斯基、Α.И.阿希耶泽尔等人为代表的很多逼近论学者在定量研究方面继续有许多精深的研究工作。 切比雪夫发现了连续函数的最佳逼近多项式的特征,提出了以切比雪夫交错点组著称的特征定理。最佳逼近多项式是唯一存在的。最佳逼近多项式的存在性、唯一性及其特征定理都是定性的结果,对这些问题的深入研究构成了逼近论定性研究的基本内容。匈牙利数学家A.哈尔在1918年首先研究了用广义多项式在【α,b】上对任意连续函数ƒ的最佳逼近多项式的唯一性问题。在【α,b】上给定n+1个线性无关的连续函。作为逼近函数类,式中α0,α1,…,αn是任意参数。这样的P(x)称为广义多项式。是存在的。哈尔证明,为了对每一连续函数ƒ唯一,必须而且只须任一不恒等于零的广义多项式P(x,α0,α1,…,αn)在【α, b】内至多有n个不同的根。在20世纪20~30年代,伯恩斯坦、М.Γ.克列因等人对满足哈尔条件的函做过很多深入的研究。它在逼近论、插值论、样条分析、矩量论、数理统计中有着比较广泛的应用。关于最佳逼近多项式的切比雪夫特征定理也有很多进一步的研究和推广。其中最重要的一个推广是柯尔莫哥洛夫在1948年做出的,它涉及复平面的闭集上的复值连续函数借助于复值广义多项式的一致逼近问题(见复变函数逼近)。对于lp【α,b】(1≤p<+∞)内的函数ƒ借助于广义多项式在p 次幂尺度下的逼近问题也建立了类似的一套定性理论。到50~60年代,经过一些学者的努力,抽象逼近的定性理论建立起来。 最佳逼近多项式和被逼近函数间的关系除了平方逼近的情形外一般都不是线性关系。线性关系比较简单,线性算子比较容易构造。所以在逼近论发展中人们一直非常重视对线性逼近方法的研究,形成了逼近论中一个很重要的分支──线性算子的逼近理论。针对特定的函数类、特定的逼近问题设计出构造简便、逼近性能良好的线性逼近方法与研究各种类型的线性逼近方法(算子)的逼近性能,一直是线性算子逼近理论的中心研究课题。在这一方面,几十年来取得了十分丰富的成果。比较著名的经典结果有.沃罗诺夫斯卡娅、.洛伦茨等对经典的伯恩斯坦多项式的研究;柯尔莫哥洛夫、尼科利斯基等对周期可微函数的傅里叶级数部分和的逼近阶的渐近精确估计;40~60年代许多逼近论学者对作为逼近方法的傅里叶级数的线性求和过程逼近性能的研究(包括对傅里叶级数的费耶尔平均、泊松平均、瓦莱·普桑平均等经典的线性平均方法的研究)。50年代初期∏.∏.科罗夫金深入研究了线性正算子作为逼近方法的特征,开辟了单调算子逼近理论的新方向(见线性正算子逼近)。40年代中期法瓦尔在概括前人对线性算子逼近的研究成果的基础上,提出了线性算子的饱和性概念做为刻画算子的逼近性能的一个基本概念,开辟了算子饱和理论研究的新方向。 从实际应用的角度来看,要解决一个函数的最佳逼近问题,需要构造出最佳逼近元和算出最佳逼近值。一般说要精确解决这两个问题十分困难。这种情况促使人们为寻求最佳逼近元的近似表示和最佳逼近值的近似估计而设计出各种数值方法。一个数值方法中包含着有限个确定的步骤,借助它对每一个函数ƒ可以在它的逼近函数类P(x,α0,α1,…,αn)中求出一个函数作为最佳逼近元的近似解,并且可以估计出误差。数值方法自然不限于函数的最佳逼近问题。在插值、求积(计算积分的近似值)、函数的展开理论中也都建立了相应的数值方法。近20年来由于快速电子计算机的广泛应用,数值逼近理论和方法的研究发展很快,成为计算数学和应用数学的重要分支。除了以上列举的几个方向外,还发展了插值逼近、借助于非线性集(如有理函数)的逼近、联合逼近、在抽象空间内的逼近等等。 多元函数的逼近问题具有很重要的理论和实践意义。由于在多元函数的逼近问题中包含了很多为单变元情形所没有的新的困难,所以多元函数的逼近论比单变元情形的发展要慢得多和晚得多。在多元逼近的情形下已经研究得比较充分的一个基本问题是函数借助于三角多项式或指数型整函数的最佳逼近阶和函数(在一定意义下的)光滑性之间的关系。这一工作主要是由苏联学者尼柯利斯基和他的学生们于50~60年代完成的。它除了对函数逼近论本身有重要意义之外,还有很多重要应用。例如,对研究多元函数在低维子流形上的性质,多元函数在一定要求下的开拓问题等都有重要作用。后一类问题的研究属于泛函分析中的嵌入定理。近年来,在多元函数的线性算子逼近、插值逼近、样条逼近和用单变元函数的复合近似表示多元函数等方面都有所进展。现在函数逼近论已成为函数理论中最活跃的分支之一。科学技术的蓬勃发展和快速电子计算机的广泛使用给它的发展以强大的刺激。现代数学的许多分支,包括基础数学中象拓扑、泛函分析、代数这样的抽象学科以及计算数学、数理方程、概率统计、应用数学中的一些分支都和逼近论有着这样那样的联系。函数逼近论正在从过去基本上属于古典分析的一个分支发展成为同许多数学分支相互交叉的、密切联系实际的、带有一定综合特色的分支学科。

整理了两篇医学论文开题报告范文,欢迎参考其格式。

医学硕士开题报告范文-《治疗四肢长骨骨折不愈合》

关键词:钢丝环扎 四肢长骨骨折 济南论文 开题报告

一、选题依据、目的和意义:

骨折不愈合是骨科临床常见病症,其中以四肢长骨多发,例如胫骨,股骨,肱骨等,针对四肢长骨骨折不愈合二次手术我院多才用植骨术配合LCP重新内固定。自体髂骨作为植骨材料具有较多的优点:如取材简单、组织相容性好、无移植排斥反应、骨诱导作用强等,这些优点使得髂骨成为一种最佳的植骨供材,这在临床上已形成共识。植骨是治疗骨折不愈合的重要方法,其机制是爬行替代所引起的支架作用与供给矿物质的作用,爬行替代顺利进行的条件要求准确的复位、充分的植骨和坚强的固定。为达到充分的植骨,及早促进骨折愈合,我们采用髓内外360°植骨的方法,外用钢丝环扎,配合LCP坚强内固定,术后3~12个月内进行随访,根据愈合情况和功能恢复情况分析手术的临床疗效。选题目地在于探讨治疗四肢长骨骨折不愈合的手术改进方法和疗效,为临床治疗提供参考。

本课题以导师多年的临床资料为依据,通过对骨折不愈合手术治疗的国内外文献进行系统整理,结合山东中医药大学附属医院骨科病房对四肢长骨骨折不愈合患者的随访调查及回顾性分析,根据骨科特殊生物力学特点和导师治疗骨折不愈合的多年临床体会,分析治疗效果,并对手术中的细节问题做初步探讨与论述。同时也希望可以通过对导师的临床实践的研究、总结,能为今后的临床工作提供一些帮助和指导。

二、本课题目前国内外研究的动态、水平

治疗骨折不愈合,可分为手术治疗和非手术治疗,其中手术治疗最重要的就是植骨术加更改断端内固定。骨折不愈合应用自体骨移植治疗效果显著,已经形成共识。 植骨是治疗骨不连的重要方法,植骨方式临床多采用髓内外联合植骨。沿肌间隙进入, 骨膜下小心剥离显露骨折部位, 取出内固定器械, 清除骨断端间瘢痕, 咬除硬化骨, 打通髓腔, 修整骨折端, 手法复位, 按照骨缺损情况取骨。髓内植骨以比髓腔稍粗的骨棒,贴紧髓腔骨质;髓外上盖植骨宜用螺丝钉固定植骨块;骨碎屑充分填充残余的空隙,这样才能确实达到植骨的目的和要求。自体皮- 松质骨植骨的爬行替代缩短了骨折愈合过程,新鲜的自体骨具有生物活性,不存在免疫排异,无传染疾病的风险,同时存在骨传导和骨诱导能力。

内固定物更换得坚持以下原则,原钢板内固定者,可更换成交锁髓内针或更长的钢板置于张力侧;原交锁髓内针内固定者,可选用更大号髓内针或钢板内固定;原先短钢板内固定者,可改成较长的钢板。所有病例均需植骨。更换内固定物后,,术后石膏外固定者,应及早进行肌肉收缩锻炼活动,骨痂生长良好后,去石膏开始关节屈伸功能锻炼。但是临床上医师应该具体问题具体对待,可以根据骨痂生长情况酌情处理,出院时务必详细医嘱病人注意事项,配合医生,直到骨折完全愈合。LCP钢板内固定适用于四肢长骨骨折不愈合,可用拉力螺钉固定碎骨块及移植骨块, 并对断端行轴向加压锁定。手术关键是将骨折端的瘢痕结缔组织全部切除, 骨端硬化骨全部咬除, 露出正常骨质, 钻通髓腔, 植入的骨块必须牢固的嵌入缺损区, 间隙用松质骨填满,。应积极正确指导术后功能锻炼, 严格定期随访及指导。避免过早的不正确的负重。综上所述,对于骨折不愈合的治疗,自体骨移植疗效确切,安全稳妥,技术成熟,应用广泛,值得提倡。

三、课题研究的主要内容

1.临床资料

病例来源

本研究病例均采集于山东中医药大学附属医院骨科病房

(二)采集时间

2009年5月~2010年12月

(三)病例选择

1.诊断标准[2]

(1)病史:明确的外伤史,骨折后6个月没有愈合,并且没有进一步愈合倾向已有3个月。

(2)症状:患者骨折端成角、旋转、侧移位、短缩畸形或者节段性骨缺损、持重疼痛或不能持重、局部在应力下疼痛等。

(3)体征:局部窦道形成、流脓、假关节形成或伴有局部软组织瘢痕、缺损等

(4)辅助检查:X线表现:骨端硬化,髓腔封闭;骨端萎缩疏松,中间存在较大的间隙;或骨端硬化,相互成为杵臼假关节等这三种形式中的任何一种就可以定为骨折不愈合。

2.纳入病例标准:

(1)符合本病诊断标准;

(2)骨折平均愈合时间超过半年以上,有假关节形成;

(3)骨折平均愈合时间超过半年以上,多次复查X线拍片显示,骨折线

清晰可见,未见内外骨痂或内外骨痂极少;

(4)拍片显示骨折线增宽,骨折端骨面致密性硬化,骨髓腔封闭,骨质疏松,骨痂间无骨小梁形成,或伴有明显的骨缺损;

(5)临床表现有骨的感染、缺损、畸形、肢体不等长、局部窦道形成、流脓等。

3.排除病例标准:

(1)不符合上述诊断标准者

(2)患者有严重的内科疾病,不能够耐受手术者

(3)精神疾病患者

(4)资料不全影响判断者

2.疗效观察方法

对骨不连愈合的评价应包括骨愈合和功能恢复双重评价:

(1)骨愈合评价标准:本评价结果决定于四项指标:骨愈合、感染、畸形和肢体长度,其中骨愈合标准为X线示骨折线模糊,有连续骨痴通过骨折线,拆除或试行松动外固定物后骨折无异常活动,下肢可无痛行走,上肢持物骨折处有稳定感。 评价标准:

优:骨折愈合,无感染,断端畸形<7°,双侧肢体不等长<2 CM。

良:骨折愈合及其他三标准中两项。

可:骨折愈合及其他三标准中一项。

差:骨折未愈合或再骨折或虽愈合但不具备其他三标准中任何一个。

(2)功能评价标准

功能的评价分上肢与下肢的不同,上肢主要考虑其灵活性,而下肢主要功能为负重行走。

将下肢评价指标定为以下五项:①明显跛行;②踝或膝任何一关节僵硬(完全伸膝或踝完全背伸时,活动范围较正常或对侧丧失15°以上):③软组织情况不良;④有限制活动或影响睡眠的疼痛存在:⑤丧失工作能力或生活不能自理。

优:存在工作能力且无其他四项指标。

良:存在工作能力且具以上四指标中一至二项。

可:存在工作能力并具以上指标中三至四项。

差:丧失工作能力或生活不能自理,不考虑是否具备其他指标。

对上肢功能评价参照“Steuart和Hdlly对上肢功能评价标准”[3]

观察指标为三项:疼痛、关节活动范围、日常活动能力。

l:上肢功能评价标准

分数 痛疼 任一关节活动受限 日常活动

优 无 <20° 完全不受限

良 用力或疲劳后 20~40° 轻微受限

差 持续性 >40° 严重受限

5.课题进度及安排:

2009-05——2010-12 收集病例及随访

2010-10——2010-12 资料汇总及数据分析

2011-01——2011-03 撰写论文、定稿

四、本课题特色、预期取得的结果

骨折不愈合应用自体骨移植治疗效果显著已经形成共识,治疗过程中的经验总结需要不断的进行,更要求开展回顾性工作及进行系统的整理。因此,骨折不愈合的临床资料分析就显得尤为重要。

本课题通过搜集整理山东中医药大学附属医院骨科2009至2010年期间的患者临床资料,对于自体骨移植治疗骨折不愈合的相关性问题进行临床研究与总结。应用统计分析评分进行术前、术后及相关方面比较,对自体骨移植治疗骨折不愈合的临床疗效获得客观、真实、准确的评价,并进一步指导临床工作。

五、可行性分析

山东中医药大学附属医院骨科是山东省中医管理局评定的重点学科、重点科室,在省内知名度较高,病人来源广泛。导师王明喜主任医师从事临床工作30余年,具有丰富的临床经验,对治疗骨折不愈合做过大量研究、临床工作,并取得了良好的效果。本课题搜集整理山东中医药大学附属医院骨科近几年的临床资料,并在导师指导下对这些一手资料进行研究与总结。

四肢长骨骨折不愈合由于并发症较多,治愈比较困难,手术后功能恢复过程漫长,因此在治疗过程中,经验的总结是非常必需的,也是可行的。本课题主要研究山东省中医院近年应用钢丝环扎360°植骨配合LCP内固定治疗四肢长骨骨折不愈合的治疗效果分析情况,因此在选题上可行性较强。课题的研究也得到了学校、附院等各部门、科室的大力支持。相信可以圆满地完成课题。

主要参考文献

[1] 胥少汀,葛宝丰,徐印坎,等.实用骨科学[M]. 北京人民军医出版社,2007

[2] 王亦璁,等.骨与关节损伤[M].人民卫生出版社,2007

[3] 夏和桃.组合式外固定器简介[EB/OL].北京骨外固定技术研究所,2005

[4] 蒋协运.骨科临床疗效评价标准[M].人民卫生出版社, 2005

[5] Boyd HB, Lipinski SW, Wiley JH J Bone Joint Surg Am, 1961; 43(2):159—168

[6] Audige L,Griffin D,Bhandari M,et al. Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures [J].Orthop Relat Res, 2005; 438:221~232.

[7] James J McCarthy, John Nonunions [J/OL]. eMedicine, Apr 9, 2004

[8] 周来喜,林本丹,钟志刚,等.胫骨骨折三种固定器械的生物力学比较和临床研究[J].骨与关节损伤杂志,2000;15 ( 5 ): 428 ~430

[9] 李峰,欧阳跃平.骨不连临床研究进展[J]. 国际骨科学杂志, 2007;28(2):117~119

[10] Harvey EJ,Henley MB,Swiontkowsid MF,et al. Iryury,2003; 34(2):111~116

[11] 任可,张春才,赵建宁,等.持续动态压应力下骨折愈合时软骨内骨化的特点及其机制[J]. 解剖学杂志,2008;31(4):570~574

[12] 李兴华.交锁髓内钉治疗胫骨骨折不愈合[J].中医正骨,2007;19(2):43~44

[13] 吴国华.4种固定方法治疗胫腓骨双骨折的疗效对比[J].现代中西医结合杂志,2004;13( 1): 47~48

[14] 权毅,潘显明,王元山,等.交锁髓内钉断钉与骨不连的力学研究及临床意义[J]. 中国矫形外科杂志,2003;11(3,4):207~209

[15] Streeker W, Suger G, Kinzl L. Local complications of in-tramedullary nailing[J].Othopade,1996;25:274~291.

[16] Farmanullah, Muhammad Shoaib Khan ,Syed Muhammad OF MANAGEMENT OF TIBIAL NON-UNION DEFECT WITH ILIZAROV FIXATOR [J]. Ayub Med Coll Abbottabad, 2007; 19(3)

[17] Davies R,Holt N,Nayagam care of pin sites with external fixation[J].http:// Journalof bone and Joint Surgery,2005;87:716~719

[18] 李起鸿.骨外固定技术临床应用中的几个问题[J]. 中华骨科杂志,1996;16: 604.

[19] 杨立民.当今骨科感染的特点与对策[J].骨与关节损伤杂志,1999;14: 139

[20] 陈文红,史振满,陈建常,等.感染性胫骨骨折不愈合的外固定架治疗[J].中国骨与关节损伤杂志,2007;22(8):691~692

[21] Sluzalek M,Gazdzik T S,M rozek S et al. External fixation in thetreatment of severe tibial fractures complicated by soft tissue injury [J]. Ortop traumato1 Rehabil,2004;6( 1): 103 ~112

[22] 胡蕴玉,陆裕朴,刘伟.异种骨移植修复骨缺损实验研究[J].中华骨科杂志,1990;10: 33~36

[23] Lu WJ,L B,B NR, et al. Chin ,2006; 9(5):272~275

医学论文开题报告范文:细胞信号转导与靶向抗肿瘤药物的研发

一、 选题的目的和意义

定量结构活性关系(Quantitative Structure-Activity Relationships,简称 QSAR)是20世纪60年代发展起来的一门新兴学科,是由结构活性关系(Structure-Activity Relationship,简称 SAR )发展而来的。QSAR 是通过对已知结构且有生物活性系列化合物(如一系列有相同药理作用的结构相似的化合物)进行化学信息学的计算, 选用适当的数学模型建立活性与化合物结构之间定量关系,解释由于分子结构的变化影响化合物生物活性的改变,推测其可能的作用机理。然后建立有效的QSAR模型,如果有新化合物的出现,且其结构数据已知,可以预测其生物活性,也可以优化结构改变现有化合物的结构以提高其生物活性。这种方法广泛应用于药物、农药、化学毒剂等生物活性分子的合理设计。在经历40多年的发展过程中,定量构效活性关系在国际上已成为一个相当活跃的研究领域。

尽管肿瘤的化学治疗已取得重大进展,新的抗肿瘤药物不断出现,但肿瘤的化学治疗仍存在着许多问题,这主要是因为实体肿瘤占恶性肿瘤的90%但多数实体瘤如肺癌、肝癌、结肠癌及胰腺癌等还缺乏有效的药物;现有的抗肿瘤药物毒副反应太大,缺乏选择性;肿瘤细胞对抗肿瘤药物产生抗药性[1]。

QSAR主要侧重于药物早期的研究和发展,为新药物分子的筛选的和设计开拓了新的途径[2],在受体结构已知的情况下,对抗肿瘤药物进行定量构效活性关系研究,用生成与受体结构互补的配体的方法来发现可以针对特定肿瘤、特定靶点的非细胞毒类药物,使之更具有选择性和针对性。随着新QSAR模型的建立,极大地缩短了新药合成的时间,降低了开发成本,并能在某种程度上预测药物对特定肿瘤人群的有效性。为肿瘤治疗起到了积极地推动作用。

二、国内外研究现状

肿瘤的化学治疗药物发展很快,每年都有大量抗肿瘤药物研究文献发表,各国对抗肿瘤药物的开发也予以高度重视和大量投资,美国就此专门成立了美国国立癌症研究(National Cancer Institute,简称NCI),成为了世界抗肿瘤的权威机构。

国内研发方向主要以含中草药及其活性成分的抗肿瘤药物,可以归纳为以下几个方面:(1)对现有药物进行结构改造以改善其药理学特性,如增加水溶性、降低毒副作用等;(2)以新的作用机理或作用靶点为指导寻找新的活性物质作为先导化合物;(3)发现新的作用靶点。在当前生物学的后基因时代,科学家们要面对数千个潜在的药物靶点,探讨它们与小分了化合物的相互作用;(4)加强定量构效活性构关系研究.

近年来随着分子生物学和计算机技术的迅速发展,使得开发新药的技术路线发生了重大变革。国际上越来越多的研究机构在新抗肿瘤药物的开发中使用计算机辅助分子设计,它大大加快了新药设计的速度,节省了创制新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。计算机辅助分子设计主要分两种情况:一种是在受体结构已知的情况下,采用生成与受体结构互补的配体的方法来寻找新药物;另一种是在受体结构未知的情况下,采用对一组具有类似活性的化合物建立定量结构活性关系,在此模型基础上进行结构修饰来预测生成新的化合物。

QSAR作为抗肿瘤药物设计研究中的一个重要计算方法和常用手段,在新药的开发和研制过程中占据了重要位置。近半个世纪以来,QSAR研究对有机合成化学、药物化学及药物设计的发展起了巨大的推动作用,已经成为研究物质理化性质与生物活性以寻求分子解释的一个强有力工具。下面就定量活性结构活性关系研究的一些常见方法作简要地介绍如下。

1、二维定量结构活性关系方法(2D-QSAR)传统的二维定量结构活性关系方法很多,有Hansch法、基团贡献法和分子连接性指数法等[3] 。

其中最为著名、应用最为广泛的是Hansch 法。 它假设同系列化合某些生物活性的变化是和它们某些可测量的物理化学性质(疏水性、电性质和空间立体性质等)的变化相联系的,并假定这些因子是彼此孤立的,采用多重自由能相关法,借助多重线性回归等统计方法就可以得到定量结构活性关系模型。

基团贡献法是Free-Wilson 在对有机物亚结构信息和生物毒性的相关研究基础上建立的一种方法。这种模式认为有机物与受体间的毒性效应是该有机物特定位置上不同取代基团毒性贡献的加和。Free-Wilson 法仅适用于具有相同母体结构的有机物,常被用来对有机物进行毒性初评。

分子连接性指数法(Molecular connective index ,MCI) 是由Kier 和Hall 提出的。它是根据分子中各个骨架原子排列或相连接的方式来描述分子的结构性质。MCI 是一种拓扑学参数,有零阶项(0Xv )、易阶项(1Xv )、二阶项(2Xv ) 等等,可以根据分子的结构式和原子的点价(δ) 计算得到,与有机物的毒性数据有较好的相关性。MCI 能较强地反映分子的立体结构,但反映子电子结构的能力较弱,因此缺乏明确的物理意义,但由于其具有方便、简单且不依赖于实验等优点,近年来得到广泛应用和发展[4~8]。

2、三维定量结构活性关系方法(3D-QSAR)随着结构活性关系理论和统计方法的进一步发展,20 世纪80 年代,三维结构信息被陆续引入到定量结构活性关系研究中, 即3D-QSAR。与2D-QSAR 比较,3D-QSAR 方法在物理化学上的意义更为明确,能间接反映药物分子和靶点之间的非键相互作用特征。因此,近十多年来3D - QSAR 方法得到了迅速的发展和广泛的应用,研究方法也很多[9] ,比如分子形状分(molecular shape analysis ,MSA) ,距离几何方法( distance geometry , DG ,比较分子力场分析(comparative molecular field analysis ,CoMFA) ,比较分子相似因子分析( comparative molecular similarityindices analysi CoMSIA) 以及虚拟受体( phesudo receptor) 等方法。其中应用最为广泛的CoMFA 方法。

3、随着技术的发展和生产技术的进步,又出现了一些先进的方法来构建QSAR模型,都具有很好的预测能力。其中又以启发发(heuristic method,简称HM),支持向量机(Support Vector Machine,简称SVM),基因表达式编程(Gene Expression Programming,简称GEP)比较常见。支持向量机(Support Vector Machine)是Vapnik[10]等人根据统计学理论提出的一种新的通用学习方法,它是建立在统计学理论的VC维理论和结构风险最小原理基础上的,能较好地解决小样本、非线性、高维数等实际问题[11-12],已成功地应用于分类、函数逼近和时间序列预测等方面[13-15];基因表达式编程(GEP)是基于生物学遗传思想,保持了生物学的特性,具有良好的结果重现性,同时也能够进行“遗传变异”控制,最终能获得可靠的实验效果。

三、主要研究内容

1、查阅中外文文献选取数据来源。

2、理化参数与结构参数的计算。

3、具体的结构参数的分析。

4、SVM与GEP的方法研究。

5、定量结构关系式的建立。

6、定量结构关系式的验证。

7、得出结论和总结。

四、论文工作计划

3月中旬—4月初:选题。

4月初—4月底:查阅资料,熟悉实验原理及方法,准备开题报告。

5月10日: 开题。

5月初日—5月底日:进行毕业设计实验,记录数据,撰写论文。

6月初日—6月中旬日:进行毕业论文答辩。

五、参考文献

[1] 任华益. 中华综合临床医学杂志(山东) , 2005, 7(2): 28 -33.

[2] 徐娟,王林编译. 计算机辅助药物设计中的QSAR和QSMR研究. 国外医学•药学分册, 2003, 30(3): 135-138.

[3] 郭宗儒. 药物化学总论. 北京:中国医药科技出版社, 1994. 108.

[4] Bakulh H Rao, Shyam R, Asolekar. QSAR models to predict effect of ionic strength on sorption of chlorinated benzenes and phenols at sediment-water interface. Water Research, 200l, 35(14): 3391-3401.

[5] 冯长君, 堵锡华, 唐自强. 取代芳烃对发光菌、大型蚤、呆鲦鱼急性毒性的QSAR研究. 应用化学, 2002, 19(11): 1037 -1042.

[6]秦正龙, 冯长君. 取代苯酚的定量结构-活性P性质相关性研究. 有机化学, 2003, 23(7): 654-658.

[7] 堵锡华. 取代芳香族化合物生物活性的拓扑学 . 南昌大学学报(理学版), 2005, 29(2): 155-160.

[8] Aleksandar Sablji C. QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk. Chemosphere, 2001, 43(3): 363 -375.

[9] 徐筱杰, 侯廷军,乔学斌,章威. 计算机辅助药物分子设计. 北京: 化学工业出版社, 2004.

[10] Vapnik Nature of Statistical Learning Theory.

NY: Springer-Verlag,1995.

[11] 阎辉,张学工,李衍达. 应用SVM方法进行沉淀微相识别.物探化探计算技术, 2000, (2): 158 -164.

[12] 张学工. 关于统计学习理论与支持向量机. 自动化学报, 2000, (1): 32 -42.

[13] Vapnik V, Golowich S, Smola A. Supportvector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche Teds. Neural Information Processing System, MIT Press, 1997-09.

[14]马云潜,张学工. 支持向量机函数拟合在分形插值中的应用.清华大学学报(自然科学版) , 2000, (3): 76- 78.

[15] Muller K-R, Smola A J, Ratsch G . Predicting time series with support vector machines. In:Proc of ICANN 97, Springer Lecture Notes In Computer Science, 1997: 999-1005.

孙永生早在莫斯科学习期间就在函数逼近论的研究中获得了优异的成绩,在前苏联科学院的重要学术刊物上发表了研究论文。他从1978年开始招收研究生,1981年成为我国第一批博士研究生导师。他带领学生们研究学术领域中的大问题、难问题。函数逼近论中的宽度理论是一个重要研究方向,也是一个非常艰深的领域。孙先生在这个领域中,在K-宽度、G-宽度、线性宽度等方面都做出了第一流的工作。特别是解决了美国数学家Melkman 和Micchelli的一个重要猜想,受到国内外同行和高度称赞。在全国第三届函数逼近论会议上,徐利治教授向大会介绍我国逼近论研究的进展时,专门介绍了孙永生在宽度理论中的重要成果。1978年以来,他每年至少亲自撰写并发表两篇高水平的研究论文,至今已发表了数十篇学术论文,分别发表在《中国科学》,《科学通报》,《数学学报》,《数学年刊》,《逼近论及其应用》等国内学术期刊和《构造逼近》,《复杂度杂志》,《数学评论》等国际学术期刊杂志上。其中多篇被收入国际著名期刊索引SCI。他出版的译著《逼近论中的极值问题》已成为我国逼近论界广泛使用的教材。他以身作则的工作作风为他所领导的研究集体树立了极好的表率。到目前为止,孙永生已培养了15名博士和18名硕士,还培养了一大批进修教师。他培养的学生,大都已成为我国各高校和研究单位的学术骨干,有的已成为博士生导师。他在多年研究工作的基础上写出了专著《函数逼近论》上、下两册(下册与他的学生合著)。这部书目前已成为我国函数论研究生广泛使用的一部权威性的教科书,并于1992年获国家教委颁发的高等学校出版社优秀学术著作特等奖。他主持的研究课题曾5次获得国家自然科学基金的资助,3次获得国家教委博士点基金的资助。以他为首的研究项目《逼近论中的极值问题和调和分析中若干逼近问题》,获1988年国家教委科技进步奖一等奖和1989年国家自然科学奖四等奖。

泰勒公式及其应用论文的开题报告

泰勒 (2004-02-06) 18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor), 于1685 年8月18日在米德尔塞克斯的埃 德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在 1712年当选为英国皇家学 会会员,并于两年后获法学博士学位。同年(即1714年)出任 英国皇家学会秘书,四年 后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年1 2月29日于伦敦逝世。 泰勒的主要着作是1715年出版的《正 的和反的增量方法》,书内以下列形式陈述出他已于 1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的着名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代 形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成 的,当x=0时便称作马克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且 称之为微分学基本定理,但泰勒于证明当中并没有考虑 级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。 泰勒定理开创 了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理 问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先 河。此外,此书还包括了他于 数学上之其他创造性工作,如论述常微分方程的奇异解,曲率 问题之研究等。 1715年,他出版了另一名着《线性透 视论》,更发表了再版的《线性透视原理》(1719) 。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用「没影点」概念, 这对摄影测量制图学之发展有 一定影响。另外,还撰有哲学遗作,发表于1793年。参考资料:

数学小课题开题报告

在教学中引导学生掌握审题的具体步骤和方法。以下是我为大家分享的2017年关于数学小课题的开题报告范文。

题目:初中数学主体合作学习方式的探究开题报告

一.本选题的意义和价值:

理论意义:国家课程改革的基本思想:以学生发展为本,关心学生需要,以改变学生学习方式为落脚点,强调课堂教学要联系学生生活,强调学生要充分运用经验潜力进行建构性学习。同时《初中数学新课程标准》突出体现基础性、普及性、和发展性,使数学教育面向全体学生,从而实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。动手实践、自主探索与合作交流是学生学习数学的重要方式。由此可见在数学学习中合作这种学习方式的确很重要。

应用价值: 有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践自主探索与合作交流是学生学习数学的重要方式。 主体合作学习作为一种新型的教学方式,在新课标下已成为数学课堂教学探讨的焦点问题之一。

通过本课题的研究,有利于充分确立学生的主体地位,有利于建立各教学要素之间的相互作用、彼此协调、取向一致的关系;使初中数学教学中学生的学习方式、教师的指导方式得到有效的改善,有利于激发学生学习的兴趣,达到数学教学 学习快乐、快乐学习 的目的。从而提高学生的学习效果,培养学生的合作,交流,创新的能力,进而提高学生的综合素质。

省内外同类研究现状述评:我国自90年代初期起,开始探讨合作学习,出现了合作学习的研究与实验,并取得了较好的效果,不少学生从中受益,教师们在实践中也开发了一些行之有效的实施策略。但目前国内对合作学习的研究主要是在高等学校,中学阶段的合作学习刚刚起步,随着素质教育的全面推进,初中阶段需要进一步开展合作学习,小学阶段尚未看到数学与合作学习整合的研究课题。因此现在进行初中数学与合作学习整合的研究带有前瞻性。国内目前的合作学习研究比较多的是提出一些原则,而对实践的、具体层面的、可操作的方式与途径的研究则比较少,本课题注重合作学习方式的探索,可以弥补这方面的不足。

二 研究内容、目标、思路

什么是主体合作学习形式就是通过小组目标 、小组分工、角色分配与转换 、集体奖励等形式,激发每个学生 荣辱与共 人人为我,我为人人 道德情感,通过感染舆论,集体荣誉体验等活动,使每个学生都感悟到只有自己努力对小组做贡献,人人都能获得必需的数学。

学习方式现状的调查与分析。

目前数学教与学形式上存在着种种弊端,要么是学习没有目标,或目标不能落实;要么教师责任心不强,对学生的问题不闻不问,要么是教师主观臆断,脱离学生实际,总之数学学习形式亟待改变。

主体合作学习在学习数学中的作用。

高效率地利用时间,使学生有更多主动学习的机会。更有利于培养学生社会合作精神与人际交往能力。能使学生互相取长补短,缩小两端学生的差距,双方都能获益,尤其对后进生有很大的帮助。更有利于培养学生主动探究、团结合作、勇于创新的精神。

教师在主体合作学习中的角色和地位。

转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和角色也发生了改变。教师在小组中不是局外人,而是学习目标的制造者,程序的设计者,情景的创造者,讨论的参与者,协调者,鼓励者和评价者。

如何引导学生合作学习?

引导学生合作学习关键在于精心设计讨论话题。从教师这方面看,设计话题应突出趣味性、情景性、可操作性、创造性。

小组学生合作学习评价对象和方法。

评价的对象包括评价自己、评价同学等。评价的内容主要是学习态度、合作精神、学习能力、团队合作等几个方面。合作学习作为系统的学习方式,必须具备相应的评价机制,建立合理的合作学习评价机制能够把学生个体间的竞争,变为小组间的竞争,把个人计分改为小组计分,把小组总体成绩作为评价依据,形成一种组内成员合作,组间成员竞争的格局。把整个评价的重心由孤立的个人竞争达标转向大家合作达标。

本课题试图通过小组合作学习方式转变的实践过程,把学生自主学习与合作学习有机地结合起来,从而让学生真实地感受、理解、掌握数学思想、知识技能的形成过程,激发学生学习数学的兴趣,促进学生的数学思维能力、生活能力协同发展,培养学生能数学地分析、解释、解决现实生活问题的能力及运筹优化的意识和创新精神。

在教师指导下,学生逐步养成自主意识、合作意识和自我管理的能力。真正的实现自主学习与小组合作学习相融合。

转变观念是学习型社会的要求。在开放的教育环境下,教师的地位和作用也发生了改变,教师不再是单纯的知识传授者,而应该转变为学习者学习的向导、参谋、设计师、管理者和参与者。通过课题的研究,培养出一支具有先进教育理念,有一定教科研水平的教师队伍。

研究视角 本课题从新课标合作学习的角度出发,以小组活动为基本方式,建立合作研究的多元互动,注重开放的合作过程,强调合作方式的建构。

研究方法:

②. 调查法:运用座谈、问卷等方式,向学生了解数学学习的现状,并对此作出科学的分析。

④. 实验法:在学习方式的实验阶段,通过实验班与对照班比较分析的方式,研究这一学习方式的实践操作效果。

⑤.行动研究法:在课题实施研究过程中,通过学习、实践、反思、评价分析,寻找得失原因,不断提高小组合作的能力。

⑥. 经验总结法: 在教学实践和研究的基础上,根据课题研究重点,随时积累素材,探索有效措施,总结得失,寻找有效的小组 合作 的途径、方法和原则。通过各种方式全面搜集反映小组 合作 学习中事实材料,经过分析、整理和加工到理性认识的高度,作为 合作 学习方式的理论依据。

研究阶段

⑴准备阶段(2015年4月 2015年5月):

⑵实施过程(2015年6月 2015年1月)

根据课题设计方案,有计划、有步骤进行行动研究。不断实践,定期总结,每学期都有阶段成果。

⑶总结阶段(2015年2月 2015年5月)

在以上成果总结的基础上,对课题进行全面、科学的总结。写出结题报告,召开成果汇报会。

课题研究的现实背景和意义:

从我校历年来的质量分析和龙胜县20XX年数学小考质量分析来看,学生丢分的原因主要是是不认真审题。其实在日常教学中,每次数学作业或测试题,都可听到老师们埋怨学生 太粗心了 , 不认真审题 等等,学生也为自己的不认真审题表现很后悔。在期中与期末质量分析上,任课教师总结得最多的一句就是 学生太粗心太马虎,不认真审题。

可见学生的审题能力困惑着我们每位教师,也困惑着每位学生。特别是农村的小学生,由于养成了粗心大意、对自己要求不严格、没有责任心等不良习惯,多数学生都不能做到认真审题再做题。

通过问卷调查,审题这最重要的一个步骤在实际操作中往往被大多数学生忽略或者轻视,从而直接影响了学生的解题速度和正确率,间接导致了学生对数学学习的畏惧和恐慌。小学生由于审题不清,导致解错题的现象十分普遍。学生的审题能力薄弱,审题习惯令人担忧。

审题能力是一种综合性的数学能力,我想通过对小学生数学学习审题能力培养的研究,促使学生的分析、判断和推理能力以及学生的创造性思维能力从无到有,从低水平向高水平发展,从而提高数学的解题能力。

概念界定与理论依据

理论依据 :

在《小学数学教学大纲》中明确指出: 在小学,使学生学好数学,培养起学习兴趣,养成良好的学习习惯,对于提高全民族的素质,培养有理想、有道德、有文化、有纪律的社会主义公民,具有十分重要的意义。 审题是一种能力,更是一种习惯。小学生数学学习审题能力的培养能促进学生养成良好的学习习惯。

课题的实施方案

研究内容

研究农村小学生审题能力弱的原因。

研究农村小学生数学学习审题能力培养方案。

针对学习内容,研究学生审题的方法。

研究农村小学生数学学习审题习惯的培养。

具体的操作措施

研究农村小学生审题能力弱的原因。通过问卷、谈话调查任课教师对培养学生审题能力的态度、方法、能力和学生解题审题习惯。对班级个别审题能力特别弱的学生进行深入了解与分析,找到审题能力弱的原因。

针对学习内容,研究学生审题的方法。基于学习内容不同,审题的方法也会有所不同。小学数学各年级从教学内容上均分为数与代数、空间与图形、统计与概率、实践活动(综合应用)四大板块,呈螺旋式上升,其中计算和解决问题占了相当大的比重。根据内容的不同探索出相应的有效的审题方法。

研究农村小学生数学学习审题习惯的培养审题习惯主要包括读题习惯、解题习惯、检查习惯。加强读题训练,研究读题方法。读题是审题的第一步。读题时要做到不添字,不漏字,把题目读顺,养成指读两三遍的习惯。读题时要求做到 口到、眼到、手到、心到 ;指导方法,培养良好的解题习惯。

在教学中引导学生掌握审题的具体步骤和方法。如首先认真读题,弄清题目说了一件什么事情,哪些数量是已知条件,所求问题是什么,并能用自己的语言准确复述题意;然后可以划出题中的关键字、词,并正确理解其含义;分析并找出题中的数量关系,知道要解决问题还需哪些条件,怎样求出这些条件等,遇到不懂的及时作上记号,养成用符号标记习惯;研究学生认真检查的良好习惯培养。

农村小学生做题往往没有检查的好习惯,这就特别需要教师进行引导,让学生体会到检查的好处,并且结合学生实际情况进行奖励,形成一种氛围。检查是一种对于审题的'最后补救。

研究步骤与方法

第二阶段:20XX年11月 20XX年7月课题实施阶段,按照方案分析原因,制定对策,并付诸实践。先调查学生审题能力差的原因,再与学生共同探讨审题的方法及注意事项,通过实践与训练,让学生分析自己的得与失,组织学生交流成功的做法与经验,并强化训练,让学生养成审题的良好习惯。最后测试成效并与探究前比较,总结经验,将研究成果推广到数学教研组。同时,撰写可以研究相关论文。

方法的选择:

(1)调查研究法。通过调查了解农村小学生审题能力弱的原因。以及研究前后的变化。

(2)个案研究法。通过对班级个别审题能力特别弱的学生进行了解,制定相应措施,实施强化训练,观察结果,探索规律,总结经验。

(4)文献研究法。通过阅读与查找相关文献的研究,为此课题奠定理论基础;同时,了解同类课题研究的现状,为本课题研究提供借鉴,为创新性研究奠定基础。

(5)师生合作研究法。通过师生共同探讨、研究、训练、分析、总结等寻找提高审题能力的有效途径。

研究预期成果和成果形式

(1)在研究中探索出学生有效审题的方法和途径,通过研究提高农村小学生审题能力和培养农村小学生认真审题的良好学习习惯。

(2)课题研究报告一份。

我将以饱满的工作和探究热情,按照课题实施方案,一步一个脚印地去探究与实施,我想通过本课题的研究,在研究中探索出学生有效审题的方法和途径,通过研究培养农村小学生认真审题的良好学习习惯。希望我的课题研究工作在上级领导的指导与关怀下,通过我的努力能取得圆满成功!

论文题目:关于泰勒公式的应用

课题研究意义

在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?

通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。

文献综述

主要内容

Taylor公式的应用

Taylor公式在计算极限中的应用

对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。 满足下列情况时可考虑用泰勒公式求极限:

(1)用洛比达法则时,次数较多,且求导及化简过程较繁;

(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;

(3)所遇到的函数展开为泰勒公式不难。

当确定了要用泰勒公式求极限时,关键是确定展开的阶数。 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。

Taylor公式在证明不等式中的应用

有关一般不等式的证明

针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。 证明思路:

(1)写出比最高阶导数低一阶的Taylor公式;

(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。

有关定积分不等式的证明

针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。

证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。

有关定积分等式的证明

针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。

证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor

余项作适当处理。

Taylor公式在近似计算中的应用

利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。

研究方法

为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。 具体采用了数学归纳法、分析法、反证法、演绎法等方法。

进度计划

为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

泰勒公式毕业论文答辩

【Summary 】This text draw Luol, hit the intersection of value and theorem through the intersection of fee and the intersection of horse and theorem, construct, assist function to hit the intersection of value and theorem while being Lagrangian and then and Cauchy hit the intersection of value and theorem go on, prove. Utilize the value theorem (Luol's theorem, Lagrangian theorem, Cauchy's theorem) in the differential to solve some derivatives and terminal problems. Approach the function by multinomial, thus get formula of Taylor who wears inferior promise type residue and Lagrangian residue, utilize the launching type of McLaurin of the elementary function to solve the terminal and problem similar to evaluation. Through the study herein, demand to know the identification of value theorem and Taylor's formula in the differential skillfully, use the intersection of theorem and conclusion solve some correlated to it problem, make, can understand thinking of solving a problem of question this kind of clearly. 【Keyword 】Value theorem in the differential Taylor's formula Derivative Yu Xiang

答辩申请报告

答辩的目的是进一步考察论文作者对专业知识掌握的深度和广度;审查论文是否由学员自己独立完成等情况。下文是申请书网整理收集的答辩申请报告,供大家参考。

尊敬的毕业设计(论文)审核小组的领导和老师你们好:

在微积分学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习微积分的关键一环.本文主要研究泰勒公式及其在求极限方面的应用.它是通过几个典型的例题,说明几个类型的问题,也即是从特殊到一般的推理过程.我们又称之为研究式学习(归纳).这种研究对培养学生分析问题、解决问题的能力是一种有效的途径.推理过程的研究式学习也是训练严密逻辑思维的有效方式.

本文通过对利用泰勒公式求极限的探讨,尤其是给出了泰勒公式在其它方面的应用,显现出泰勒公式的应用之广泛.其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导.

本人论文自2009年2月开始至本年5月完成,主要进度情况如下:20XX年2月:构思论文的大致结构;20XX年3月:查阅相关国内外文献;

20XX年4月:根据前量步的准备工作,完成初稿;

20XX年5月:在老师的指导下,对初稿进行修改,使其完善和严密,定稿打印装订,并进行答辩.

经过反复仔细修改和严格审查,并经过导师的指导认定,本论文按时完成,特申请本论文按时答辩,请批准.

申请人(签字):

年月日

尊敬的毕业设计(论文)审核小组的领导和老师你们好:

经过近14周的努力,通过对螺旋棒零件的调研、翻阅相关的参考文献和资料,进行需求分析、系统研究、系统设计,最终完成了螺旋棒零件工艺规程设计及钻夹具的研究和设计。在翻阅相关参考文献的阶段,通过查阅相关的机床夹具设计、切削用量手册等书籍,掌握了本系统研究设计的基本方法,基本掌握了如何操作该夹具对零件进行正常加工。同时查阅外文资料并完成了对外文资料的翻译工作。在需求分析和系统设计阶段,通过对可行性和系统进行分析,在确定设计确实可行的基础上进行进一步的研究。

在这次毕业设计中我认真学习螺旋棒零件工艺规程设计以及钻夹具设计的相关知识,严格遵循,老师的指导,按时完成任务,虚心的向同学请教和学习。目前,毕业设计(论文)、中英文翻译、调研报告、3张A0图及相关资料文档均已完成,在此向老师提出答辩申请进入下一阶段的论文答辩,希望老师同意。

注意:论文答辩申请书范文的写作主要是写自己完成论文进程和完成论文的工作情况,并写自己是否可以按时答辩或者延期答辩。

此致

敬礼!

申请人:

20**年**月**日

尊敬的学校及院系领导:

我在2007年3月至2008年8月期间,进修中国人民大学公共管理学院公共管理硕士(MPA),专业方向为公共卫生与医疗政策研究。在学习期间,我不仅学到了本专业的各项专业知识和方法工具,而且也获得了导师及授课老师们孜孜不倦的教诲,使我得以顺利完成学业。并根据所学知识,结合自己的工作实践,写成了毕业学位论文——《浅析我国采供血管理体系中存在的问题及改善建议》。该论文虽因个人学识的不足,难免挂一漏万,存在不少缺憾;但毕竟是对前段学习和工作的总结,并以此作为日后进一步学习和研究的起点。

在论文成稿之时,我除了要感谢学校和领导给予我深造的机会,以及导师和其他老师们的倾囊相授外,也向学校及院系领导申请答辩,望学校及院系领导批准。

学位论文选题的理论意义和实践意义在于:

一方面,新中国解放后,我国血液管理工作获得了较大发展。从血液来源上看,由以往主要为有偿献血变为现阶段主要为无偿献血,献血的人道主义精神得到较好的体现。据卫生部2005年公示的我国各省无偿献血占临床用血比例及排序的数据显示,自1998年我国出台无偿献血法以来,自愿无偿献血占采集临床用血比例由1998年的5%增长到2005年的,计划无偿献血占采集临床用血比例由1999年的减少到2005年的,无偿献血占采集临床用血比例由1998年的22%上升到2005年的;从法制建设上看,国家对血液的管理也逐步进入法治轨道,卫生部于1993年2、3月相继颁布了(93)第29号部长令《采供血机构和血液管理办法》和卫医发(93)第2号文《血站基本标准》,并于1993年7月1日起在全国实施,2006年又颁布了《血站管理办法》。一系列法律、法规的出台使得用血安全得到较好保障,能够较好维持血液的安全、有效供给。

另一方面,我国的血液管理在取得巨大发展的同时也存在着很大问题。从献血方面来看,部分地区存在的有偿供血仍在严重威胁血液安全。根据2004年10月卫生部公布的数据,我国内地仍有百分之十五的临床用血来自于有偿供血,尤其在部分偏远农村地区,无偿献血工作严重滞后;有些地区依然存在有偿供血、频繁采血现象,“血头”、“血霸”组织非法卖血时有发生,血源性传播艾滋病、肝炎等重大传染病直接威胁着供血者和用血者的身体健康。同时,各地在献血工作的实际开展过程中也出现了许多问题,事业单位、企业、高校等部门往往为了完成献血的行政任务而被迫采取一些非正规的操作手段,结果导致更多问题的出现,这许多的问题彰显了我国的献血制度存在着很大的.弊端。从供血方面来看,血液管理机构(主要为血站)的管理存在混乱、低效的情况,不能形成与血液使用部门(医院)的有效对接,血液供给的正常性、有效性得不到充分的保障,导致部分地区经常出现“血荒”现象。因此,对我国采供血管理体系中存在的问题进行剖析,并在此基础上提出相应的改善建议,无疑具有重要的现实意义。

论文的基本内容:

首先,回顾和总结了采供血管理的基础理论。在该章中,明晰了采供血行业的相关概念,并运用公共产品理论和政府管制理论对血液物品的性质和我国采供血管理体系进行了的必要的理论分析。

接着,分析了我国采供血管理体系的现状,即:回顾了我国血液管理体制的历史沿革;分析了我国采供血管理体系中存在的主要问题和成因。

最后,在吸取发达国家供血管理体制的经验及启示的基础上,提出了我国采供血管理体系改善方案。这些主要措施有:加强采供血的法制建设;进一步强化政府管制的主导作用;构建政府与市场和非营利组织的多方合作机制;进一步完善公众参与的无偿献血机制。

创新见解

(1)本论文在前人研究成果的基础上,遵循“提出问题→分析问题→解决问题”的研究范式,对我国采供血管理体系中存在的问题及改善建议进行研究,具有一定的理论和现实意义。

(2)采用了系统分析方法。我国采供血管理体系中存在的问题及改善建议研究是一个系统性工程,不仅关系到供血系统内部的诸多要素,更涉及到政治、经济和文化等各个社会层面,因此,只有运用系统分析的观点,才可能得出相对科学而体系化的结论。

(3)采用了理论与实践相结合的研究方法。本论文力求在对我国采供血管理体系中存在的问题及改善建议展开研究时,将其实践操作与理论指导相结合,做到理论联系实际,以使我国采供血管理体系的改善方案能在理论的指导下,开拓创新,实现实践中的突破。

(4)采用了宏观分析与微观分析研究相结合的方法。所谓宏观分析,即是回顾和总结采供血管理的相关理论,以在宏观上确立一个大的指导范式;而微观分析,则是在前述指导范式下,分析我国采供血管理体系中存在的问题,进而提出我国采供血管理体系的改善建议。通过将上述二者的有机结合,达到点面兼顾,从而全面把握新形势下我国采供血管理体系构建的走向。

此致

敬礼!

申请人:

20**年**月**日

数学领域中的一些著名悖论及其产生背景

【摘要】In this paper, leads to Fermat's theorem Rolle Mean Value Theorem, and then constructing auxiliary function of the Lagrange mean value theorem and Cauchy's Mean Value Theorem to prove that. The use of Differential Mean Value Theorem (Rolle theorem, Lagrange's theorem, Cauchy's theorem) to solve a number of derivative and limit the problem. Through the polynomial approximation to function, resulting in more than a Peano-type and Lagrange remainder of the Taylor formula, using elementary functions Maclaurin expansions to address the limits and the approximate evaluation of the problem. Through the study of this article requires proficiency in differential intermediate value theorem and Taylor's formula to prove, using theorem to solve a number of conclusions related questions, so can a clear understanding of this kind of problem solving ideas. 【关键词】 Differential intermediate value theorem Taylor formula Derivative More than

  • 索引序列
  • 泰勒展开式逼近的研究论文
  • 泰勒八年研究论文
  • 函数逼近研究现状论文
  • 泰勒公式及其应用论文的开题报告
  • 泰勒公式毕业论文答辩
  • 返回顶部