所谓涡流就是应用“电磁学”基本理论作为导体检测的基础。涡流的产生源于电磁感应的现象。当将交流电施加到导体,磁场将在导体内和环绕导体的空间内产生磁场。涡流就是感应产生的电流,它在一个环路中流动。之所以叫做“涡流”,是因为它与液体或气体环绕障碍物在环路中流动的形式是一样的。如果将一个导体放入该变化的磁场中,涡流将在那个导体中产生,而涡流也会产生自己的磁场,该磁场随着交流电流上升而扩张,。因此当测量金属材料的一些性质发生变化时,将影响到涡流的强度和分布,从而我们就可以通过一起来检测涡流的变化情况,进而可以间接的知道金属性能(材质,电导率,硬度)是否发生了变化。也就是磁通量的变化。
Abstract A kind of applies to quiet displacement measurement , the high-accuracy electricity eddy detecting technology that the vibration shaking the displacement measurement , monitoring a rotation shaft in revolution machinery measures measures displacement method that the main body of a book has been submitted. System having introduced the electricity eddy distance measurement realizing that method with monolithic machine, system collects a circuit from the AT89C51 monolithic machine , electricity eddy sensor displacement , ADC0804A/D change-over circuit , 1602 liquid crystal display circuits are composed of. The displacement signal collects , enlarges after UA741 the queen from electricity eddy sensor, the modulus converter changes into figure amount from ADC0804 , carry out acquisition from monolithic machine , realize the tiny displacement under the control of among 2 o'clock thereby. Demonstrate displacement by LCD display. This system has merit such as easy operation , distance measurement accurate degree height and the perception demonstrating result. Keywords: Electricity eddy sensor; AT89C51 monolithic machine; Displacement is measured; 1602 liquid crystal
对包装产品质量进行最后把关的包装测试技术,是包装这是我为大家整理的包装测试技术论文,仅供参考!
[摘要]以培养应用型人才为教学目的,本文首先分析了包装工程专业学生的基础素质和测试技术课程的特点,然后从教学目的、教学内容与教学方法和实践环节三个方面进行了教学改革探索,通过三年的教学实践,提出了本课程未来教学改革的发展方向。
[关键词]测试技术 包装工程 教学改革
[中图分类号]G 642 [文献标识码]A
《包装测试技术》是包装工程专业大学四年制学生的专业必修课程,随着包装产业的自动化程度越来越高、产品包装的标准化程度提高,掌握该课程的知识显得尤为重要,为取得教学效果,我们对本课程进行了教学改革的探索。本文首先分析包装工程专业学生的基础素质和测试技术课程的特点,然后在教学目的、教学内容与教学方法和实践环节三个层次上介绍了教学改革探索的进展和思考。
一、 学生素质和课程特点
包装工程专业的学生基本上来自中学阶段成绩中等的学生,学习的主动性、理解能力、动手能力较弱,但思想活跃、表现欲望较强;此外,女生较其他工科专业多,男女生比例接近于1:1,女生在学习的主动性与认真程度上高于男生。宽基础、厚专业是我校教学的主导教学方针,着力于培养学生宽广的知识、更多的专业积淀。《测试技术》在机械、能源、化工等专业均属于专业基础课程,内容涉及信号分析处理、系统的动态特性、传感器原理、工程量的测试、测试仪器的原理等等,知识面广,既有理论性很强的频谱分析知识,也有实践性很强的传感器与信号处理的应用知识。综合学生的基础素质和学校的教学指导方针,我校本课程的课堂教学减少到36学时,实验、实践环节仍维持为18学时。
二、 教学改革的探索
《测试技术》作为一门广泛开设的课程,广大教学工作者一直在进行教学教研的改革。郭建亮等[1]将虚拟仪器Labview为课程的突破口,结合测试的概念、测试的方法进行教学改进;朱春梅[2]对课程的教学进阶作了调整,强调了学习的实践性与生产应用的结合;王雪[3]采用了创新实验的方法,即学生自己构思实验、设计实验方案,进行实验数据的描述,并通过答辩评分,变“要我学”为“我要学”。徐巧玉等[4]通过让学生参加科研提高其实践动手能力;吴世雄等[5]采用应用型实验改善学生的主动性;化春键等[6]通过引入新传感器、新测试方法激发学生的学习热情。可见,所有的教学改革都以提高学生的学习主动性、培养实践动手能力为主要目的,下面介绍我们在本课程进行的教学改革探索。
(一)教学目的的改革
明确教学目的是首要的任务。包装工程专业面向包装机电装备、包装材料、印刷包装设计、运输物流等行业培养人才,行业跨度大,各专业课程的学习方法和思维特征差别大,若以有限的课时平均分配这些潜在就业岗位所对应的课程,则将面临教师教学无特色、学生无所适从的困境。我校的包装工程专业隶属于机电学院,在机械设计、机电一体化方面的师资配备与教学仪器上具备特色,结合学生的特点与社会的人才的需求,在办学过程中逐渐明确本专业的教学目的是培养包装机电装备的设计和包装材料的应用型研发人才,要求学生具备开发包装设备、设计包装材料测试方案并具有动手能力。
(二)教学内容与方法的改革
根据教学目的,首先制定教学内容的重点,即讲授传感器在包装工业中的应用方法,并以此为核心,介绍误差的处理、动态频率特性的概念和包装测试方法与标准。例如,电涡流式接近开关是包装设备中应用最多的一种传感器,其基本原理与内部的调制电路涉及复杂的线性放大、调制电路,学生较难理解,而且作为成熟的产品,已经全部封装到产品内部,就只介绍其原理,不作理解上的要求;而把其输出信号的采集作为重点,针对NPN集电极开路输出,讲授输出需接上拉电阻的原理,并在课堂上演示,用万用电表观察其输出电平的变化。
其次,从课堂内容的真实感和调动学生学习的主动性与积极性入手。现在学生每人一部手机,随时都想玩手机,除强调课堂纪律外,主要靠教师的课堂内容吸引其注意力。教学既要强调知识的系统性与理论性,也要强调实用性。如果纯粹为了知识的完整性,必定会比较枯燥乏味,课堂缺乏生动性,而应用性的视频、实物、实验、动手编程等都是吸引学生,变被动学习为主动操作,并能吸引全班同学的注意力。例如,在讲授测试系统的频率特性时,让学生回忆电工电子的知识,引出电容、电感的阻抗计算方法,采用板书的方法推导一阶阻容串联回路的频率特性,然后适当进行电路的变形,让学生上讲台现场解答,接着,拿出信号发生器和示波器,在阻容回路的输入端变化正弦信号的频率,用示波器观察输出信号的变化。
针对80后、90后学生表现欲望强烈的特点,在传感器的工程应用讲授完之后,让学生观察身边的事物、查阅文献资料,分小组攥写传感器应用的报告,教师评阅这些报告后,留出一堂课的时间,让优秀的报告获得上台讲述的机会,并进行名次的评比,评分与期末成绩挂钩,促进学生主动学习,掌握查阅文献的一般方法,培养学生表述专题知识的能力、幻灯片设计与团队合作能力。
再次,课程内容前后联系、理论与软件联系的方法,加深学生对理论知识的理解。例如传感器、滤波器与先前讲述的频率特性进行关联讲解;结合运用美国微芯公司提供的滤波器设计软件FilterLab,设计一阶、二级、三阶滤波器,让学生感受到滤波器的设计并不是那么高深莫测;再运用信号发生器和示波器,观察传感器和测试系统的频率特性,发现频率特性的测试目的;进一步运用Matlab的传递函数分析工具性,观察Bode图,顺便引入Matlab软件,让学生掌握一种新的数据分析软件,培养他们科学分析数据的能力。
最后,结合包装行业的特征,讲授包装物测试、包装容器测试、运输包装测试等应用性测试方法与相关的国家标准,引导学生把课程知识与专业应用结合。为避免讲述的枯燥性,通过观看视频、设计包装测试方案的作业,促进其对测试技术在生产应用中的了解,为今后工作中快速上手培养基础。 (三)实践环节的改革
实践是突出传感器应用为重点的课程设计思想的重要抓手。把课程实践分为两个层次,第一层次是实验环节,利用CSY-3000传感器实验台,让学生感受电阻应变片、电涡流传感器、光电传感器和电桥、滤波电路的特点,并培养误差数据的处理能力;利用包装测试实验室的瓦楞纸测试仪器和密封测试仪器,理解包装行业的测试项目和测试标准。通过这一层次的实践,初步把理论与实践进行了关联。第二层次是针对有学习自觉性强、求知欲强烈的学生,开设实践兴趣小组,进行项目教学。由学生上报感兴趣的测试项目,通过教师筛选,选择一个和专业联系紧密,但又能满足短期内可实现的项目进行知识应用能力的培养。指导学生设计项目的实现方案,然后开始传感器、电子元器件的采购、电路的焊接与调试,要求进行数据的测量,培养数据处理能力。
通过各个环节的教学改革,已经使学生初步具备了设计包装机械测试系统、自动检测传感单元的能力,并在随后的《包装机电控制》、《液压与气动》等课程中,坚持进行项目教学,通过持续的培养与努力,最终实现专业教学的目的。
三、 存在的问题与未来教学改革的方向
《测试技术》的教学方法已经通过了3年的实践,培养了一部分学生的学习兴趣与动手能力,测试的概念与方法在毕业设计环节获得了应用,但还存在一些问题,例如某些学生的学习兴趣还没有调动起来,项目教学的教学效果还不甚理想,原因是多方面的,例如我们中小学推行的压迫式的应试教学,挫伤了不少学生的学习主动性和创造性。我们认为教学改革是一项系统工程,需要多门课程协调推进。本课程未来本课程教学改革的方向包括:
1)创新教材体系,使之适应时代的发展;
2)统筹规划,不仅设计好实践环节,而且要在师资配备、师生的奖励环节进行改进;
3)开展全国性的学科竞赛,增进不同高校之间的交流。
[参考文献]
[1]郭建亮,郑书华.地方高校《机械工程测试技术》课程的改革[J].宁波工程学院学报,2009,(1):118-120
[2]朱春梅,黄民.机械类专业“测试技术”课程教学改革初探[J].中国电力教育,2009,139:89-90
[3]王雪,王伯雄,罗秀芝.《测试与检测技术基础》课程的教学改革与创新[J].理工高教研究,2009,(04):130-132
[4]徐巧玉,蔡海潮,尚振东,武充沛,杨建玺.测试技术实验教学改革的研究与实践[J].中国现代教育装备.2009,81:107-108
[5]吴世雄,王成勇.“机械工程测试技术”教学改革的探索[J].广东工业大学学报(社会科学版).2007,7(增刊1):108-109
[6]化春键,尤丽华,周一届.测试技术类课程的教学改革与创新研究[J].江南大学学报(教育科学版).2008,(01):69-72
(作者单位:浙江大学宁波理工学院)
【摘 要】产品的包装在产品运输过程中起着重要的作用,为了保证运输过程的可靠性,包装件有很多测试标准。本文主要解读了联邦快递FEDEX包装测试标准,解析了该标准中包装件的分类以及超过和不超过150磅包装件的测试项目及方法,并且与ISTA包装测试标准中的一些异同点进行对比分析。
【关键词】包装 测试 标准 FEDEX ISTA
引言
在产品运输流通过程中,产品的包装有至关重要的意义[1],它不仅起到方便运输的作用,而且还能起到保护产品的作用[2]。如果产品的包装在运输环境中失效,则产品就可能因为运输过程中受到的强烈冲击作用而发生异常甚至报废[3]。为了保证运输包装件产品在运输过程中的可靠性,需要在运输之前就提前对包装件进行运输包装测试[4]。目前包装测试标准很多,本文主要解读联邦快递FEDEX包装测试标准,并与ISTA包装测试标准中的一些异同点进行对比分析。
1 FEDEX包装测试标准中包装件的分类
FEDEX包装测试标准分为两部分,第一部分适用于大于150磅(68kg)的包装件,第二部分适用于不超过150磅的包装件,该标准中这类包装件又分为3种:扁平形包装件、长条形包装件、标准型包装件,不同类型包装件的测试要求有所不同。几种包装件具体区别如表1所示。
相比FEDEX包装测试标准中包装件的分类,ISTA包装测试标准中也规定了包装件的分类。但是ISTA除以上三种类别之外,还规定了一类为小型包装件。具体参数为:最长棱小于35cm(14in),体积小于13110cm3(800in3),质量不大于(10磅)。
2 FEDEX包装测试标准中大于150磅(68kg)的包装件的测试要求
FEDEX包装测试标准中,对于大于150磅的包装件,根据表2,不同类别包装件要进行各自需要的测试。
表2中具体测试项目的测试参数及流程如下。
(1)斜面冲击试验(Side impact test):斜面冲击最慢速率为175cm/s( ft/s),包装件的每个面都进行试验。
(2)底部冲击试验(Bottom impact test):将试验样品底部升高到冲击面以上(8in),然后释放样品进行跌落。
(3)22度角冲击试验(Tip test):把试验样品底面沿一条棱倾斜,使底面与冲击面形成22°,然后释放回到最初角度。然后沿底面其他三条棱重复以上试验。
(4)卷边冲击试验(Raised edge impact test):把试验样品底面沿一条棱倾斜,使底面相对棱高于冲击面(10in),然后释放回到初始位置。然后沿底面其他三条棱重复以上试验。
(5)卷角冲击试验(Raised corner impact test):将试验样品底面沿一角升高使样品由该角被冲击面支撑,使样品底面的对角线的边角距冲击面(10in),接着释放使样品回到冲击面上。然后沿底面其他四个边角重复以上试验。
(6)抗压试验(compression test):在动态压缩试验机上进行,压缩速率为(),当达到以下条件之一时结束试验:①达到停止载荷F(磅)=×(108-H)×L×W×F,其中H、L、W为高、长、宽,F为湿度、时间、堆叠因子;②屈服检测比例达到15%时;③偏差为(1in)时。
(7)正弦振动试验(Rotary vibration test):①将试验样品放到竖直振动台上,竖直方向上不进行固定,水平方向可能安装防样品掉落装置,然后从要求最低频率开始振动,保持振动位移为(1in),然后缓慢增加频率,直至试验样品有瞬间离开振动台的情况,停止试验记录该频率;②在该频率下对样品的某一方向进行正弦振动试验,固定位移为,试验时间t(min)=14200/(f×60);③对其他两个方向进行同样的正弦振动试验。对于长条型的包装件,则可只进行最长棱和最短棱的正弦振动试验。
(8)随机振动试验(Random vibration test):在竖直振动台上对样品某方向进行随机振动试验。第一步先按卡车随机振动程序进行振动(Grms取),第二步按飞行器随机振动程序(Grms取)进行振动,最后再按卡车随机振动程序进行振动。两种振动程序图如图1和图2所示。对于国内运货的货物,每步振动15min;对于国际运货的货物,每步振动30min。然后对其他两个方向进行同样的试验。
大于150磅(68kg)的包装件,FEDEX标准与ISTA标准有一定异同点。主要如下:ISTA标准中需要进行的测试包括:①固定位移振动试验;②底部冲击试验、斜面冲击、水平冲击试验任选其一;③若顶面不能冲击时还需选旋转棱跌落试验,测试项目没有FEDEX标准中测试项目多。ISTA标准中固定位移振动试验与FEDEX标准中正弦振动试验相同。底部冲击试验中,ISTA标准中样品被升高至离地面(6in),这与FEDEX标准中(8in)不同。ISTA标准中旋转棱跌落试验与FEDEX标准中卷边冲击试验主要区别是,旋转棱跌落试验中底面一条棱被一个垫木支起,而卷边冲击试验中底面一条棱直接被冲击面支撑。
3 FEDEX包装测试标准中不超过150磅(68kg)的包装件的测试要求
FEDEX包装测试标准中,对于不超过150磅的包装件,根据表3,不同类别包装件要进行各自需要进行的测试。
(1)自由跌落试验(Free-fall drop test):把包装件按以下次序依次进行自由跌落到钢质冲击面上,最易碎边角着地→该边角处最短棱着地→该边角处次短棱着地→该边角处最长棱着地→某一最小面着地→另一相对最小面着地→某中等面积面着地→另一相对中等面积面着地→某一最大面着地→另一相对最大面着地。跌落高度由包装件的质量决定,具体如下:不大于75磅(34kg)对应高度(30in),75磅到100磅()对应高度为61cm(24in),100磅到150磅(68kg)对应高度为(18in)。 (2)集中冲击试验(Concentrated impact test):将一长宽高各为(12in)的木质箱子内装上沙袋,使其重21磅(),底部某棱上包裹角铁。将扁平形包装件平放在钢质面上。标出包装件正中心及木质盒子带角铁棱的中心,将木质箱沿底部角铁棱倾斜并升高到(30in)且箱子与包装件最长边平行,然后自然跌落使带角铁的棱跌落到包装件上,并且跌落后带角铁的棱中心与包装件正中心重合。具体冲击示意图如图3所示。
(3)桥架冲击试验(Bridge impact test):将长条形包装件的两端垫在两个(4in)高的积木上,找出包装件的正中心。将一长宽高各为(12in)的木质箱子内装上沙袋,使其重21磅(),底部某棱上包裹角铁,并找出棱的中心。将木质箱子沿底部带角铁棱倾斜并升高到(30 in)且箱子与包装件最长边垂直,然后自然跌落使带角铁的棱跌落到包装件上,并且跌落后带角铁棱中心与包装件正中心重合。具体冲击示意图如图4所示。
(4)抗压试验:与超过150磅的包装件抗压试验相同。
(5)正弦振动试验:与超过150磅的包装件正弦振动试验相同。
(6)随机振动试验:与超过150磅的包装件随机振动试验相同。
(7)重复自由跌落试验(Second free-fall drop test):对于国际运输的货物,在振动测试之后还要进行第二次自由跌落试验。
可见FEDEX包装测试标准中不超过150磅的包装件与超过150磅的包装件主要区别在于冲击测试的种类有所不同,超过150磅的包装件的冲击测试种类明显多于不超过150磅的包装件,这正说明了更重的包装件其冲击测试的严酷性。对于不超过150磅的包装件,FEDEX标准与ISTA标准也有一定异同点。主要如下:ISTA标准中,包装件的类型还包括小型包装件;两个标准中的冲击测试项目有所不同,FEDEX标准和ISTA标准的冲击测试对于长条形包装件都包括集中冲击试验,对于扁平形包装件都包括桥架冲击试验,但是两个标准中冲击的高度不同,FEDEX标准中高度为(30in),而ISTA标准中高度为(16in)。此外,FEDEX标准中冲击测试还有两角两棱六面次序的自由跌落,而ISTA标准中冲击测试还有三棱两角两棱两面次序的自由跌落试验、倾翻试验、旋转跌落试验;ISTA标准中有温湿度试验的预处理,FEDEX标准中则没有该预处理;振动试验方面两个标准也差别较大,而且ISTA标准中还有低气压随机振动试验。
结语
本文主要解读了FEDEX包装测试标准,并与ISTA包装测试标准进行了对比。由以上解读分析可见,包装件的测试项目很多,不同标准的测试流程及参数也会有差异[5]。但是对于不同标准要求的包装件,相关测试完成后,该包装件就能达到所要求的运输环境的可靠性。
参考文献
[1]汤志强,曲红.包装在现代物流中的重要作用[J].包装工程,2002,23
(3):77-78.
[2]金国斌.物流链中的运输包装优化问题[J].包装工程,2005, 26(3):93-95.
[3]曹国荣.包装标准化基础[M].北京:中国轻工业出版社,2006:87-92.
[4]李沛生.我国运输包装工业现状与发展趋势[J].物流技术与应用,2004(8):54-58.
[5]金国斌.物流链中的运输包装优化问题[J].包装工程,2005,26(3):93-95.
[6]向红.《包装设计工程基础》[M].国防科技大学出版社,2002:34-38.
钢结构无损检测 摘要:通过对应用于建筑钢结构行业中的几种常规无损检测方法的简述,归纳了被检对象所适用的不同无 损检测方法。为广大工程技术人员和管理人员了解、学习、应用无损检测技术提供参考。 关键词:建筑钢结构;无损检测 1 前言 建筑钢结构由于其强度高、工业化程度高以及综合经济效益好等优点,自上世纪 90 年代,特别是近年来得 到了迅猛发展,广泛应用于工业和民用等领域。由于一些重点工程,建筑钢结构发生了严重的质量事故, 如郑州中原博览中心网架曾发生了崩塌事故,所以建筑钢结构的安全性和可靠性越来越受到重视。 建筑钢结构的安全性和可靠性源于设计,其自身质量则源于原材料、加工制作和现场安装等因素。评价建 筑钢结构的安全性和可靠性一般有三种方式:⑴模拟实验;⑵破坏性实验;⑶无损检测。模拟实验是按一 定比例模拟建筑钢结构的规格、材质、结构形式等,模拟在其运行环境中的工作状态,测试、评价建筑钢 结构的安全性和可靠性。模拟实验能对建筑钢结构的整体性能作出定量评价,但其成本高,周期长,工艺 复杂。破坏性实验是采用破坏的方式对抽样试件的性能指标进行测试和观察。破坏性实验具有检测结果精 确、直观、误差和争议性比较小等优点,但破坏性实验只适用于抽样,而不能对全部工件进行实验,所以 不能得出全面、综合的结论。无损检测则能对原材料和工件进行 100%检测,且经济成本相对较低。 上世纪 50 年代初,无损检测技术通过前苏联进入我国。作为工艺过程控制和产品质量控制的手段,如今在 核电、航空、航天、船舶、电力、建筑钢结构等行业中得到广泛的应用,创造了巨大的经济效益和社会效 益。无损检测技术是建立在众多学科之上的一门新兴的、综合性技术。无损检测技术是以不损伤被检对象 的结构完整性和使用性能为前提,应用物理原理和化学现象,借助先进的设备器材,对各种原材料,零部 件和结构件进行有效的检验和测试,借以评价它们的完整性、连续性、致密性、安全性、可靠性及某些物 理性能。无损检测经历了三个阶段,即无损探伤(Non-destructive Inspection,简称 NDI)、无损检测 (Non-destructive testing,简称 NDT)、无损评价(Non-destructive Evaluation,简称 NDE)、无损 探伤的含义是探测和发现缺陷。无损检测不仅仅要探测和发现缺陷,而且要发现缺陷的大小、位置、当量、 性质和状态。无损评价的含义则更广泛、更深刻, 它不仅要求发现缺陷,探测被检对象的结构、性质、状 态,还要求获得更全面、更准确的,综合的信息,从而评价被检对象的运行状态和使用寿命。应用于钢结 构行业中的常规无损检测方法有磁粉检测(Magnetic Testing 简称 MT)、渗透检测(Penetrate Testing, 简称 PT)、涡流检测(Eddy current Testing 简称 ET)、声发射检测(Acoustic Emission Testing 简称 AET)、超声波检测(Ultrasonic Testing,简称 UT)、射线检测(Radiography Testing,简称 RT)。在 建筑钢结构行业中,按检测缺陷产生的时机,无损检测方法可以按下图分类。 2 检测方法的简述 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 渗透检测(PT) 原理 在被检对象表面施加含有荧光染料或着色染料的渗透液,渗透液在毛细血管的作用下,经过一定时间 后,渗透液可以渗透到表面开口的缺陷中去。经过去除被检对象表面多余的渗透液,干燥后,再在被检对 象表面施加吸附介质(显象剂)。同样在毛细血管的作用下,显象剂吸附缺陷中的渗透液,使渗透液回渗 到显象剂中,在一定的光照下,缺陷中的渗透液被显示。从而达到检测缺陷的目的。 适用范围 适用于非多孔状固体表面开口缺陷。 局限性 仅适用于表面开口缺陷的检测,而且对被检对象的表面光洁度要求较高,涂料、铁锈、氧化皮会覆盖表面 缺陷而造成漏检。对检测人员的视力有一定要求,成本相对较高。 优点 设备轻便、操作简单,检测灵敏度高,结果直观、准确。 涡流检测(ET) 原理 金属材料在交变磁场的作用下产生了涡流,根据涡流的分布和大小可以检测出铁磁性材料和非铁磁性材料 的缺陷。 适用范围 适用于各种导电材料的表面和近表面的缺陷检测。 局限性 不适用不导电材料检测,对形状复杂的试件很难应用,比较适合钢管、钢板等形状规则的轧制型材的检测, 而且设备较贵;无法判定缺陷的性质。 优点 检测速度快,生产效率高,自动化程度高。 声发射检测(AET) 原理 材料或结构件受到内力或外力的作用产生形变或断裂时, 以弹性波的形式释放出应变能的现象称为声发射, 也称为应力波发射。声发射检测是通过受力时材料内部释放的应力波判断被检对象内部结构损伤程度的一 种新兴动态无损检测技术。 适用对象 适用于被检对象的动态监测,如对大型桥梁、核电设备的实时动态监测。 局限性 无法监测静态缺陷、干扰检测的因素较多;设备复杂、价格较贵、检测技术不太成熟。 优点 可以远距离监控设备的运行情况和缺陷的扩展情况,对结构的安全性和可靠性评价提供依据。 超声波检测(UT) 原理 超声波是指频率大于 20 千兆赫兹的机械波。根据波动传播时介质的振动方向相对于波的传播方向不同,可 将波动分为纵波、横波、表面波和板波等。用于钢结构检测的主要是纵波和横波。 超声波探伤仪激励探头产生的超声波在被检对象的介质中按一定速度传播,当遇到异面介质(如气孔、夹 渣)时,一部分超声波反射回来,经仪器处理后,放大进入示波屏,显示缺陷的回波。 适用对象 适用于各类焊逢、板材、管材、棒材、锻件、铸件以及复合材料的检测,特别适合厚度较大的工件。 局限性 检测结果可追溯性较差;定性困难,定量不精确,人为因素较多;对被检工件的材质规格,几何形状有一 定要求。 优点 检测成本低、速度快、周期短、效率高;仪器小、操作方便;能对缺陷进行精确定位;对面积型缺陷的检 出率较高(如裂纹、未熔合等) 射线检测(RT) 原理 射线是一种波长短、频率高的电磁波。 射线检测,常规使用×射线机或放射性同位素作为放射源产生射线,射线穿过被检对象,经过吸收和衰减, 由于被检试件中存在厚度差的原因,不同强度的射线到达记录介质(如射线胶片),射线胶片的不同部位 吸收了数量不等的光子,经过暗室处理后,底片上便出现了不同黑度的缺陷影象,从而判定缺陷的大小和 性质。 适用范围 适用较薄而不是较厚(如果工件的厚度超过 80mm 就要使用特殊设备进行检测,如加速器)的工件的内部体 积型缺陷的检测。 局限性 检测成本高、周期长,工作效率低;不适用角焊逢、板材、管材、棒材、锻件的检测;对面状的缺陷检出 率较低;对缺陷的高度和缺陷在被检对象中的深度较难确定;影响人体健康。 优点 检测结果直观、定性定量准确;检测结果有记录,可以长期保存,可追溯性较强。 3 小结 综上所述,每种无损检测方法的原理和特点各不相同,且适用的检测对象也不一样。在建筑钢结构的行业 中应根据结构的整体性能,检测成本及被检对象的规格、材质、缺陷的性质、缺陷产生的位置等诸多因素 合理选择无损检测方法。一般地,选择无损检测方法及合格等级,是设计人员依据相关规范而确定的。有 的工程,业主也有无损检测方法及合格等级的要求,这就需要供需双方相互协商了。 钢结构在加工制作及安装过程中无损检测方法的选择见表 1 被检对象 原材料检验 板材 锻件及棒材 管材 螺栓 焊接检验 坡口部位 清根部位 对接焊逢 角焊逢和 T 型焊逢 UT 检测方法 UT、MT(PT) UT(RT)、MT(PT) UT、MT(PT) UT、PT(MT) PT(MT) RT(UT)、MT(PT) UT(RT)、PT(MT) 被检对象所适用的无损检测方法见表 2 内部缺陷 表面缺陷和近表面 检测方法 UT ● ○ ● ● MT ● ● ● ● PT ● ○ ○ ● ET △ △ ● × AET △ △ △ △ 发生中缺陷检 测 检测方法 RT 被检对象 试 件 分 类 锻件 铸件 压延件(管、板、型材) 焊逢 × ● × ● 分层 疏松 气孔 内部 缩孔 缺陷 未焊透 未熔合 缺陷 分类 夹渣 裂纹 白点 表面裂纹 表面 缺陷 表面气孔 折叠 断口白点 × × ● ● ● △ ● ○ × △ ○ — × ● ○ ○ ○ ● ● ○ ○ ○ △ × — × — — — — — — — — — ● △ ○ ● — — — — — — — — — ● ● ○ ● — — — — — — — — — ● △ ○ — — — — — △ △ △ △ △ △ — — — 注:●很适用;○适用;△有附加条件适用;×不适用;—不相关 参 1. 考 文 献 强天鹏 射线检测 [M] 云南科技出版社 2001 2. 3. 4. 5. 周在杞等 张俊哲等 无损检测技术及其应用 [M] 科学出版社 王小雷 锅炉压力容器无损检测相关知识 [M] 李家伟等 无损检测 冉启芳 2001 1993 [M] 机械工业出版社 2002 无损检测方法的分类及其特征的介绍 [J] 无损检测 1999 2 钢网架结构超声波检测及其质量的分 [J] 无损检测 2001 6 磁粉检测(MT) 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 磁粉探伤的原理及概述 磁粉探伤的原理 磁粉探伤又称 MT 或者 MPT(Magnetic Particle Testing),适用于钢铁等磁性材料的表面附近进行探伤 的检测方法。利用铁受磁石吸引的原理进行检查。在进行磁粉探伤检测时,使被测物收到磁力的作用,将 磁粉(磁性微型粉末)散布在其表面。然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成指 示图案。指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。 磁粉探伤方法 磁粉探伤检测的顺序分为前期处理、磁化、磁粉使用、观察,以及后期处理。 前期处理→磁化→磁粉使用→观察→后期处理 以下分别说明各个步骤的概要。 (1)前期处理 探探伤面如果有油脂、涂料、锈、或其他异物附着的情况下,不仅会妨碍磁粉吸附在伤痕上,而且还会出 现磁粉吸附在伤痕之外的部分形成疑私图像的情况。因此在磁化之前,要采用物理或者化学处理,进行去 除污垢异物的步骤。 (2)磁化 将检测物适当磁化是非常重要的。通常,采用与伤痕方向与磁力线方向垂直的磁化方式。另外为了适当磁 化,根据检测物的形状可以采用多种方法。日本工业规格(JIS G 0565-1992)中规定了以下 7 种磁化方法。 ①轴通电法……在检测物轴方向直接通过电流。 ②直角通电法……在检测物垂直于轴的方向直接通过电流。 ③Prod 法……在检测物局部安置 2 个电极(称为 Prod)通过电流。 ④电流贯通法……在检测物的孔穴中穿过的导电体中通过电流。 ⑤线圈法……在检测物中放入线圈,在线圈中通过电流。 ⑥极间法……把检测物或者要检测的部位放入电磁石或永磁石的磁极间。 ⑦磁力线贯通法……对通过检测物的孔穴的强磁性物体施加交流磁力线,使感应电流通过检测物。 (3)磁粉使用磁粉探伤的原理 ① 磁粉的种类 为了让磁粉吸附在伤痕部的磁极间形成检出图像,使用的磁粉必须容易被伤痕部的微弱磁场磁化,吸附在 磁极上,也就是说需要优秀的吸附性能。另外,要求形成的磁粉图像必须有很高的识别性。 一般,磁粉探伤中使用的磁粉有在可见光下使用的白色、黑色、红色等不同磁粉,以及利用荧光发光的荧 光磁粉。另外,根据磁粉使用的场合,有粉状的干性磁粉以及在水或油中分散使用的湿性磁粉。 ② 磁粉的使用时间 磁粉使用时间分为一边通过磁化电流一边使用磁粉的连续法,以及在切断磁化电流的状态即利用检测物的 残留磁力的残留法两种。 (4)观察 为了便于观察附着在伤痕部位的磁粉图像,必须创造容易观察的环境。普通磁粉需要在尽可能明亮的环境 下观察,荧光磁粉则要使用紫外线照射灯将周围尽量变暗才容易观察。 (5)后期处理 磁粉探伤结束,检测物有可能仍作为产品或是需要送往下一个加工步骤接受机械加工等。这时就需要进行 退磁、去除磁粉、防锈处理等后期处理。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 生产厂家: 生产厂家:济宁联永超声电子有限公司 仪器设备名称: 仪器设备名称:CDX-Ⅲ该机型磁粉探伤仪 Ⅲ 仪器概况:CDX-Ⅲ该机型磁粉探伤仪是具有多种磁化方式的磁粉探 伤仪设备。仪器采用可控硅作无触点开关,噪音小、寿命长、操作简 单、方便、适应性强、工作稳定。是最近推出新产品,它除具有便携 式机种的一切优点,还具有移动机种的某些长处,扩展了用途,简化 了操作,还具有退磁功能。 该设备有四种探头: 1、旋转探头: 型)能对各种焊缝、各种几何形状的曲面、平面、 (E 管道、锅炉、球罐等压力容器进行一次性全方位显示缺陷和伤痕。 2、电磁轭探头: 型)它配有活关节,可以对平面、曲面工件进行 (D 探伤。 3、马蹄探头: 型)它可以对各种角焊缝,大型工件的内外角进行 (A 局部探伤。 4、磁环: 型)它能满足所有能放入工件的周向裂纹的探伤,用它 (O 来检测工件的疲劳痕(疲劳裂痕均垂于轴向)及为方便,用它还可以 对工件进行远离法退磁。 总之,该仪器是多种探伤仪的给合体,功能与适用范围广,尤其应用 于不允许通电起弧破表面零件的探伤。 无损检测概论及新技术应用 无损检测概论及新技术应用 概论 摘要: 摘要:综述了无损检测的定义、方法、特点、要求等基本知识,以及无损检测在 现今社会中的应用实例,其中包括混凝土超声波无损检测技术、涡流无损检测技 术、渗透探伤技术。 关键词: 关键词:无损检测;混凝土缺陷;涡流检测;渗透探伤。 引言: 引言:随着现代工业的发展,对产品的质量和结构的安全性、使用的可靠性提出 了越来越高的要求,无损检测技术由于具有不破坏试件、检测灵敏度高等优点, 所以其应用日益广泛。无损检测是工业发展必不可少的有效工具,在一定程度上 反映了一个国家的工业发展水平,其重要性已得到公认。 1、 无损检测概论 、 无损检测 检测概论 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用 性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位 置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿 命等)的所有技术手段的总称。 常用的无损检测方法有射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和 液体渗透检测(PT) 四种。 其他无损检测方法: 涡流检测(ET)、 声发射检测 (AT) 、 (TIR) 泄漏试验 、 (LT) 交流场测量技术 、 (ACFMT) 漏磁检验 、 (MFL)、 热像/红外 远场测试检测方法(RFT)等。 基于以上方法,无损检测具有一下应用特点: 1>不损坏试件材质、结构 无损检测的最大特点就是能在不损坏试件材质、 结构的前提下进行检测, 所以实施无损检测后,产品的检查率可以达到 100%。但是,并不是所有需要测 试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验 只能采用破坏性试验, 因此, 在目前无损检测还不能代替破坏性检测。 也就是说, 对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结 果互相对比和配合,才能作出准确的评定。 2>正确选用实施无损检测的时机 在无损检测时, 必须根据无损检测的目的,正确选择无损检测的时机,从而顺利 地完成检测预定目的,正确评价产品质量。 3>正确选用最适当的无损检测方法 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备 材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、 形状、部位和取向,选择合适的无损检测方法。 4>综合应用各种无损检测方法 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应 尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无 损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质 量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只 有这样,无损检测在承压设备的应用才能达到预期目的。[1] 通过各种检测方法,最终对于无损检测的要求是:不仅要发现缺陷,探测试 件的结构、状态、性质,还要获取更全面、准确和综合的信息,辅以成象技术、 自动化技术、计算机数据分析和处理技术等,与材料力学、断裂力学等学科综合 应用,以期对试件和产品的质量和性能作出全面、准确的评价。 2、 无损检测在各领域的应用 、 无损检测基于以上优点,在现今社会受到广泛关注和应用,为实际生产工作减 少了废料成本,提供了极大的方便。其中超声波检测技术、涡流检测、渗透探伤 技术、霍尔效应无损探伤技术应用极为出色。 混凝土超声无损检测 混凝土是我国建筑结构工程最为重要的材料之一,它的质量直接关系到结构 的安全。多年来,结构混凝土质量的传统检测方法是以按规定的取样方法,制作 立方体试件,在规定的温度环境下,养护 28d 时按标准实验方法测得的试件抗压 强度来评定结构构件的混凝土强度。用试件实验测得的混凝土性能指标,往往是 与结构物中的混凝土性能有一定差别。因此,直接在结构物上检测混凝土质量的 现场检测技术,已成为混凝土质量管理的重要手段。 所谓混凝土“无损检测”技术,就是要在不破坏结构构件的情况下,利用测 试仪器获取有关混凝土质量等受力功能的物理量。 因该物理量与混凝土质量之间 有较好的相互关系,可采用获取的物理量去推定混凝土质量。[2] 混凝土超声检测是用超声波探头中的压电陶瓷或其他类型的压电晶体加载某 频率的交流电压后激发出固定频率的弹性波, 在材料或结构内部传播后再由超声 波换能器接收,通过对采集的超声波信号的声速、振幅、频率以及波形等声学参 数进行分析,以此推断混凝土结构的力学特性、内部结构及其组成情况。超声波 检测可用于混凝土结构的测厚、探伤、混凝土的弹性模量测定以及混凝土力学强 度评定等方面. [3] 涡流无损检测 涡流检测的基本原理:将通有交流电的线圈置于待测的金属板上或套在待测 的金属管外。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感 应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流 的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈 的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用 一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化, 进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或 缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能 反映试件表面或近表面处的情况。[4] 应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过 式、探头式和插入式线圈 3 种。穿过式线圈用来检测管材、棒材和线材,它的内 径略大于被检物件, 使用时使被检物体以一定的速度在线圈内通过, 可发现裂纹、 夹杂、凹坑等缺陷。探头式线圈适用于对试件进行局部探测。应用时线圈置于金 属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳 裂纹等。插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可 用于检查各种管道内壁的腐蚀程度等。为了提高检测灵敏度,探头式和插入式线 圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大 批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传 送的机械装置) 、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。[5] 优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现 自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷, 检测结果也易于受到材料本身及其他因素的干扰。 渗透探伤技术 液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透 剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经 去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作 用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光 源下 (紫外线光或白光) 缺陷处的渗透液痕迹被现实, 黄绿色荧光或鲜艳红色) , ( , 从而探测出缺陷的形貌及分布状态。[6] 渗透检测适用于具有非吸收的光洁表面的金属、非金属,特别是无法采用磁 性检测的材料,例如铝合金、镁合金、钛合金、铜合金、奥氏体钢等的制品,可 检验锻件、铸件、焊缝、陶瓷、玻璃、塑料以及机械零件等的表面开口型缺陷。 渗透检测的优点是灵敏度较高(已能达到检测开口宽度达 的裂缝) ,检测 成本低,使用设备与材料简单,操作轻便简易,显示结果直观并可进一步作直观 验证(例如使用放大镜或显微镜观察) ,其结果也容易判断和解释,检测效率较 高。缺点是受试件表面状态影响很大并只能适用于检查表面开口型缺陷,如果缺 陷中填塞有较多杂质时将影响其检出的灵敏度。[7] 3、 结语 、 随着现代科学技术的发展,激光、红外、微波、液晶等技术都被应用于无损 检测领域,而传统的常规无损检测技术也因为现代科技的发展,大大丰富了应用 方法,如射线照相就可细分为 X 射线、γ射线、中子射线、高能 X 射线、射线 实时照相、层析照相……等多种方法。 无损检测作为一种综合性应用技术,无损检测技术经历了从无损探伤,到无 损检测,再到无损评价,并且向自动无损评价、定量无损评价发展。相信在不远 的将来, 新生的纳米材料、 微机电器件等行业的无损检测技术将会得到迅速发展。 参考文献【1】李喜孟.无损检测.机械工业出版社.2011 】 【2】父新漩. 混凝土无损检测手册.人民交通出版社.2003 】 【 3】 冯子蒙.超声波无损检测于评价的关键技术问题及其解决方案.煤矿机 】 械.2009(9) 【4】唐继强.无损检测实验.机械工业出版社.2011 】 【5】李丽茹.表面检测.机械工业出版社.2009 】 【6】国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会.机械工业 出版社.2004 【7】胡学知主编. 中国劳动社会保障出版社.2007 】
远场涡流无损检测技术的发展历史远场涡流无损检测技术的发展历史远场涡流无损检测技术的发展历史远场涡流无损检测技术的发展历史及特点及特点及特点及特点 远场效应是20世纪40年代发现的。1951年Maclean .获得了此项技术的美国专利。50年代壳牌公司的Schmidt .独立地再发现了远场涡流无损检测技术,在世界上首次研制成功检测井下套管的探头,并用来检测井下套管的腐蚀情况,1961年他将此项技术命名为“远场涡流检测”,以区别于普通涡流检测。壳牌公司开发部向Maclean购买了该专利权,在探头的研制中获得了很大的成功,并用来检测井下套管。20世纪60年代初期,壳牌公司应用远场涡流检测技术来检测管线,检测设备包括信号功率源、信号测量、信号记录和处理,做成管内能通过的形式,像活塞一样,加动力之后即可在管线内运动,取名“智能猪”。此装置于1961年5月9日第一次试用,一次可以检测80公里或更长的管线。壳牌公司在80年代促进了此项技术的商业化。一些制造商立刻认可了此项技术的价值,开始生产远场涡流检测设备。在过去的20多年中,远场涡流检测技术引起了全世界有关研究人员的兴趣,Schmidt .作出了杰出的贡献,Lordo w,Atherton .等对远场涡流现象进行了有限元模型的理论模拟,开发了计算机模拟程序,为远场涡流检测奠定了坚实的理论基础。在80年代后期和90年代初期,远场涡流检测技术得到了很大发展,开发了检测系统,利用内置式探头来检测输气管线、井下套管、地埋管线、热交换器和锅炉,利用外置式探头来检测平板和钢管。现代的检测设备利用计算机来显示和储存数据,还有自动信号分析程序。 从20世纪80年代开始,加拿大路赛尔技术有限公司(RUSSELL NDE SYSTEMS INC 简称路赛尔公司)与加拿大女王大学(Queen’s University,世界应用电磁研究中心)合作,致力于远场涡流技术在管道检测方面的研究,特别是井下套管和地埋油气水输送管线的检测。路赛尔公司1988年研制成功第一代远场涡流检测系统(108型),1992年研制成功第二代检测系统(204型),2000年研制成功第三代检测系统(308型)。目前路赛尔公司生产的远场涡流无损检测系统的技术居世界领先水平。2000年美国材料试验学会制定了ASTM E2096-00《热交换器管远场涡流检测》标准,此标准由路赛尔公司撰写。美国无损探伤试验学会ASNT于2004年出版的电磁无损检测手册[10],其中第八章远场涡流检测由路赛尔公司和加拿大女王大学撰写。 2000年以来我国电力、石化、化工行业向路赛尔公司购买了数套204型和308型远场涡流检测系统,用于检测锅炉和热交换器,应用效果很好。我国2004年制定了国家电力行业标准DL/T 883-2004《电站在役给水加热器铁磁性钢管远场涡流检验技术导则》。近二年来我国油田开始对路赛尔公司生产的远场涡流井下套管无损检测系统感兴趣。远场涡流无损检测的原理和优点三种普通无损检测方法存在的缺陷对于井下套管和地埋线的无损检测,人们通常尝试使用漏磁、传统涡流和超声检测方法,但这三种方法都存在很大的局限性。漏磁检测存在的主要问题:·对于内壁和外壁缺陷的灵敏度很不一致,如果探头与外壁接触,则外壁缺陷的灵敏度比内壁高;·无法检测均匀腐蚀减薄;对间隙非常敏感,间隙变化会引起检测误差;由于必须采用磁化装置,因此设备比较笨重。传统涡流存在的主要问题:传统涡流对于铁磁性管子,由于集肤效应的作用,只能检测管道的表面缺陷,不能做到对管壁100%的检测;对间隙很敏感,间隙变化对灵敏度影响很大。超声检测存在的主要问题:超声检测要求被检测的表面很清洁,需要良好的声耦合,管道检测特别是管道的在役检测很难实现良好的声耦合。远场涡流无损检测的原理内置式探头置于被检测钢管内,探头上有一个激励线圈,还有一个(或二个)检测线圈。激励线圈和检测线圈的距离为钢管内径的2-3倍。激励线圈发出的磁力线(能量)穿过管壁向外扩散,在远场区又再次穿过有表面缺陷的管壁向内扩散,被检测线圈接收。检测线圈接收到的信号的幅度和相位都和壁厚有关,利用专用的软件就可测得管壁的厚度。激励线圈与检测线圈间距的确定在激励线圈和检测线圈之间存在三个区:直接耦合区、过渡区和远场区。外壁的幅度大于内壁的幅度;当间距等于、大于二倍钢管内径后,外壁和内壁的幅度与间距成正比,而且当间距为2-3倍钢管内径时(远场区),外壁和内壁的幅度较大,因此,激励线圈和检测线圈的距离取2-3倍钢管的内径。波在钢板中的传播波在钢板中传播的过程中,波幅衰减,相位发生移动。钢板的厚度越大,波幅衰减得越大。探头附近磁力线的分布在远场区磁力线的轨迹与管壁平行,因此,在远场区通过管壁的磁力线的总数和壁厚成正比。远场涡流无损检测的优点与普通涡流、漏磁和超声波无损检测相比,远场涡流无损检测具有以下优点:被检测的钢管的表面不必清洗;探头与钢管表面不接触,探头外径与钢管内径之间的间隙变化对检测结果的影响很小,允许的最大间隙为钢管内径的30%,最佳间隙小于钢管内径的15%;检测钢管内表面和外表面的腐蚀坑的灵敏度相同;对均匀减薄、渐变减薄和偏磨减薄的检测,都有极高的检测灵敏度;探头的检测速度是否均匀对检测结果无影响;钢管内的气体、液体介质对检测结果无影响;检测设备体积小,重量轻,便于现场灵活应用;检测数据还可存入探头内,实施长距离检测。
钢结构无损检测 摘要:通过对应用于建筑钢结构行业中的几种常规无损检测方法的简述,归纳了被检对象所适用的不同无 损检测方法。为广大工程技术人员和管理人员了解、学习、应用无损检测技术提供参考。 关键词:建筑钢结构;无损检测 1 前言 建筑钢结构由于其强度高、工业化程度高以及综合经济效益好等优点,自上世纪 90 年代,特别是近年来得 到了迅猛发展,广泛应用于工业和民用等领域。由于一些重点工程,建筑钢结构发生了严重的质量事故, 如郑州中原博览中心网架曾发生了崩塌事故,所以建筑钢结构的安全性和可靠性越来越受到重视。 建筑钢结构的安全性和可靠性源于设计,其自身质量则源于原材料、加工制作和现场安装等因素。评价建 筑钢结构的安全性和可靠性一般有三种方式:⑴模拟实验;⑵破坏性实验;⑶无损检测。模拟实验是按一 定比例模拟建筑钢结构的规格、材质、结构形式等,模拟在其运行环境中的工作状态,测试、评价建筑钢 结构的安全性和可靠性。模拟实验能对建筑钢结构的整体性能作出定量评价,但其成本高,周期长,工艺 复杂。破坏性实验是采用破坏的方式对抽样试件的性能指标进行测试和观察。破坏性实验具有检测结果精 确、直观、误差和争议性比较小等优点,但破坏性实验只适用于抽样,而不能对全部工件进行实验,所以 不能得出全面、综合的结论。无损检测则能对原材料和工件进行 100%检测,且经济成本相对较低。 上世纪 50 年代初,无损检测技术通过前苏联进入我国。作为工艺过程控制和产品质量控制的手段,如今在 核电、航空、航天、船舶、电力、建筑钢结构等行业中得到广泛的应用,创造了巨大的经济效益和社会效 益。无损检测技术是建立在众多学科之上的一门新兴的、综合性技术。无损检测技术是以不损伤被检对象 的结构完整性和使用性能为前提,应用物理原理和化学现象,借助先进的设备器材,对各种原材料,零部 件和结构件进行有效的检验和测试,借以评价它们的完整性、连续性、致密性、安全性、可靠性及某些物 理性能。无损检测经历了三个阶段,即无损探伤(Non-destructive Inspection,简称 NDI)、无损检测 (Non-destructive testing,简称 NDT)、无损评价(Non-destructive Evaluation,简称 NDE)、无损 探伤的含义是探测和发现缺陷。无损检测不仅仅要探测和发现缺陷,而且要发现缺陷的大小、位置、当量、 性质和状态。无损评价的含义则更广泛、更深刻, 它不仅要求发现缺陷,探测被检对象的结构、性质、状 态,还要求获得更全面、更准确的,综合的信息,从而评价被检对象的运行状态和使用寿命。应用于钢结 构行业中的常规无损检测方法有磁粉检测(Magnetic Testing 简称 MT)、渗透检测(Penetrate Testing, 简称 PT)、涡流检测(Eddy current Testing 简称 ET)、声发射检测(Acoustic Emission Testing 简称 AET)、超声波检测(Ultrasonic Testing,简称 UT)、射线检测(Radiography Testing,简称 RT)。在 建筑钢结构行业中,按检测缺陷产生的时机,无损检测方法可以按下图分类。 2 检测方法的简述 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 渗透检测(PT) 原理 在被检对象表面施加含有荧光染料或着色染料的渗透液,渗透液在毛细血管的作用下,经过一定时间 后,渗透液可以渗透到表面开口的缺陷中去。经过去除被检对象表面多余的渗透液,干燥后,再在被检对 象表面施加吸附介质(显象剂)。同样在毛细血管的作用下,显象剂吸附缺陷中的渗透液,使渗透液回渗 到显象剂中,在一定的光照下,缺陷中的渗透液被显示。从而达到检测缺陷的目的。 适用范围 适用于非多孔状固体表面开口缺陷。 局限性 仅适用于表面开口缺陷的检测,而且对被检对象的表面光洁度要求较高,涂料、铁锈、氧化皮会覆盖表面 缺陷而造成漏检。对检测人员的视力有一定要求,成本相对较高。 优点 设备轻便、操作简单,检测灵敏度高,结果直观、准确。 涡流检测(ET) 原理 金属材料在交变磁场的作用下产生了涡流,根据涡流的分布和大小可以检测出铁磁性材料和非铁磁性材料 的缺陷。 适用范围 适用于各种导电材料的表面和近表面的缺陷检测。 局限性 不适用不导电材料检测,对形状复杂的试件很难应用,比较适合钢管、钢板等形状规则的轧制型材的检测, 而且设备较贵;无法判定缺陷的性质。 优点 检测速度快,生产效率高,自动化程度高。 声发射检测(AET) 原理 材料或结构件受到内力或外力的作用产生形变或断裂时, 以弹性波的形式释放出应变能的现象称为声发射, 也称为应力波发射。声发射检测是通过受力时材料内部释放的应力波判断被检对象内部结构损伤程度的一 种新兴动态无损检测技术。 适用对象 适用于被检对象的动态监测,如对大型桥梁、核电设备的实时动态监测。 局限性 无法监测静态缺陷、干扰检测的因素较多;设备复杂、价格较贵、检测技术不太成熟。 优点 可以远距离监控设备的运行情况和缺陷的扩展情况,对结构的安全性和可靠性评价提供依据。 超声波检测(UT) 原理 超声波是指频率大于 20 千兆赫兹的机械波。根据波动传播时介质的振动方向相对于波的传播方向不同,可 将波动分为纵波、横波、表面波和板波等。用于钢结构检测的主要是纵波和横波。 超声波探伤仪激励探头产生的超声波在被检对象的介质中按一定速度传播,当遇到异面介质(如气孔、夹 渣)时,一部分超声波反射回来,经仪器处理后,放大进入示波屏,显示缺陷的回波。 适用对象 适用于各类焊逢、板材、管材、棒材、锻件、铸件以及复合材料的检测,特别适合厚度较大的工件。 局限性 检测结果可追溯性较差;定性困难,定量不精确,人为因素较多;对被检工件的材质规格,几何形状有一 定要求。 优点 检测成本低、速度快、周期短、效率高;仪器小、操作方便;能对缺陷进行精确定位;对面积型缺陷的检 出率较高(如裂纹、未熔合等) 射线检测(RT) 原理 射线是一种波长短、频率高的电磁波。 射线检测,常规使用×射线机或放射性同位素作为放射源产生射线,射线穿过被检对象,经过吸收和衰减, 由于被检试件中存在厚度差的原因,不同强度的射线到达记录介质(如射线胶片),射线胶片的不同部位 吸收了数量不等的光子,经过暗室处理后,底片上便出现了不同黑度的缺陷影象,从而判定缺陷的大小和 性质。 适用范围 适用较薄而不是较厚(如果工件的厚度超过 80mm 就要使用特殊设备进行检测,如加速器)的工件的内部体 积型缺陷的检测。 局限性 检测成本高、周期长,工作效率低;不适用角焊逢、板材、管材、棒材、锻件的检测;对面状的缺陷检出 率较低;对缺陷的高度和缺陷在被检对象中的深度较难确定;影响人体健康。 优点 检测结果直观、定性定量准确;检测结果有记录,可以长期保存,可追溯性较强。 3 小结 综上所述,每种无损检测方法的原理和特点各不相同,且适用的检测对象也不一样。在建筑钢结构的行业 中应根据结构的整体性能,检测成本及被检对象的规格、材质、缺陷的性质、缺陷产生的位置等诸多因素 合理选择无损检测方法。一般地,选择无损检测方法及合格等级,是设计人员依据相关规范而确定的。有 的工程,业主也有无损检测方法及合格等级的要求,这就需要供需双方相互协商了。 钢结构在加工制作及安装过程中无损检测方法的选择见表 1 被检对象 原材料检验 板材 锻件及棒材 管材 螺栓 焊接检验 坡口部位 清根部位 对接焊逢 角焊逢和 T 型焊逢 UT 检测方法 UT、MT(PT) UT(RT)、MT(PT) UT、MT(PT) UT、PT(MT) PT(MT) RT(UT)、MT(PT) UT(RT)、PT(MT) 被检对象所适用的无损检测方法见表 2 内部缺陷 表面缺陷和近表面 检测方法 UT ● ○ ● ● MT ● ● ● ● PT ● ○ ○ ● ET △ △ ● × AET △ △ △ △ 发生中缺陷检 测 检测方法 RT 被检对象 试 件 分 类 锻件 铸件 压延件(管、板、型材) 焊逢 × ● × ● 分层 疏松 气孔 内部 缩孔 缺陷 未焊透 未熔合 缺陷 分类 夹渣 裂纹 白点 表面裂纹 表面 缺陷 表面气孔 折叠 断口白点 × × ● ● ● △ ● ○ × △ ○ — × ● ○ ○ ○ ● ● ○ ○ ○ △ × — × — — — — — — — — — ● △ ○ ● — — — — — — — — — ● ● ○ ● — — — — — — — — — ● △ ○ — — — — — △ △ △ △ △ △ — — — 注:●很适用;○适用;△有附加条件适用;×不适用;—不相关 参 1. 考 文 献 强天鹏 射线检测 [M] 云南科技出版社 2001 2. 3. 4. 5. 周在杞等 张俊哲等 无损检测技术及其应用 [M] 科学出版社 王小雷 锅炉压力容器无损检测相关知识 [M] 李家伟等 无损检测 冉启芳 2001 1993 [M] 机械工业出版社 2002 无损检测方法的分类及其特征的介绍 [J] 无损检测 1999 2 钢网架结构超声波检测及其质量的分 [J] 无损检测 2001 6 磁粉检测(MT) 磁粉检测(MT) 原理 铁磁性材料被磁化后,产生在被检对象上的磁力线均匀分布。由于不连续性的存在,使工件表面和近表面 的磁力线发生了局部畸变而产生了漏磁场,漏磁场吸附施加在被检对象表面的磁粉,形成在合适光照下可 见的磁痕,从而达到检测缺陷的目的。 磁粉探伤的原理及概述 磁粉探伤的原理 磁粉探伤又称 MT 或者 MPT(Magnetic Particle Testing),适用于钢铁等磁性材料的表面附近进行探伤 的检测方法。利用铁受磁石吸引的原理进行检查。在进行磁粉探伤检测时,使被测物收到磁力的作用,将 磁粉(磁性微型粉末)散布在其表面。然后,缺陷的部分表面所泄漏出来泄露磁力会将磁粉吸住,形成指 示图案。指示图案比实际缺陷要大数十倍,因此很容易便能找出缺陷。 磁粉探伤方法 磁粉探伤检测的顺序分为前期处理、磁化、磁粉使用、观察,以及后期处理。 前期处理→磁化→磁粉使用→观察→后期处理 以下分别说明各个步骤的概要。 (1)前期处理 探探伤面如果有油脂、涂料、锈、或其他异物附着的情况下,不仅会妨碍磁粉吸附在伤痕上,而且还会出 现磁粉吸附在伤痕之外的部分形成疑私图像的情况。因此在磁化之前,要采用物理或者化学处理,进行去 除污垢异物的步骤。 (2)磁化 将检测物适当磁化是非常重要的。通常,采用与伤痕方向与磁力线方向垂直的磁化方式。另外为了适当磁 化,根据检测物的形状可以采用多种方法。日本工业规格(JIS G 0565-1992)中规定了以下 7 种磁化方法。 ①轴通电法……在检测物轴方向直接通过电流。 ②直角通电法……在检测物垂直于轴的方向直接通过电流。 ③Prod 法……在检测物局部安置 2 个电极(称为 Prod)通过电流。 ④电流贯通法……在检测物的孔穴中穿过的导电体中通过电流。 ⑤线圈法……在检测物中放入线圈,在线圈中通过电流。 ⑥极间法……把检测物或者要检测的部位放入电磁石或永磁石的磁极间。 ⑦磁力线贯通法……对通过检测物的孔穴的强磁性物体施加交流磁力线,使感应电流通过检测物。 (3)磁粉使用磁粉探伤的原理 ① 磁粉的种类 为了让磁粉吸附在伤痕部的磁极间形成检出图像,使用的磁粉必须容易被伤痕部的微弱磁场磁化,吸附在 磁极上,也就是说需要优秀的吸附性能。另外,要求形成的磁粉图像必须有很高的识别性。 一般,磁粉探伤中使用的磁粉有在可见光下使用的白色、黑色、红色等不同磁粉,以及利用荧光发光的荧 光磁粉。另外,根据磁粉使用的场合,有粉状的干性磁粉以及在水或油中分散使用的湿性磁粉。 ② 磁粉的使用时间 磁粉使用时间分为一边通过磁化电流一边使用磁粉的连续法,以及在切断磁化电流的状态即利用检测物的 残留磁力的残留法两种。 (4)观察 为了便于观察附着在伤痕部位的磁粉图像,必须创造容易观察的环境。普通磁粉需要在尽可能明亮的环境 下观察,荧光磁粉则要使用紫外线照射灯将周围尽量变暗才容易观察。 (5)后期处理 磁粉探伤结束,检测物有可能仍作为产品或是需要送往下一个加工步骤接受机械加工等。这时就需要进行 退磁、去除磁粉、防锈处理等后期处理。 适用范围 可以对铁磁性原材料,如钢板、钢管、铸钢件等进行检测,也可以对铁磁性结构件进行检测。 局限性 仅适用铁磁性材料及其合金的表面和近表面的缺陷检测,对检测人员的视力、工作场所、被检对象的规格、 形状等有一定的要求。 优点 经济、方便、效率高、灵敏度高、检测结果直观。 生产厂家: 生产厂家:济宁联永超声电子有限公司 仪器设备名称: 仪器设备名称:CDX-Ⅲ该机型磁粉探伤仪 Ⅲ 仪器概况:CDX-Ⅲ该机型磁粉探伤仪是具有多种磁化方式的磁粉探 伤仪设备。仪器采用可控硅作无触点开关,噪音小、寿命长、操作简 单、方便、适应性强、工作稳定。是最近推出新产品,它除具有便携 式机种的一切优点,还具有移动机种的某些长处,扩展了用途,简化 了操作,还具有退磁功能。 该设备有四种探头: 1、旋转探头: 型)能对各种焊缝、各种几何形状的曲面、平面、 (E 管道、锅炉、球罐等压力容器进行一次性全方位显示缺陷和伤痕。 2、电磁轭探头: 型)它配有活关节,可以对平面、曲面工件进行 (D 探伤。 3、马蹄探头: 型)它可以对各种角焊缝,大型工件的内外角进行 (A 局部探伤。 4、磁环: 型)它能满足所有能放入工件的周向裂纹的探伤,用它 (O 来检测工件的疲劳痕(疲劳裂痕均垂于轴向)及为方便,用它还可以 对工件进行远离法退磁。 总之,该仪器是多种探伤仪的给合体,功能与适用范围广,尤其应用 于不允许通电起弧破表面零件的探伤。 无损检测概论及新技术应用 无损检测概论及新技术应用 概论 摘要: 摘要:综述了无损检测的定义、方法、特点、要求等基本知识,以及无损检测在 现今社会中的应用实例,其中包括混凝土超声波无损检测技术、涡流无损检测技 术、渗透探伤技术。 关键词: 关键词:无损检测;混凝土缺陷;涡流检测;渗透探伤。 引言: 引言:随着现代工业的发展,对产品的质量和结构的安全性、使用的可靠性提出 了越来越高的要求,无损检测技术由于具有不破坏试件、检测灵敏度高等优点, 所以其应用日益广泛。无损检测是工业发展必不可少的有效工具,在一定程度上 反映了一个国家的工业发展水平,其重要性已得到公认。 1、 无损检测概论 、 无损检测 检测概论 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用 性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位 置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿 命等)的所有技术手段的总称。 常用的无损检测方法有射线照相检验(RT)、超声检测(UT)、磁粉检测(MT)和 液体渗透检测(PT) 四种。 其他无损检测方法: 涡流检测(ET)、 声发射检测 (AT) 、 (TIR) 泄漏试验 、 (LT) 交流场测量技术 、 (ACFMT) 漏磁检验 、 (MFL)、 热像/红外 远场测试检测方法(RFT)等。 基于以上方法,无损检测具有一下应用特点: 1>不损坏试件材质、结构 无损检测的最大特点就是能在不损坏试件材质、 结构的前提下进行检测, 所以实施无损检测后,产品的检查率可以达到 100%。但是,并不是所有需要测 试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验 只能采用破坏性试验, 因此, 在目前无损检测还不能代替破坏性检测。 也就是说, 对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结 果互相对比和配合,才能作出准确的评定。 2>正确选用实施无损检测的时机 在无损检测时, 必须根据无损检测的目的,正确选择无损检测的时机,从而顺利 地完成检测预定目的,正确评价产品质量。 3>正确选用最适当的无损检测方法 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备 材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、 形状、部位和取向,选择合适的无损检测方法。 4>综合应用各种无损检测方法 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应 尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无 损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质 量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只 有这样,无损检测在承压设备的应用才能达到预期目的。[1] 通过各种检测方法,最终对于无损检测的要求是:不仅要发现缺陷,探测试 件的结构、状态、性质,还要获取更全面、准确和综合的信息,辅以成象技术、 自动化技术、计算机数据分析和处理技术等,与材料力学、断裂力学等学科综合 应用,以期对试件和产品的质量和性能作出全面、准确的评价。 2、 无损检测在各领域的应用 、 无损检测基于以上优点,在现今社会受到广泛关注和应用,为实际生产工作减 少了废料成本,提供了极大的方便。其中超声波检测技术、涡流检测、渗透探伤 技术、霍尔效应无损探伤技术应用极为出色。 混凝土超声无损检测 混凝土是我国建筑结构工程最为重要的材料之一,它的质量直接关系到结构 的安全。多年来,结构混凝土质量的传统检测方法是以按规定的取样方法,制作 立方体试件,在规定的温度环境下,养护 28d 时按标准实验方法测得的试件抗压 强度来评定结构构件的混凝土强度。用试件实验测得的混凝土性能指标,往往是 与结构物中的混凝土性能有一定差别。因此,直接在结构物上检测混凝土质量的 现场检测技术,已成为混凝土质量管理的重要手段。 所谓混凝土“无损检测”技术,就是要在不破坏结构构件的情况下,利用测 试仪器获取有关混凝土质量等受力功能的物理量。 因该物理量与混凝土质量之间 有较好的相互关系,可采用获取的物理量去推定混凝土质量。[2] 混凝土超声检测是用超声波探头中的压电陶瓷或其他类型的压电晶体加载某 频率的交流电压后激发出固定频率的弹性波, 在材料或结构内部传播后再由超声 波换能器接收,通过对采集的超声波信号的声速、振幅、频率以及波形等声学参 数进行分析,以此推断混凝土结构的力学特性、内部结构及其组成情况。超声波 检测可用于混凝土结构的测厚、探伤、混凝土的弹性模量测定以及混凝土力学强 度评定等方面. [3] 涡流无损检测 涡流检测的基本原理:将通有交流电的线圈置于待测的金属板上或套在待测 的金属管外。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感 应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流 的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈 的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用 一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化, 进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或 缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能 反映试件表面或近表面处的情况。[4] 应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过 式、探头式和插入式线圈 3 种。穿过式线圈用来检测管材、棒材和线材,它的内 径略大于被检物件, 使用时使被检物体以一定的速度在线圈内通过, 可发现裂纹、 夹杂、凹坑等缺陷。探头式线圈适用于对试件进行局部探测。应用时线圈置于金 属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳 裂纹等。插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可 用于检查各种管道内壁的腐蚀程度等。为了提高检测灵敏度,探头式和插入式线 圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大 批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传 送的机械装置) 、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。[5] 优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现 自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷, 检测结果也易于受到材料本身及其他因素的干扰。 渗透探伤技术 液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透 剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经 去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作 用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光 源下 (紫外线光或白光) 缺陷处的渗透液痕迹被现实, 黄绿色荧光或鲜艳红色) , ( , 从而探测出缺陷的形貌及分布状态。[6] 渗透检测适用于具有非吸收的光洁表面的金属、非金属,特别是无法采用磁 性检测的材料,例如铝合金、镁合金、钛合金、铜合金、奥氏体钢等的制品,可 检验锻件、铸件、焊缝、陶瓷、玻璃、塑料以及机械零件等的表面开口型缺陷。 渗透检测的优点是灵敏度较高(已能达到检测开口宽度达 的裂缝) ,检测 成本低,使用设备与材料简单,操作轻便简易,显示结果直观并可进一步作直观 验证(例如使用放大镜或显微镜观察) ,其结果也容易判断和解释,检测效率较 高。缺点是受试件表面状态影响很大并只能适用于检查表面开口型缺陷,如果缺 陷中填塞有较多杂质时将影响其检出的灵敏度。[7] 3、 结语 、 随着现代科学技术的发展,激光、红外、微波、液晶等技术都被应用于无损 检测领域,而传统的常规无损检测技术也因为现代科技的发展,大大丰富了应用 方法,如射线照相就可细分为 X 射线、γ射线、中子射线、高能 X 射线、射线 实时照相、层析照相……等多种方法。 无损检测作为一种综合性应用技术,无损检测技术经历了从无损探伤,到无 损检测,再到无损评价,并且向自动无损评价、定量无损评价发展。相信在不远 的将来, 新生的纳米材料、 微机电器件等行业的无损检测技术将会得到迅速发展。 参考文献【1】李喜孟.无损检测.机械工业出版社.2011 】 【2】父新漩. 混凝土无损检测手册.人民交通出版社.2003 】 【 3】 冯子蒙.超声波无损检测于评价的关键技术问题及其解决方案.煤矿机 】 械.2009(9) 【4】唐继强.无损检测实验.机械工业出版社.2011 】 【5】李丽茹.表面检测.机械工业出版社.2009 】 【6】国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会.机械工业 出版社.2004 【7】胡学知主编. 中国劳动社会保障出版社.2007 】
1.本实用新型属于孔裂纹检测领域,具体涉及一种规避孔边涡流检测边缘效应的装置。背景技术:2.涡流检测是以电磁感应原理为基础的一种常用无损检测方法,它适用于导电材料。涡流检测作为一种无需耦合介质安全环保无损检测方法,特别适用对材料的表面及近表面裂纹的检测,具有检测灵敏度高、检测速度快,且在一定的范围内具有良好的线性指示,可对大小不同的裂纹进行评价等优点而得以广泛应用。对民用航空无损检测方法进行统计中发现,涡流检测在整个民航无损检测方法中占比达50%以上,由此可见涡流检测在航空无损检测中的重要性。3.在航空涡流检测中常用旋转枪探头从孔壁及直角点探头从孔表面检测孔裂纹。采用旋转枪探头检测孔裂纹时,需要考虑探头与孔直径之间的填充系数η≥。如果对飞机零部件所有孔都采用旋转枪探头进行涡流检测,则需要配备大量的旋转枪探头。因此在实际配置中仅配置至φ24mm大小的旋转枪探头,对于φ24mm以上孔的裂纹检测采用的是直角点探头绕孔边缘进行检测的,其检测示意图如图1所示。4.在涡流检测中有三种效应会影响涡流的检测,其中之一为边缘效应。所谓的边缘效应是指涡流检测探头靠近工件各种结构边缘时,涡流的流动路径会发生畸变,这种因在工件结构边缘引起涡流改变的信号被称为边缘效应。边缘效应的涡流信号显示与裂纹信号显示相似,图2为涡流检测时,几种状态下涡流场示意图。对于边缘效应,现阶段是在初始检测时将检测探头放置在距边缘约1mm左右的距离利用涡流仪中的带通滤波器对边缘效应进行平衡抑制的方法;但当检测过程中,检测探头离工件边缘距离与初始检测平衡状态检测探头离工件边缘距离缩小时,这种平衡状态会被打破,边缘效应的影响又会重新出现。5.飞机在役检测或整机试验状态下,不采用工装及器械辅助对孔使用直角点探头进行孔边裂纹涡流检测时,会出现以下缺点:1)检测时,检测探头与孔边距不能始终保持一致,当边距小于初始平衡状态时的边距时,破坏初始状态抑制边缘效应状态。
以交流电磁线圈在金属构涡流探伤仪件表面感应产生涡流的无损探伤技术。它适用于导电材料,包括铁磁性和非铁磁性金属材料构件的缺陷检测。由于涡流探伤,在检测时不要求线圈与构件紧密接触,也不用在线圈与构件间充满藕合剂,容易实现检验自动化。但涡流探伤仅适用于导电材料,只能检测表面或近表面层的缺陷,不便使用于形状复杂的构件.在火力发电厂中主要应用于检测凝汽器管、汽轮机叶片、汽轮机转子中心孔和焊缝等。原理当交流电通入线圈时,若所用的电压及频率不变,则通过线圈的电流也将不变。如果在线圈中放入一金属管,管子表面感生周向电流,即涡流。涡流磁场方向与外加电流的磁化方向相反,因此将抵消一部分外加电流,从而使线圈的阻抗、通过电流的大小相位均发生变化。管的直径、厚度、电导率和磁导率的变化以及有缺陷存在时,均会影响线圈的阻抗。若保持其他因素不变,仅将缺陷引起阻抗的信号取出,经仪器放大并予检测,就能达到探伤目的。涡流信号不仅能给出缺陷的大小,同时由于涡流探伤时可以根据表面下的涡流滞后于表面涡流一定相位,采用相位分析能判断出缺陷的位t(深度).检测线圈在涡流检验中,为了适应不同探伤目的,按照检测线圈和被检构件的相互关系分为穿过式线圈、内通式线圈和放里式线圈三大类。如需将工件插入并通过线圈检测时采用穿过式线圈。对管件进行检测时,有时必须把线圈放入管子内部进行检验,则采用内通式线圈。采用放t式(点式)线圈时,把线圈放置于被查的工件表面进行检测。这种线圈体积小、线圈内部一般带有磁芯,灵敏度高,便于携带,适用于大型构件以及板材、带材等表面裂纹检验。按照检测线圈的使用方式,可分为绝对线圈式、标准比较线圈式和自比较式等三种型式。只用一个检测线圈称为绝对线圈式.用两个检测线圈接成差动形式,称为标准比较线圈式。采用两个线圈放于同一被检构件的不同部位,作为比较标准线圈,称自比较式,是标准比较线圈式的特例。墓本电路由振荡器、检测线圈信号输出电路、放大器、信号处理器、显示器和电源等部分组成.
第一步论文查重。之所以放在第一步,是因为期刊天空一直都建议作者投稿前查重,这样既能提前发现自己论文重复率多少,又不会给杂志社编辑造成不良印象,更减少了投稿后再查重导致退修,进而论文发表时间周期增加。发表论文必经流程和步骤第二步:筛选期刊。针对自己的专业方向,论文内容领域,到相应分类的期刊当中挑选。期刊天空编辑提醒,有作者因为发表论文不符合期刊发表方向而退稿的。第三步选定期刊:需要根据自己评职称、毕业论文发表要求,期刊天空编辑指出,这些内容一般从职称文件当中可以了解到,例如:期刊级别,选定后要了解期刊发表论文要求。第四步论文发表:选定期刊之后,可以通过邮箱、在线投递、微信QQ等发送文件,期刊天空编辑介绍,之所以有这么多方式,是因为各投稿方式相应的处理效率呈提高的趋势。第五步等待审稿。期刊天空编辑温馨提示:论文审稿是整个论文发表过程当中时间周期最长的,没有退修的稿件属于正常时间周期,如果存在论文审稿有退修,那么发表周期就会相应的增加。发表论文期刊的级别越高,发表周期就越长。第六步对于顺利被期刊录用的论文来说,杂志社会发送录用通知函,缴纳版面费用之后,即可安排发表刊期。第七步发表见刊。在到了论文发表安排刊期时,论文就算是正式见刊发表,作者需等待杂志社寄送样刊就可以当做评职称材料上交。
发表论文方法:一、作者直接投稿 二、通过代理发表不同方式发表优点和不足:一、直接投稿:优点是直接与杂志联系,费用相对较低(一般情况下杂志社除了收取相应版面费以外,没有其他费用,少数刊物会收取一定的审稿费、检测费等)缺点是需要作者去了解所发表刊物的办刊方向以及办刊宗旨,审稿回复时间长,通过率低等。另外通过杂志社网站投稿的,需要特别注意,不是每一本刊物都有官方网站,每一本刊物也不会做多少官方网站,这里需要作者辩别真假官方网站,堤防上当。二、代理发表:优点是正规代理长期与杂志社打交道,对刊物情况熟悉,能根据文章写作方向、文章内容质量推荐合适的刊物,少数不符合刊物要求而被退回的稿件有相应补救方案,提高了发表成功率;与杂志社编辑有长期联系,有优先审稿权,审稿快。
1.可以直接联系期刊出版社投稿,但这样非常复杂,等待时间很长,发表的希望也较小。2.您可以通过一些期刊网站代理发表,这样省时间、见效快。
1.期刊不是说交钱就能发的,付费只是充分条件罢了。2.另一个论文发表的充分条件是论文写的必须过及格线。3.核心以外几乎没有免费的。有实力可以发核心,几乎都不要钱,但是核心你实力得过硬(ps非要定条标准的话,一般业内认为是研究生学历为佳)。没实力老老实实交版面费,别想太多了,有这个纠结的时间不如快起床去工作两天,版面费就赚出来了。
涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它适用于导电材料。当把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状,尺寸和缺陷等)的变化,会导致涡流的变化,利用这种现象判定导体性质,状态的检测方法,叫涡流检测。 至于区别,每一种检测方法都有它的局限性,要根据被检工件来选择检测方法,涡流检测适用于导电材料的金属表面缺陷检测,一般都用来检测小管子的,出场的时候都要检测的。涡流检测的特点(Eddy-current testing)ET是以电磁感应原理为基础的一种常规无损检测方法,使用于导电材料。一、优点1、检测时,线圈不需要接触工件,也无需耦合介质,所以检测速度快。2、对工件表面或近表面的缺陷,有很高的检出灵敏度,且在一定的范围内具有良好的线性指示,可用作质量管理与控制。3、可在高温状态、工件的狭窄区域、深孔壁(包括管壁)进行检测。4、能测量金属覆盖层或非金属涂层的厚度。5、可检验能感生涡流的非金属材料,如石墨等。6、检测信号为电信号,可进行数字化处理,便于存储、再现及进行数据比较和处理。二、缺点1、对象必须是导电材料,只适用于检测金属表面缺陷。2、检测深度与检测灵敏度是相互矛盾的,对一种材料进行ET时,须根据材质、表面状态、检验标准作综合考虑,然后在确定检测方案与技术参数。3、采用穿过式线圈进行ET时,对缺陷所处圆周上的具体位置无法判定。4、旋转探头式ET可定位,但检测速度慢。
以 交流电磁线圈在金属构 涡流探伤仪件表面感应产生涡流的无损探 伤技术。它适用于导电材料,包括铁磁性和非铁磁性金 属材料构件的缺陷检测。由于涡流探伤,在检测时不要 求线圈与构件紧密接触,也不用在线圈与构件间充满 藕合剂,容易实现检验自动化。但涡流探伤仅适 用于导电材料,只能检测表面或近表面层的缺陷,不便 使用于形状复杂的构件.在火力发电厂中主要应用于 检测凝汽器管、汽轮机叶片、汽轮机转子中心孔和焊缝 等。 原理当交流电通入线圈时,若所用的电压及频 率不变,则通过线圈的电流也将不变。如果在线圈中放入一金属管,管子表面感生周向电流,即涡流。涡流磁 场方向与外加电流的磁化方向相反,因此将抵消一部 分外加电流,从而使线圈的阻抗、通过电流的大小相位均发生变化。管的直径、厚度、电导率和磁导 率的变化以及有缺陷存在时,均会影响线圈的阻抗。若 保持其他因素不变,仅将缺陷引起阻抗的信号取出,经仪器放大并予检测,就能达到探伤目的。涡流信号不仅能给出缺陷的大小,同时由于涡流探伤时可以根据表面下的涡流滞后于表面涡流一定相位,采用相位分析 能判断出缺陷的位t(深度). 检测线圈在涡流检验中,为了适应不同探伤目的,按照检测线圈和被检构件的相互关系分为穿过式线圈、内通式线圈和放里式线圈三大类。如需将工件插入并通过线圈检测时采用穿过式线圈。对管件进行检测时,有时必须把线圈放入管子内部进行检验,则采用内通式线圈。采用放t式(点式)线圈时,把线圈放置于被查的工件表面进行检测。这种线圈体积小、线圈内部一般带有磁芯,灵敏度高,便于携带,适用于大型构件以及板材、带材等表面裂纹检验。按照检测线圈的使用方式,可分为绝对线圈式、标 准比较线圈式和自比较式等三种型式。只用一个检测线圈称为绝对线圈式.用两个检测线圈接成差动形式,称为标准比较线圈式。采用两个线圈放于同一被检构件的不同部位,作为比较标准线圈,称自比较式,是标准比较线圈式的特例。墓本电路由振荡器、检测线圈信号输出电路、放大器、信号处理器、显示器和电源等部分组成.
楼上回答的好详细。。。基本上都说明白了。。。涡流的局限性在于被检部件的规则性以及探伤的深度。一般来说,不规则的部件用涡流检测比较难以实现。探伤深度根据材料的不同而不同,但基本上都是近表面的探伤,比较深层的缺陷用涡流的话,检测灵敏度比较低,所以推荐使用超声或者射线探伤。
涡流检测一般在中国应用不广泛,主要检测具有导磁性的工件表面与近表面的缺陷,其原理很简单,就是电磁反应原理的楞次定律!通以一定频率的感应线圈产生磁场,在工件表面做检测时,当磁场的磁感线通过完好介质时不发生变化,当磁感线遇到异质界面时,磁感线发生变化,此时线圈产生发生楞次现象,电流大小发生变化,通过判断电流的变化来识别有无的无损检测方式则为涡流检测!