首页 > 学术论文知识库 > 二年级下册数学小论文100字

二年级下册数学小论文100字

发布时间:

二年级下册数学小论文100字

数学小论文今天数学课上,老师出了一道例题,题目是:学校组织老师和同学参观科技馆。有100名学生和50名老师。科技馆的门票是成人10元,儿童半价。问:需要多少元?小红举手,老师点小红上黑板解答,小红的算式是这样的:10/2=5(元)100*5=500(元)50*10=500(元)500+500=1000(元)答:需要1000元。老师说:“好的,有没有别的方法?”小月举手,老师点小月上黑板解答,小月的算式是这样的:(100/2)+50=50+50=100(名)100*10=1000(元)答:需要1000元。老师说:“非常好,请小月上台讲解。”“我的是先用100/2=50(名),它的意思是:因为成人票价是儿童票价的2倍,有100名儿童,所需要的票价就等于50名成人。再用50+50=100(名),也就是加上老师,一共有100名“成人”,最后用100*10=1000(元),就可以算出一共要多少元。”小月解说道。“很好,谢谢小月,你的解说很全面。我们今天学的就是‘巧算门票’,好,下课。”老师说。

数学小故事——找零钱 一家手杖店来了一个顾客,买了30元一根的手杖.他拿出一张50元的票子,要求找钱. 店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头. 顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的.店主不得已向邻居赔偿了50元.随后出门去追那个顾客,并把他抓住说:“你这个,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失.” 这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元.” 请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元.如果这个顾客行成功,那么共得了多少钱?

培养学生应用能力,提高数学课堂教学的效果,是当前数学教学改革的一个重要课题,只要不断尝试,联系实际,大胆探索,就会收到预期效果。接下来我为你整理了小学数学应用小论文,一起来看看吧。

摘 要 数学应用意识是我们对于客观物质世界中存在的数学知识应用的反映。数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。因此对学生进行数学应用意识的培养,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。但更重要的是使学生认识到:数学与我有关,与生活相关,数学是有用的,我要用数学,我能用数学。这种意识将成为学生终生受用的财富。

关键词 数学;应用意识;培养

对学生进行数学应用意识的培养,使他们逐渐形成数学应用的意识是学生将来适应现代信息社会的需要。小学数学教学中学生的应用意识主要体现在以下三个方面:第一,面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略。主要表现在两方面:一是在实际情境中发现问题和提出问题的意识;二是主动应用数学知识解决问题的意识。第二,面对新的数学知识时,能主动寻找其实际背景,并探索其应用价值。第三,认识到现实生活中蕴涵着的大量的数学信息,数学在现实世界中有着广泛的应用。那究竟应怎样培养学生的应用意识呢?

1 提高教师自身的数学应用意识和应用能力

要培养小学生的数学应用意识,作为教师就必须要有较强的数学应用意识和应用能力,这样,才能使数学教学过程少一些纯数学问题,多一些实际应用问题,潜移默化地感染学生,使学生逐步形成数学应用意识。教师要提高自身的数学应用意识和应用能力,首先要认真研读新《课标》,领会课标的精神实质,以《课标》的教育教学理念为准绳,用以指导自己实施新课程的航灯。其次,积极参加提高学历层次的学习,提高自身的专业水平和数学素养;再次,在平时的业务培训及自学中,有意识地学习有关数学应用意识和应用能力的内容,用以增强自身的数学应用意识和应用能力。

2 精心设计课前活动,注重数学知识的来龙去脉

就小学生而言,他们已有的生活常识、经验往往是他们学习数学的基础。小学阶段的许多数学知识,如概念的产生、计算法则的由来、几何形体的特征及有关公式等,无不渗透着数学在现代生产、生活和科技中的应用。而今使用的教材版本多,内容丰富、呈现方式也极具生活化,充分体例现了 “数学源于生活服务于生活的理念”,因此,在教学中充分利用这一特点,在进行有关数学知识的教学之前,精心设计课前活动,让学生在课前活动中寻找生活中的数学,了解数学知识的来龙去脉,体验数学来源于生活。这样学生不仅真正体会到“数学有用、要用数学”,且激发学生的学习兴趣,使学生爱数学,同时,也为学生知识的构建积累必要的经验。这样的学习,不仅极大地调动了学生的学习热情,更使学生真切地感受到数学就在自己的身边,认清数学知识的现实性和实用性,从而对数学产生了浓厚的兴趣。

3 开阔学生的视野,了解数学的应用价值

在小学数学教学中培养学生的应用意识,需要以知识、实践、能力的培养为基础。由于小学生的生活经验不足,对数学的应用价值不可能会有很全面的了解。在教学过程中,教师不仅应该关注学生对于数学基础知识、基本技能以及数学思想方法的掌握,而且还应该帮助学生形成一个开阔的视野,了解数学对于人类发展的价值,特别是它的应用价值。

方案③的表面积:20×15×4+15×5×2+20×5×4=1750(平方厘米)

通过计算比较,学生发现:第一种包装方法最节约包装纸。紧接着让学生尝试(四人小组合作):将三盒这样的糖果包装成一包,怎样才能节约包装纸?(接口处不计)学生在动手包装时我提出了要求:请你一边包装一边想一想,不用计算,你能知道哪种包装方法最节约包装纸吗?

如此的数学教学,不仅开阔了学生的数学视野,更真切体会到了数学在当今经济社会中举足轻重的应用价值,使学生在综合应用表面积等知识来解决问题的同时,体现了数学的优化思想,同时提高了学生解决问题的能力,感受数学的应用价值与实际生活的密切联系。

4 为学生运用所学知识解决实际问题搭建平台

培养学生应用意识的最有效办法应该是让学生有机会亲身实践。教学中,我努力挖掘学生所学的数学知识在社会生活、生产以及相关学科中的应用,精心设计问题情境,创造条件让学生运用所学的数学知识解决实际问题,让学生体验数学的应用价值,从而形成良好的应用意识。例如在教学“粉刷墙壁”时,(北师大版小学数学第十册)我以小组合作的形式,让学生以下面的步骤进行:

(一)、测量计算

小组合作(一):

1、教室前后黑板共有多少块?分别测量每块黑板的长和宽; 2、分别测量教室的长、宽、高; 3、教室左右两面墙共有多少个窗户,多少个门?分别测量每个窗户的长和宽,每个门的长和宽。

小组合作(二):

1、如果想粉刷除地面以外的五面墙,“粉刷墙壁”测量数据记录表(200 年 月 日)

那么要粉刷的墙面积是多少? 2、计算后完成下面的表格。(如左图)

(二)、购买涂料

如下图,某种涂料分大桶、小桶两种规格包装,根据经验,第一遍粉刷时,每平方米约用涂料千克,此时粉刷教室共需要涂料多少千克?

5 搜集数学应用的事例,加深对数学应用的理解和体会

信息技术的社会化,数学与现代科技的发展使得数学的应用领域不断扩展,其不可忽视的作用被越来越多的人所认同。马克思曾指出:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”。在数学教学中要让学生了解数学的广泛应用,不但可以帮助学生了解数学的发展,体会数学的应用价值,激发学生学好数学的勇气和信心,更可以帮助学生领悟数学知识的应用过程。

总之,数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。学生学习数学就应通过熟悉的数学生活,自己逐步发现和得出数学结论,并逐步具有把数学知识应用于现实生活、服务于现实生活的意识。

体验学习就是在课程实施中根据教材内容的需要,在教师的指导下,把知识对象化,以获得客观准确的知识的过程。它是学生联系自己的生活,凭借自己的直观的感受、体会、领悟,去再认识、再发现、再创造的过程,从中获得丰富的感性认识,加深对理性知识理解的一种教与学的互相过程。在小学数学教学中体验学习不仅能够激发学生的数学学习兴趣,而且有利于探究性学习的培养,因此,教师要善于体验学习的应用。

1 联系生活――体验学习的基础

教育家苏霍姆林斯基说过:“把知识加以运用,使学生感到知识是一种使人变得崇高起来的力量,这是兴趣的重要来源。”《数学课程标准》也指出:“数学教学要体现生活性。人人学有价值的数学。”数学来源于生活,还要应用于生活。数学课堂联系生活,教室善于引导学生已有的生活经验来理解数学知识的真正含义,这样,既可加深对课堂知识的理解,激发学生兴趣,又能使学生体验到数学就在生活实践之中,体验到数学的价值。因此,在数学教学中,要尽可能组织学生实践,让学生亲身体会生活中的数学知识。例如,在教“简单的统计”是,我结合家庭用水、电、煤气生活 实际,要求学生收集自己家庭每月所用的数据,加以分类整理,填写在统计表里,反映实际情况。再如“圆锥的体积”教学中,我结合学生常见的用卷笔刀削圆柱形的铅笔的现象,让学生仔细观察铅笔变化,然后提出圆柱和圆锥变化的问题:被削的这段铅笔前后分别是什么形状?前后体积发生了什么变化?变小了以后的圆锥体与原本这段圆柱体的底面积、高、体积分别有什么关系?这样的教学,让学生认识到生活中处处有数学,使学生积极主动投入到学习数学之中,真切感受到数学存在于生活之中,数学与生活同在,感受到数学的真谛与价值。

2 亲历实践――体验学习的手段

让学生实践操作,体验“做数学”。教和学都要以“做”为中心。“做”就是让学生动手操作,在操作中体验数学。动手操作时小学生认识事物的重要手段,让学生在动手中获得快乐。因此,教室在教学过程中应该充分让学生动手、动口、动脑,在活动中学习新知。通过实践活动,使学生获得大量的感性知识有助于提高学生的学习兴趣,激发求知欲。例如,二年级要进行《表内乘法》的整理和复习,我组织了一次《数学在我们的游玩中》的实践活动。教师可以出示游乐园的价格表后问学生,你想玩哪些项目?根据你的玩法,算一算,一共要多少钱?由于方案不同,计算的结果不是唯一的。有位学生说想玩转马两次,碰碰车两次,自控飞机两次,一共要3×2 + 4×2 + 6×2 = 26(元)。另一位学生马上站起来回答,我也可以这样玩,但我只要付16元就够了,因为我可以和另一个同学一起坐碰碰车和自控飞机。紧接着,我要求学生每人用一张30元得游园券设计出游玩方案。学生通过小组讨论,提出了10种方案,从而打开了学生狭隘的思维空间,让他们了解到同一个问题可以有多种解决方法,体验到解决问题策略的多样性。这种实践性教学,大大地提高了学生的发散思维能力和创造思维能力。

3 经历“错误”――体验学习的需求

在课堂教学中,对于教师提出的问题,学生的回答难免出现不同的错误,这些错误在体验学习中也是宝贵的,通过这些不同的错误,教师可以首先让学生解释形成答案的来龙去脉,让学生充分发表自己的见解,倾听别人的想法,要允许学生“争辩”,然后,教师对这些错误逐个分析、归纳,认真总结“错误”之间究竟有什么联系,其产生的主要原因是什么。这样,教师既摸清了学生对问题认识不清的根源所在,学生也从老师的点拨中得到启发,加深了知识的理解。也就是说,学生经历“错误”体验,达到教师和学生的互动交流,学生更能体验到“错误”的感慨和成功的愉悦。例如在教学第十册《求平均数》时,课本有一道习题:“先锋号机帆船出海捕鱼,上半月出海13天,共捕鱼805吨;下半月出海14天,每天捕鱼64吨,这条船平均每天捕鱼多少吨?”有的学生对这道题列式为805÷13 + 64,而有的同学列式为(805 + 14×64)÷(13 + 14)。显然,第一列式是错误的。那么为什么会出现这样的错误呢?我就让人为第一列式的同学阐述自己的原因,其实,他们错误地认为上半月的平均每天捕鱼数和下半月的平均每天捕鱼数相加,就是这条船这个月每天的捕鱼数。然后,我根据这些“错误”进行纠正,并让学生讨论。在学生获得“错误”的体验后,通过小组讨论得到的结果,往往比老师灌输给他们的“答案”更有说服力,学生对此类题目印象更深。

总之,体验数学需要教师引导学生积极主动参与学习过程,正如《数学课程标准》指出:“义务教育阶段的数学课程,要强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,”由此可见,在数学教学中,教师应该让学生亲身经历数学感念、结论的形成过程,使数学学习成为一个体验过程。在这一过程中,使学生体验学数学的乐趣,培养学生数学素养,应该是我们的目标。

可以写关于生活的,学校的,匹如生日切蛋糕怎么分,分成几份,几分之几等等

五年级下册数学小论文100字

你不拿货卖是ヾ(❀╹◡╹)ノ~ヾ(●´∇`●)ノ哇~哦利润空间锁困了就进入太用力酷我极速蜗牛太庸俗哦空

数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。

五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。

今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。

我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。

1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”

通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。

四年级上册数学小论文100字

数学四年级100字小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!好评吧。谢了!!!祝你 学习进步。健康成长。

今天,我在一本书中看到一个数学小问题:“小明一共有10个气球,如果一分钟放一个气球,他放10个气球一共用了几分钟?”我故意考考妹妹,刚上四年级的妹妹不假思索地说:“这个简单,10分钟呗。”我大笑一声,喊到:“错!” “嗯?为什么呢?”我耐心地解释着:“答案是9分钟,因为先放第一个气球,一分钟后,放第二个气球,一直放到第9个气球,所以,第九分钟后放第10个气球。”妹妹听了恍然大悟,说到:“原来如此,我上当了!”细心地妈妈在一旁听到了我们这番有趣的对话,笑着说:“其实,生活中还有好多像这样的问题,比如爬楼梯、排队、坐座位……,我来考你一个吧!妹妹从一楼到二楼用了9秒钟,那么她从1楼走到15楼要多少秒呢?”我拿出笔和约,认真地做了起来:妹妹从一楼到二楼用了9秒,妹妹走到十五楼,也就是走了十四层,14*9=126秒。我把答案告诉了妈妈,她笑着说:“不错,思路很清晰,很会思考!”是啊,生活中处处有数字,只要我们有一双善于观察的眼睛和一个善于思索的头脑,那么,许多问题就能迎刃而解。

利用除法来比较分数的大小今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

四年级上册数学小论文怎么写?我来答热心网友2019-02-13今天,数学竞赛成绩揭晓了,平时总屈居二三名的我竞考了98分。我得到这个消息后,高兴地想:“哈哈,这下第一名非我莫属了!对了,把这个消息告诉妈妈,让她也高兴高兴!”于是,我怀着喜悦的心情,迈着轻快的步子来到了家,把这个好消息告诉了妈妈。妈妈起先夸奖了我几句,谁知突然语调一转,对我说:“你可别高兴得太早。据我所知,还有人比你考得更好!”听了妈妈的话,我不禁有点失落:毕竟第一的位置没了。但是我又忍不住反问了一句:“啊?是谁啊?他考了几分?”妈妈笑嘻嘻地说:“谁,我就不清楚了,我只知道他的年龄、成绩、名次相乘等于2574,自己慢慢去想吧!”我听了不以为然,不就是区区一道题目,难不倒我这个数学高材生!我边想边回到房间,思考起来:把2574分解质因数:2574=3×3×11×13×2。这2肯定是名次,那么就是第二名。如果是9岁,那么分数就是143了,不对。那就只能是年龄为13,分数为99啦!哈!算出来了,答案就是名次2,年龄13,分数99!我算出答案后,急忙告诉妈妈。妈妈高兴地搂着我说:“我的天天就是棒!”这下,我被搞得云里来雾里去的。弄了半天才明白,原来妈妈是我的,我确确实实考了第一名。刚才是妈妈想检验我的数学本领,给我出的难题呀。为了表彰我,妈妈决定做顿庆功宴。我可是好久没有打牙祭了。听了妈妈的话,我仿佛已经看见了香喷喷的烤鸭和香气四溢的红烧肉了。我高兴得在妈妈的脸上左亲右亲,连连欢呼:“感谢数学,妈妈万岁!!!!!

小学二年级数学下册论文题目

小学生的数学论文的题目 谢

研究的主题往往有三个来源:一是自己的教育实践中遇到了某些问题,需要通过研究来解决这些问题;二是在阅读他人的研究成果或听课时发现有待进一步研究的问题;三是研究者本人的学术兴趣,这种兴趣不仅影响研究者的研究主题,而且影响研究者选择具体的研究途径。 第一节 从他人的研究成果中寻找有待进一步研究的问题 研究的课题可能来源于自己的教育实践,这是比较理想的研究课题,但是,从选择课题的“捷径”来看,可以先从他人的研究成果那里获得启示。当研究者不知道研究什么主题时,可以参阅相关的教育著作,看别人在做什么研究,这种研究有什么进展,是否留出了需要进一步研究的问题。 一、阅读期刊与专著他人的专著包括教育经典名著和现当代教育著作。对中小学老师来说,阅读大量的经典名著几乎不太可能,但至少应该选择两到三本教育经典名著比如杜威的《民主主义与教育》、罗素的《论教育》、联合国教科文组织编写的《学会生存》等作为重点阅读的文本。当然,也可以阅读时下流行的比较有影响的某个当代研究者的著作。除了阅读教育著作之外,教师需要重点阅读几本专业学术期刊。与专著相比,专业学术期刊对选题具有更重要的意义。有质量的专业学术期刊总是大量地发表相关的课题研究报告。这些课题研究报告不见得都能够引起某个具体的研究者的共鸣,但是,一般而言,研究者总能在这些课题研究报告中找到自己感兴趣的主题。 二、向他人请教除了考虑他人的研究成果之外,还可以“打听”他人的建议,包括直接向相关的研究者请教和间接地查看他人的建议。他人的研究成果既可能显示为相关的专著和专业杂志中,也可能隐含在研究者的专业讲座中。这需要研究者在“听讲座”的过程中形成“倾听”与“提问”的习惯。倾听意味着听讲者欣赏、领会讲座者的主题和意义;提问意味着听讲者从讲座中提出自己感兴趣的问题,而这些问题很可能会形成自己的选题或成为自己论文研究的一个重要观点。对那些尚未形成阅读习惯的人来说,听“讲座”比“读书”可能更有利于发现问题和选择课题。他人的建议也可能显示为“课题指南”。研究者可以从不同部门的“课题指南”中获得启示:哪些问题是当下值得研究的?哪些问题是“过期”的、“过气”的课题?各个地方都有教育科学研究管理机构或教育科研规划领导小组,这些研究管理机构或部门会定期或不定期地发布一些教育科研“课题指南”,比如《全国教育科学研究“十一五”规划2006年度课题指南》。研究者可以根据自己的专业兴趣和实际条件从这些“课题指南”中选择某个“课题意向”,然后逐步将这个“课题意向”化为具体的研究课题。 三、留意有争议的问题历史常常有惊人的重复现象。现实生活中的很多问题很可能在历史中已经出现。当代学者研究的课题很可能在历史中曾经发生过激烈的争论。真实的教育道理总是隐含在教育冲突之中,教育实践不过是教育冲突的某种妥协或变形。教育历史实际上是一个充满有教育争议的地方。整个教育史,不过就是一个意见纷争、众说纷纭的展览馆。凡是有教育争议的地方,就隐含了相关的教育道理和值得研究的主题。这需要阅读教育史的人能够从大量的教育事件中发现、领会其中看得见的和看不见的纷争和诉讼。在这些不同的意见中,某个意见很可能成为研究的主题。教育学已经分化为多种学科,有一个学科永远是重要的,这就是教育史学以及与之相关的中国教育史、外国教育史和比较教育学。教育史是一个没完没了的研究领域,这导致教育史的著作每隔一段时间就会出现新的版本。对中小学教师来说,完整地阅读中外教育史也不太可能,但中小学教师至少可以就某个主题试探性地考察中外教育史中的相关意见。严格地说,一个研究者在研究某个主题时,如果没有到中外教育史中寻找相关的研究和相关的意见,这个研究就是不完整的、残缺的研究。一般而言,所研究的主题应该是一个具体的问题,尽量避免研究“宏大”的课题。研究者需要不断提醒自己:所选择的主题是否过于庞大,显示“蟒蛇吞象”的气魄。并不是说,宏大课题就不值得研究。长期的、“规划”的课题研究尚可以选择一些宏大的课题,比如《中国教育理论研究的世纪走向》、《知识与教化:课程知识观的重建》,而实践研究应该研究具体的现实的教育问题,比如《应用电子档案培养学生自主学习能力的行动研究》。某些长期的、“规划”的课题研究者发表《中国教育理论研究的世纪走向》、《知识与教化:课程知识观的重建》尚可以理解,可是,如果某个教育硕士研究如此宏大的主题,会成为笑柄。在阅读他人的研究成果时,研究者除了可能有某种追逐“宏大课题”的冲动之外,还可能有“追寻热点”或“追逐时髦”、“追赶时尚”的激情。殊不知,真正有学术精神的研究恰恰不是追逐新奇或时尚,而是在日常教育生活中选择一个陌生化的主题。即便追逐宏大理论和热点问题,也需要考虑所追逐的宏大理论和热点问题对改进自己的实践工作是否有真实的帮助。否则,选题的意义就会贬值。一旦确定了某个研究主题,在主题的表述上尽量避免一些“细节错误”:一是使用宣传口号式的祈使句。比如《关注学生的创造性思维》、《大力提倡以人为本的教育观》、《为了中华民族的伟大复兴》、《为了每一个孩子的发展》等等。学位论文的主题在表述上一般为陈述句或疑问句,应避免使用宣传口号式的祈使句。但是,这并不是说所有的教育论文都不能使用祈使句作为标题。教育口号以及相关的教育宣传当然是重要的,但学位论文的主要目的只是为了解决、研究某个问题,这个研究是否规范或有价值尚待答辩委员会作出评审,所以不宜以教育口号的方式表述自己的研究主题。一般而言,比较严肃的学位论文的主题不宜采用“祈使句”的形态,应该尽可能采用陈述句。常用的形式是“论……”或“……研究”。二是在主题中看不到论文的关键词。一般而言,论文的主题由论文的主要观点中的关键词加上研究方法构成,比如《小学三年级学生诚信教育的行动研究》,《广州市海珠区初中任务型外语教学的调查研究》、《高中二年级学生阅读治疗的实验研究》,等等。三是文不对题或题不对文,即主题的范围与正文的实际内容和方法不对称。比如论文的正文主要讨论“小学三年级学生诚信教育”问题,但标题却表述为《小学德育的行动研究》。或者,论文主要采用的是调查研究,应该表述为《广州市海珠区初中任务型外语教学的调查研究》,但由于研究者误以为自己所采用的研究方法是行动研究,实际地呈现为《广州市海珠区初中任务型外语教学的行动研究》。

《生活中的数学》可以讲一下如何用数学知识解决问题

数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效

数学小论文怎么写二年级下册

节日爸爸妈妈陪我去超市,爸爸给我50元让我自己买学习用品和玩具,我买了3张动画碟片,每张6元,我又买了一个1元的玩具,又买了5本本子,每本1元,爸爸让我算算一共多少元。我刚学会了乘法,这还不容易,3×6=18(元),1×5=5(元),18+5+1=24(元),一共用了24元。我算的快吧! 东方明珠塔里的数学

可以写关于生活的,学校的,匹如生日切蛋糕怎么分,分成几份,几分之几等等

在课堂中,由我们去担任学习的主角,让我们真正成为学习的主人,是我们每个小学生的共同心愿。

数学活动课是我们都爱上的课,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。

四则运算

四则运算的意义和计数方法。

加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算。

运算定律与简便方法、四则混合运算。

减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c。

运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)。

复合应用题

长度、面积和体积以及其同类量之间的进率。

质量单位和他们之间的进率。

1吨=1000千克 一千克=1000克。

时间单位进率、人民币进率。

1小时=60分钟 1分钟=60秒。

1块=10角。

比与比例。

正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题。

图形与空间

图形、空间、周长、面积、侧面积、表面积、图形的变换、图形与位置、图形的认识与测量。

以上内容参考:百度百科-小学数学

数学小论文今天数学课上,老师出了一道例题,题目是:学校组织老师和同学参观科技馆。有100名学生和50名老师。科技馆的门票是成人10元,儿童半价。问:需要多少元?小红举手,老师点小红上黑板解答,小红的算式是这样的:10/2=5(元)100*5=500(元)50*10=500(元)500+500=1000(元)答:需要1000元。老师说:“好的,有没有别的方法?”小月举手,老师点小月上黑板解答,小月的算式是这样的:(100/2)+50=50+50=100(名)100*10=1000(元)答:需要1000元。老师说:“非常好,请小月上台讲解。”“我的是先用100/2=50(名),它的意思是:因为成人票价是儿童票价的2倍,有100名儿童,所需要的票价就等于50名成人。再用50+50=100(名),也就是加上老师,一共有100名“成人”,最后用100*10=1000(元),就可以算出一共要多少元。”小月解说道。“很好,谢谢小月,你的解说很全面。我们今天学的就是‘巧算门票’,好,下课。”老师说。

  • 索引序列
  • 二年级下册数学小论文100字
  • 五年级下册数学小论文100字
  • 四年级上册数学小论文100字
  • 小学二年级数学下册论文题目
  • 数学小论文怎么写二年级下册
  • 返回顶部