像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。
数学论文范文参考
数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下来我和大家分享数学论文范文参考。
论文题目: 学生自主学习能力培养提升小学数学课堂教学效果
摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。
关键词: 自主学习能力;创新思维;小学数学
在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。
一、小学数学教学中的现状及反思
小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。
(一)情境教学中过多地引入情境,丧失了教学目标
一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。
(二)成人化的想象对小学生缺乏新奇的吸引性
数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。
(三)课堂教学中“数学味”的弱化和缺失
在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。
二、自主学习的概念及其重要性
在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。
(一)提高数学知识吸收的质量
自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。
(二)为后续的数学知识学习奠定基础
小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。
(三)自主发现和自主学习能力的培养
小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。
三、自主性学习的小学数学课堂教学策略
小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。
(一)数学课堂有效导入,激发学生的自主参与性
合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。
1、以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]
2、 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。
3、以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
( 一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
( 二) 教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
( 一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
( 二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
( 三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献:
〔1〕 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想〔J〕. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
〔2〕 李薇. 在高等数学教学中融入数学建模思想的探索与实践〔J〕. 教育实践与改革,2012 ( 04) : 177 -178,189.
〔3〕 杨四香. 浅析高等数学教学中数学建模思想的渗透 〔J〕.长春教育学院学报,2014 ( 30) : 89,95.
〔4〕 刘合财. 在高等数学教学中融入数学建模思想 〔J〕. 贵阳学院学报,2013 ( 03) : 63 -65.
浅谈高中数学文化的传播途径
一、结合数学史,举办文化讲座
数学史教育对于了解数学这一门学科起着重要作用、数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质、比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望、此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展、
二、结合教学内容,穿插数学故事
数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上、教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科、例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感、
三、结合生活实际,例解数学问题
作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性、教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中、例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的`生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题、
四、结合其他学科,共享文化精华
科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域、数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享、可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体、实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情、例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同、不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系、
五、结合课外活动,小组合作探究
由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化、要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中、可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田、书籍类有美国数学家西奥妮帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔兹奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书、还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化、例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质、这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命、
六、结合教学评价,纳入数学考试
虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视、平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端、要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容、这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授、高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能、与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师、首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫、教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
论文为了做到层次分明、脉络清晰,常常将正文部分分成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个小逻辑段,一个小逻辑段可包含一个或几个自然段,使正文形成若干层次。论文的层次不宜过多,一般不超过五级,具体如下:
高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。
高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。
对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟
着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。所以高中前部分我的数学一直都不好。
后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因为教书了很多年很有教书经验,也是他后来拯救了我的高中数学。他给我们上课的第一天就要求我们一定要课前预习和课后复习。
其实之前很多老师也这么要求过我们,但是我都没有很好的去要求自己。我的这个老师虽然年龄有点大,但是一点没有影响他上课的激情,他上课很有感染力,我每节课都跟着他的思路后面去分析问题,解决问题。
课上简单的记一下笔记,但是不能影响我跟着他的节奏去听课,也是后来在他的帮助下高中数学成绩有了突飞猛进。对于高中的数学就做这么多的概述,接下来谈谈大学学习高等数学的心得体会。
我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:识记的知识相对减少,理解的知识点相对增加;不仅要求会运用所学的知识解题,还要明白其来龙去脉;联系实际多,对专业学习帮助大;教师授课速度快,课下复习与预习必不可少。
扩展资料
论文要求:
1、题名规范
题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。
2、作者署名的规范
作者署名置于题名下方,团体作者的执笔人,也可标注于篇首页地脚位置。有时,作者姓名亦可标注于正文末尾。
数学在我们的生活中可以说是无处不在,到超市买东西付钱时,测量某东西的面积时,制作平行四边形、直角形、三角形等各种形状的物品时……都是数学知识在生活中的直接运用。前几天我们家就发生了一件运用数学知识解决生活问题的事情。那天放学回家,我往小椅子上一坐,只听“嘎吱”一声,吓得我赶忙跳了起来。哈,原来是椅子的一条腿松了。“我们来修椅子怎么样”,我一时心血来潮地对爸爸妈妈说。爸爸妈妈挺支持地说“行啊”。于是全家人便开始忙碌起来,找工具的找工具,扶椅子的扶椅子,钉钉子的钉钉子。一阵“噼噼啪啪”声后,几根大钉子钉进了那条松了的椅子腿上,“嘿,总算钉好了”,我拍拍手,满意地可往上一坐。“嘎吱,嘎吱”,咦,怎么还是不对劲啊,怎么办呢?突然,我想起数学老师讲过的一句话:三角形能对物体起到稳定作用。对啊,我刚才怎么没想到呢?我马上找来了一块小木头,并根据小椅子的四条腿与椅面形成的角度,将其切削成了4块同样大小的三角形小木头,后把三角形木头分别补在椅腿与椅面的空档处,用钉子钉紧。你别说,这一下椅子坐上去可是稳稳当当的了。嘿,数字可真奇妙。看来以后我一定要更加努力地学好数学,并将数学运用到生活的一点一滴当中,去分析、解决生活中遇到的实际问题,更好地适应社会的发展和需要。让生活变得更加有意义。
写生活中的数学的作文800字 汽车上的'“图形”变换 隔壁王大哥说要开汽车带聪聪去博物馆参观,聪聪别提有多高兴了。王大哥说:“别太兴奋了,路上我可得考你哟!” 聪聪说:“考就考呗,谁怕谁呀!” “呵呵,口气倒不小,别到时候抓小脑瓜哦。上车吧!” 汽车开动了,王大哥突然问:“现在汽车是在平移呢,还是在旋转?” “当然是在旋转了!”聪聪脱口而出。 “汽车在旋转,你还能稳稳地坐在这里吗?早出车祸了!” 聪聪连忙纠正:“哦,我说的是车轮在旋转。” 王大哥说:“可我问的是汽车!你应该这样回答:汽车在直路上开时在平移,而车轮在旋转。” 聪聪不服气地说:“不过,我说车轮在旋转还是对的。” 正说着,外面下起小雨来,聪聪赶忙把汽车旁边的窗玻璃关上了。 王大哥笑着问:“你关窗玻璃是在平移还是在旋转?” 聪聪这回认真了:“你问得也太含糊了,你到底是在问我摇玻璃窗的摇把怎样运动呢,还是问玻璃位置的变换呢?如果是前者那是旋转,如果是后者则是平移。” “哟,倒说起我的不是来了。行!” 雨渐渐下大了,王大哥打开了雨刷器,落在前窗的雨点一下一下被刷了下去。聪聪一面兴致勃勃地看着,一面对王大哥说:“我知道,你又要问我这雨刷器现在是在旋转还是平移了,对不对?” “聪明,不亏是聪聪。你知道问题了,就请回答吧!” “当然是旋转!你难不倒我。”聪聪肯定地说。 “既然如此,那就再请回答,这雨刷器每从右到左刷一次,旋转了多少度呢?”王大哥问。 聪聪毫不犹豫地说:“圆周是3600,现在雨刷器每次只旋转了半周,那就是平角,是1800。” 王大哥摇摇头说:“现在的问题是,雨刷器每刷一次是不是旋转到半周了?” 聪聪这下开始抓脑瓜了,雨刷器明明从窗右面的底边刷到窗左面的底边,王大哥怎么会这样说呢?想了一会,聪聪突然兴奋地说:“哦,我明白了。雨刷器旋转的度数,应该少于180。,因为雨刷器的一端不可能装在玻璃的底边上,也就是说,圆周的中心点还在底边的下方。对吧?” 王大哥笑着点点头。汽车停了下来,原来博物馆已经到了。
在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。下面是关于生活中的数学论文的内容,欢迎阅读!
最近,我们学习了圆柱、圆锥体积和表面积的计算方式。我认真学习了课内知识,并做了一些课外练习巩固所学知识。综合学习和练习情况,我对相关知识进行了总结和归纳:此方面的考好主要有一线六个方面:
一是卷。就是把一个长方形形状的纸卷成圆柱的形状,然后算圆柱的最大体积。例如:一个长12,56米、宽9。42米的长方形,卷成一个圆柱,重叠部分忽略不计,求圆柱的最大体积。这种题目有两种可能,以长为圆形或以宽为圆形。因此,要把这两种可能都算出来,然后比较。这种题目要注意的是:必须看清楚是用长方形的长和宽分别卷成圆形。
二是转。就是把一个长方形的纸,延一条边旋转3600,求所得形状的体积或面积。举个例子:一个长方形长8厘米,宽5厘米,以长为轴旋转一周,算得到的形状的体积。一个长方形的纸,旋转一周得到的形状是圆柱体,然后利用圆柱体体积的计算公式,就能得到答案。这种题目要注意是用什么形状的纸旋转的。
三是削。就是一种形状的物体,按一定规则消除一些部分,计算剩下形状的体积或表面积,这种题目要注意的是:要把所有的可能全部计算出来,不能偷懒只计算一种。
四是铸。就是把一种形状的物体融化成液体,然后重新浇铸成另一个形状的物体。这种题目要抓住形状虽然变化,但体积不会这一关键点来考虑。
五是增。就是在一种形状上再继续增加一种形状。这种题目路要注意增加的形状是什么样的。
六是切。就是吧把一种形状切成几段,然后告诉你增加了什么,增加了多少,让你计算原理的,这种题目要看清楚是怎么切的,切了以后有什么变化,面积如何增加,等等。
以上是我对近期学习内容的总结和思考,大家说数学是不是很神秘而又充满趣味呢?
数学源于生活,又广泛应用于生活。在实际生活中运用所学数学知识,处理实际问题是小学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。数学知识的生活化,就是通过将数学教材中枯糙、脱离学生实际的数学知识还原,取之于学生生活实践并具有一定真实意义的数学问题,以此来沟通“数学与现实生活”的联系,激发学生学习数学的兴趣。
一、让学生在生活中感悟数学。
“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”因此,数学教学,只有从学生的生活经验出发,让学生在生活中学数学、用数学,数学教学才能焕发生命活力。
1、在小学数学教学中,从生活实际出发,把教材内容与“数学现实”有机结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强数学的应用意识,唤起学生的学习兴趣。例如:如教学循环小数概念时,我先给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在说从前山上有座庙……”,通过实例让学生初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环引出“循环”的概念,使学生产生浓厚的兴趣。
2、小学数学中的许多概念和法则都是在现实生活中抽象出来的,因此概念法则的`教学也就必须在生活实际中找到相应的实例,并引导学生从直观入手从而抽象出来,逐步加深理解和运用。例如:在教学应用题常见的数量关系时,学生对于“工作效率×工作时间=工作总量”中的“工作效率”不易理解。为此,我在教学前,在班里举行了一次口算比赛和跳绳比赛。教学新课时,联系两次比赛活动,学生就非常容易理解“工作效率”这一抽象而又陌生的概念:即指单位时间内所作的工作量。又如在学习“接近整百整十数加减法的简便算法”中,有这样一题:128-96=128-100+4,学生对减100时要加上4 难以理解。我便设计了一个“买东西找零钱”的生活实际:我要过生日了,妈妈带了128元钱去商店买一个96元的布娃娃准备送给我。妈妈付给营业员一张百元钞票(应把128元减去100元),营业员找回4元,(应加上4元)。所以,多减去的4应该加上。
这样的“生活教学”例子,通过生活经验验证了抽象的运算,而具体的经验更提炼上升为理论(简便运算的方法),学生容易理解且不易忘记。
让数学回到生活,使学生感到数学就在身边,学习数学是有用的、有必要的,从而激发学好数学的愿望。
二、让数学知识回归学生生活。
学习是为了应用。因此,教师在教学中要经常培养学生联系生活实际、运用数学知识,解决问题的意识和能力。知识也只有运用才能被学生真正掌握,也只有在实践运用中才能体现其价值。
1、创设情境,培养学生解决实际问题的能力
学生掌握了某项数学知识后,可以有意识地创设一些把所学知识运用到生活实际中的情境。例如,在学习了利息后,让学生去银行了解利息、利息税等有关知识,让学生当家长的小参谋:家中多余的钱怎样存最合算?并帮助家长计算利息和利息税。
2、联系实际,增强学生的数学意识
数学知识在日常生活中有着广泛的应用,生活中处处有数学。例:如学了三角形的稳定性后,可以让学生观察生活中哪些地方运用了三角形的稳定性。学习了圆的知识,让学生从数学的角度说明为什么车轮的形状是圆的,其它形状的行不行?为什么?
3、加强操作,培养学生把所学知识运用于实际的能力。
知识来源于实践,又指导于实践。我们经常看到由于学生的感性知识缺乏,出现不符合客观生活实际的数量意识。这就要求我们的课堂教学更要注重联系实际,强化学生的动手操作活动。在学习了米、厘米以及如何进行测量之后,让学生运用掌握的数学知识解决生活中的实际问题。如测量身高,测量手臂伸开的长度,测量一步的长度,测量教室门的宽度以及测量窗户的宽度,通过上述活动,加深学生对厘米和米的理解,巩固用刻度尺量物体长度的方法,同时,学生获得了日常生活中一些常识性数据。在这个活动中提高了学生的学习兴趣和实际测量的能力,让学生在生活中,在生活中用。
学习了平均数问题后,让学生以小组为单位,自选专题,展开活动,如:测量计算班级同学的平均身高、平均体重、平均年龄,全校各班的平均人数、教师平均年龄,附近菜场某一蔬菜的平均价格等。学生在互相协作活动中,自然而然地锻炼了他们解决实际问题的能力。
运用数学知识解决生活实际问题,能实现数学与生活的紧密结合,帮助学生学会用数学的眼光观察生活,从而不断体验数学的价值与魅力。
大千世界,无奇不有,在我们的日常生活里也有许多有趣的数学问题哦。
一天,我的家人带着我一起去超市买东西,我一路上蹦蹦跳跳的,十分兴奋。
进入后,逛了一段时间,我们就拿了四袋洗衣液。在走到文具区时,奶奶问我需不需要些什么文具。我走到货架前看了看……
到了收银台,我们一共买了如下商品:四袋洗衣液,一袋18。5元;十包卫生纸,一包4。5元;一支自动铅笔,一支2。5元;三支钢笔,一支5。5元。
突然,在结账后,我的爷爷问我:“你最近不是学了关于小数的知识么?能不能先用笔算出今天买的每种商品的总价,再算出一共花了多少元?”
“能,怎么不能?一定不会错的!”我胸有成竹的回答他。
说干就干。我拿了一张超市的广告纸,再拿出随身携带的笔,立即在空白处算了起来。
我的思路是这样的:洗衣液一共四袋,每袋18。5元,所以直接用乘法就行了;卫生纸一共十包,每包4。5元,只需要把这个小数的小数点向右移动一位来算便行了;自动铅笔只有一支,在最后时加上便可以了;还有三支钢笔,也用乘法来算。
于是,我算了起来。我先用4×18。5=74元(老师说过,整数乘一位小数等于一位小数,但如果两数末尾相乘的得数末尾是零,那么结果就是整数)算出洗衣液的总价;接着,用10×4。5=45元(一个小数乘10,把这个小数的小数点向右移动一位就是这道算式的结果)算出卫生纸的总价;然后,又用3×5。5=16。5元算出钢笔的总价。今天买的每种商品的总价都算出来了,该算一共花的钱了。一道综合算式74+45+16。5+2。5=138(元)(在讲小数加法时,老师特别强调过,列竖式时,相同数位要对齐)便算出了所有花的钱。
当我把纸递给爷爷并讲了我的思路后,他直夸我聪明,我也乐开了花。
我真诚地对大家说:“你们也好好学数学吧,难道不会受益终生么?”我想:学数学,真有用啊,我以后肯定会好好学数学的!
数学来源于生活,生活中的数学知识比比皆是,我们平时走路、乘车、购物……等,其中都包含着数学问题和知识,只要注意观察就能发现,连航空、航海、航天都与数学有着密切的关系。
数学可以锻炼我们的思维体操,我们不仅能从数学中学到知识,还能从数学中找到一些乐趣。
在我过去的记忆中,发生过有关数学的趣事。有一天在奶奶家,当时有爷爷、奶奶、姐姐和我共四个人在看电视,奶奶到厨房拿来洗好的三个苹果说:“只有这三个,你们一人一个吧。”爷爷说:“那怎么行,叫他俩分,每人一份。”这下我傻眼啦!我说:“少一个怎么分?姐姐说:”我来分。“她拿起刀,把每一个苹果十字切开,切成了12块,三块一份,正好四份,当时我边吃边想,怎么也没想到分苹果还有学问,这件事给我留下深刻的印象。
我学奥数做题时有次遇到了难点,题目是:徐师傅锯木头锯了五次,每段一百二十厘米,问原来这根木头长多少厘米?看题后我想锯五次是五段吗?这样理解对不对?突然想到老师教的画圈法,于是用尺子先画一条直线,用笔在直线上画五个段点,表示锯了五次,一看是六段,用120乘6结果是720厘米,这是十我的心情很轻松自信,对老师教的线段图解法印象深刻,非常高兴。
“免费午餐”的故事,爷爷听人讲,过去有个饭店开业这天,为了吸引顾客,在门口的招牌上写有“免费午餐”四个大字引来很多人围观,前面的人还看见四个大字下面有几行小字,上写着“答题正确免费午餐”,题目是:“饭店来了一群人,一人一碗饭,两人一碗菜,三人一碗汤,一共用了55只碗,饭店来了多少人?”爷爷让我算算饭店来了多少人,我想了很久才想到人数必须被2、3整除,用能被2、3同时整除的数6试算,6人6+3+2=11不行,用12人,24+12+8=22不行,用18人,18+9+6=33也不行,用24人,24+12+8=44不对,用30,30+15+10=55对了。我终于算出来了。饭店来了30人。爷爷高兴的问我:做题时你是怎么想的?我说:求的是人数,那有一半的人呀!所以想到被2、3整除。爷爷说:这是解题的关键被你找到了,加上多次试验做出来的,你可别忘啦!我说分苹果的事我还记住那!
生活中的数学
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处
在日常生活中,做每件事情都离不开数学,可见数学与我们的关系是多么的密切呀。
比如,妈妈上街买水果,买蔬菜,还有去文印社复稿件……等等,都要用到数学。生活中还有很多很多有趣的数学,等我们去发现,去探索。
暑假里我跟爸妈到表姐家玩,路上口渴了,爸爸只好到附近杂货店买矿泉水喝。杂货店有个规定:买3瓶矿泉水可以换一瓶矿泉水,一瓶矿泉水卖价1元钱,爸爸见了掏出10元钱给杂货店老板,说:“老板买10瓶水”,水拿到了,我如饥似渴的喝了起来,一会儿就喝掉了二瓶。还没等我回过神,已经有好几个空瓶了。爸爸问我:“灵灵,我们用10元钱能换多少瓶矿泉水?”我想:10瓶水喝完,拿9个空瓶子换了3瓶矿泉水,3个空瓶又换了1瓶矿泉水……还剩下两个空瓶子。我高兴地对爸爸说:“爸爸,我算出来了,是14瓶矿泉水,还余下2个空瓶子。”爸爸笑了,说:“你再想一想!”我若有所思:“我们可以再向杂货店老板借一个空瓶子,喝完后再把空瓶还给老板,噢!我们可以喝15瓶矿泉水。”爸爸点头称赞。
数学就是要灵活运用,理论联系实际,只有掌握了数学知识,才能更好的让数学服务于我们。所以我们要学好数学,让数学成为我们学习生活中的好帮手
生活中的数学
今天我在电视上看见有好多人捐钱给那些没有学上的人,就想起:我的国家大约有13亿的人民,如果每个人每天节省1角钱,这样的话,我国全国节约了1300万元了,每个人从小学上到大学要用1万多元,照这样计算可以让1085为没有上学的小朋友,把这些钱给那些小朋友多么好啊!如果我有这么多钱一定平均分给小朋友们!
我突然想起来了人多力量大也有坏处啊,恩不好不好!因为如果每个人每天多要浪费13亿水了,多不话来啊!
我做了一个小小的小实验:在水龙头下面滴了1000滴水重200克,我又动笔算了一下子:1300000000除以1000乘200等于260000000克再用260000000等于260吨水就是足足可以用上个2,3年了呀!我去问爸爸妈妈:“1吨水可以发电100度电?”我有想了想,算了算想出来了,哪就是说260吨水就可以发26000度电了。
哇哇!我一下子惊呆了五分钟,260吨水竟然可以发会这么多的作用啊!所以我们大家从现在开始起要节约水利用水,不要浪费一滴水了,要养成节约这个好习惯不能浪费了!
我相信生活中处处有数学,处处用数学,只要做数学学习的有心人,即使在游戏中也能体会到数学思维的快乐!!!
美丽的数学
今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(毫升),前后两次水位刻度之差就是这一部分筷子的体积,即立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!
接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气。
自己改动一下吧
数学在我们的生活中可以说是无处不在,到超市买东西付钱时,测量某东西的面积时,制作平行四边形、直角形、三角形等各种形状的物品时……都是数学知识在生活中的直接运用。前几天我们家就发生了一件运用数学知识解决生活问题的事情。
那天放学回家,我往小椅子上一坐,只听“嘎吱”一声,吓得我赶忙跳了起来。哈,原来是椅子的一条腿松了。“我们来修椅子怎么样”,我一时心血来潮地对爸爸妈妈说。爸爸妈妈挺支持地说“行啊”。于是全家人便开始忙碌起来,找工具的找工具,扶椅子的扶椅子,钉钉子的钉钉子。一阵“噼噼啪啪”声后,几根大钉子钉进了那条松了的椅子腿上,“嘿,总算钉好了”,我拍拍手,满意地可往上一坐。“嘎吱,嘎吱”,咦,怎么还是不对劲啊,怎么办呢?突然,我想起数学老师讲过的一句话:三角形能对物体起到稳定作用。对啊,我刚才怎么没想到呢?我马上找来了一块小木头,并根据小椅子的四条腿与椅面形成的角度,将其切削成了4块同样大小的三角形小木头,后把三角形木头分别补在椅腿与椅面的空档处,用钉子钉紧。你别说,这一下椅子坐上去可是稳稳当当的了。
嘿,数字可真奇妙。看来以后我一定要更加努力地学好数学,并将数学运用到生活的一点一滴当中,去分析、解决生活中遇到的实际问题,更好地适应社会的发展和需要。让生活变得更加有意义。
游戏中的数学
一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了。
大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解。
回到家,我在小篮子里挑了十个石子,准备新手操作一下。我把爸爸叫来,让爸爸和我一起做这个游戏。我找来一支笔和一本本子,将我做的每一步记录下来。规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了。
第一场我失败了。原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……
我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿。现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了。
为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!!!
原来,生活中数学无处不在,它们正等着你去发现呢!
生活中我们都离不开数学,比如买菜的几斤几两、日历上的几年几月几日,还有一些数学的等式都与数学有关。今天,我要向大家介绍几题数学题吧!
早上起床,当我们睁开朦朦胧胧的双眼,第一眼就向闹钟看去,闹钟上的数字,就是生活中的数学。因为我们一天的时间是时针转24圈、分针转1440圈、秒针转86400圈得来的。那24*30=一个月,一个月*12=一年,这就是时间的数学。
平时,我们都要去的菜市场里也离不开数学。星期天,妈妈带我去买菜,在一个卖白菜的摊子前,妈妈和卖白菜的人讨价还价起来,最后,以一斤八角钱的价格买三斤,送一斤的口头协议买了三斤大白菜。妈妈问我:“我这样买菜,每斤便宜了多少钱?”我想了想,对妈妈说:“便宜两角。”若得卖菜阿姨直夸我。回到家里,妈妈问我:“你是怎么算的?”我笑了笑说:“我先算3斤大白菜*0。8元=2元4角,再算买3斤送1斤=4斤,然后再算2元4角÷4斤=6角,那8角-6角不就等于2角了吗!”这就是生活中的单价*数量=总价。
我平时都要跟着妈妈乘公共汽车去新华书店,公交车一分钟行驶一千米,大约二十分钟就到了。妈妈问我:“我们家离新华书店距离大约有多少千米呀?”我一边用手指比划着一边对妈妈说:“大约二十千米。”这就是生活中的速度*时间=路程。
“勤动脑+勤动手=成功”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。我总要先读懂题目,掌握其中的关系,列出算式,一步步地解答。有时,还要通过画图的方式,来理解题目。
其实,生活中还有许多奇妙的数学,在等着我们去寻找、去发现。
生活在幸福中 我生活在一个幸福的家庭,我有让我感到幸福的父母。
勤劳的爸爸妈妈用智慧的双手构建着我们这个幸福的家。他们勤奋地工作着,他们如愿以偿,家庭虽然不算富裕,但一家人每天快乐的工作、快乐地学习。
小时候,我不止一次的问过大人:什么叫幸福?他们有的说是有钱,有的说是有权,而爸妈说幸福就是一家人在一起快乐地生活。 我想,我一定是幸福的。
每天放学回到温馨的家,一股饭菜的浓香味扑鼻而来。有时作业写到一半,就能听到妈妈喊“开饭”的声音,这时候我是那么的快乐。
妈妈的烹饪水平可是一流,同学朋友每回在品尝妈妈的手艺时,都说我“真幸福”,那时,我自豪极了。饭桌上,我大口大口地吃着香甜可口的饭菜,一个劲地夸赞妈妈的手艺,妈妈总是欣慰地笑着。
我想,她一定是幸福的。 我很憎恨恶劣的天气,不仅因为它给人们生活带来了很多不便和灾害,更因为天气恶劣时爸爸的工作是那么艰辛。
那个天寒地冻的深夜,我被开门声惊醒,“今天我们家用上了电”,爸爸正兴奋地向妈妈讲述他们为最后一户通电的情况。听着他们轻轻的交谈声,我一咕噜爬出温暖的被窝,扑到我几天几夜都未曾见过的爸爸的怀里。
爸爸宽实的臂弯环绕着妈妈和我,舒展的笑容里,洋溢着战胜冰灾的欣喜和自豪。我想,他一定是幸福的。
有时,一家人在谈天,我最爱听他们小时候的故事。每次看到他们为儿时的丑事而脸红时,我都不禁捧腹大笑,后果是被罚去清理大笑时喷出的“东东”。
有时,我跟他们谈我的奇思妙想,有历史的、有地理的、有生物的……我发表出一个“妙论”时,爸爸毫不留情地泼我冷水,说“不现实”,而我却从不肯服输,连说“凡事都有可能”,引来一阵阵爸爸并无恶意的笑声……此时的我,也是幸福的。 一家人在一起难免会发生磕磕碰碰,但过后总是幸福快乐的。
一个孩子生活在恐惧中,他学会的是忧虑;一个孩子生活在讽刺中,他学会的是自卑;一个孩子生活在鼓励中,他学会的是自信;我生活在幸福中,我想,我学会的将是用心真诚地对待万事万物。 生活在诚信之中在斑斓的社会中,童年早已离我而去,早已找不到一点童年时代的影子,这没什么值得感伤,因为我已步入了另一个世界。
这其中有一件是令我难忘,因为它教会了我“诚信”二字。 我离开了童年,也离开了生活了十年的平房,买了一套楼房开起了超市,生意虽不算好,可总算过得去。
刚搬到这的时候,正是雪花纷飞的冬天,而附近的一家麻将馆,却是夜夜灯火通明。那的老板经常光顾,后来要了我家的电话号码,说他们忙时就送货。
有一天晚上,已是晚上八点多了,电话突然响了,打电话的正是那位老板,要了一点货,让妈妈送过去,此时外面正下着大雪,超市早就关门了,但妈妈还是答应送去。 简单的收拾一下,妈妈就拿着货出门了,留我一人在家。
除了我的台灯发出的那昏暗的灯光外,黑漆漆一片。那一刻,感到时间过得很慢。
几分钟后,妈妈回来了,她满脸通红,像极了圣诞老人。不过妈妈并没有脱掉外衣,而是从口袋中拿出了一盒烟,从货架上换了一个,我还没来得及问。
她又出去了,我走到窗边,看着外面雪花纷飞,想想都让我打寒颤 妈妈终于回来了,似乎比上一次用的时间还多。妈妈回来之后,我立刻问她:“妈,你刚刚干嘛去了?”妈妈回答说:“有人换一下烟。”
但我见妈妈仍然没有休息的意思,就问她:“你还要去啊?”妈妈没有回答我,我又问了一遍,妈妈才回答:“他们还需要零钱,我得送去。”我说:“这不是在折腾人嘛,不送不就行了吗!”妈妈说:“那哪能行?再说我们已经答应他们了。
怎么能食言?况且人家还等着呢!这是诚信问题!”说完妈妈就走了。 时间一分一秒过去了,妈妈终于回来了,我见她一句话都没说,默默地坐在床上…… “诚实是力量的一种象征,它显示着一个人的高度自重和内心的安全感与尊严感。”
生活在岁月中 岁月是一首变幻的歌,岁月是一本沧桑的书,岁月是一条曲折的河,岁月是一段坎坷的路。 岁月匆匆,燕子去了,又再来的时候;杨柳枯了,又在开的时候。
而岁月却逃去如飞,我们拥有的时间只是流星划过暗淡长空的短暂光芒。面对它,我却茫茫然,我生活在岁月之中,却丝毫没有对它产生半点怜惜。
岁月多变,从奴隶到民主,从野性到文明,从争战到安定,从落后到先进,这一切的变化都浸泡在岁月中,历史向我们昭示着岁月,我生活在岁月中,为变幻的奇迹而惊叹。 岁月苍苍,多么长久的时间在它看来也只是流星一瞬,古代的劳动人民为我们留下了沧桑而辉煌的成就,化作一行字,铭刻在岁月的脚步下。
我生活在岁月之中,岁月重现了历史。 岁月恍惚,回望我走过的路,扑朔迷离,远处的则如同海市蜃楼,这也许是我的犹豫,这也许是我的抉择。
我生活在岁月之中,岁月如麻,而我坚守我自己。 岁月最易让人迷失,如一片森林,茂盛却迷离,似一片沙漠,平坦却茫茫。
坚定自己,明确自己,信赖自己,以明确人生航向,化一条船,与风浪搏斗,不示弱,向目标远航。生活在岁月中的又何止是我一人呢? 云儿轻轻散去,风儿渐渐停息,岁月在留下些鱼尾纹。
原发布者:中国学术期刊网
生活中的数学论文:生活中的数学学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋须要画图纸,分苹果、烙饼子,类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我们要到生活中学数学,在生活中用数学,数学与生活密不可分。新课程《标准》提倡人人学有价值的数学,事实上是与学生的现实生活和以往的知识体验有密切关系的数学;是学生用来解决生活中一些实际问题的数学,也就是生活中数学。如何做到人人学有价值的数学,也就是学习生活中的数学,我谈谈我的一点体会。一、从学生自己熟悉的生活背景中发现数学,掌握数学和运用数学如在教学整百整千数加法时。我课前把学生最熟悉的“中百仓储”购物的情景录下来播放:,当学生看到这一情景时,个个都兴奋不已,因为“中百仓储”是大家再熟悉不过的购物场所,学生感到特别亲切。接着又把学生引入到中百仓储的家电区,观察这些家电的价格,让学生自由提出用加法计算的数学问题。学生非常投入,发言踊跃极了。二、让学生在操作中学习有价值的数学由于小学生的生活经验和事物相互联系的知识比较缺乏。让学生在操作中亲身经历和感受生活中的数学,在他们的心中烙下了深刻的印象,也学得深,记得牢。如在教学“粉刷围墙中的问题”时,我带领学生亲自动手测量围墙的长和高,在测量中,不仅巩固了有关
生活的问题
五年级三班 郇庆新
一天,我正在看一本有关数学题的书。
突然,一个问题难住了我,问题是这样的:楼下有三个开关,楼上有一盏灯,但在三个开关中只有一个是可以开楼上的灯的,而你只有一次上楼的机会,且每次只能开一个开关,你怎样才能知道是哪个开关控制着楼上的灯?问题那就难在只有一次上楼的机会,按普通解题思维,开一个,上楼看亮不亮,下楼,还剩两个开关,选哪个呢?按奥数的方法又该怎么办呢?
思前想后,没有任何方法。被打败了。看看书后的答案,啊哦!这样啊!太简单了!解法就是这样:先将第一个开关开一分钟,关后开另一个开关,上楼查看,如果亮,毫无疑问,第二个开关。不亮就摸摸灯是否热,因为第一个开关如果连接着灯,开一分钟必然热,热,第一个开关。不热,排除了第一第二个,就是第三个!数学题迎刃而解了!这道题告诉了我,数学题,不仅是靠定律去解,生活其实是最好的帮手!
我也写这个,觉得还行,复制过来给你看看,希望对你有用
有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
摘要】力度空前、理念新颖的数学课程改革,有力地促进了教师角色的转换,改变了 教师的教学教研观念和方式, 更改变了学生的学习方式和精神风貌。 作为新课程推行的主体 ——教师,想迅速成长,须合理、有效地对我们教学进行反思,才能达到“在发展学生的同 时实现教师自身的提高”的目的。【关键词】高中数学新课标教学反思“吾日三省吾身”是我国古代的教育家对反思问题的最简洁表达。新课程标准颁布,为 新一轮教学改革指明了方向,同时也为教师的发展指明了道路,作为教师的我们,须认真学 习新课程标准和现代教学教育理论, 深刻反思自己的教学实践并上升到理性思考, 尽快跟上 时代的步伐。我从事高中数学教学已有一段时间,在教学中,经历了茫然与彷徨,体验了无 所适从到慢慢摸索的课堂教学组织,其间不乏出现各种思维的碰撞,而正是这些体验、碰撞 不断的引起我对高中数学教学的反思, 更加坚定了课改的信念, 并从中得到启迪, 得到成长。一、教学观念上反思课改,首先更新教学观念,打破陈旧的教学理念,苏霍姆林斯基说过: “懂得还不等于 己知,理解还不等于知识,为了取得更牢固的知识,还必须思考。 ”作为新课程推行的主体 ——教师,长期以来已习惯于 “以教师为中心” 的教学模式, 而传统的课堂教学也过分强调了 教师的传承作用,思想上把学生看做消极的知识容器,单纯地填鸭式传授知识,学生被动地 接受,结果事倍功半。新课改强调学生的全面发展, 师生互动,培养学生终身学习的能力, 学生在老师引导下,主动积极地参与学习,获取知识,发展思维能力,让学生经过猜疑、尝 试、探索、失败,进而体会成功的喜悦,达到真正的学!所以,现在教师角色的定位需是在 动态的教学过程中, 基于对学生的观察和谈话, “适时” 地点拨思维受阻迷茫的学生, “适度” 地根据不同心理特点及不同认知水平的学生设计不同层次的思考问题, “适法”地针对不同 类型知识选择引导的方法和技巧。二、关注初高中衔接问题初教高一时,深感高中教材跨度大,知识难度、广度、深度的要求大幅高,这种巨大的 差异,使刚从初中升到高中的学生一下子无从适应,数学成绩出现严重的滑坡,总感数学难学,信心不足。由于大部分学生不适应这样的变化,又没有为此做好充分的准备,仍然按照 初中的思维模式和学习方法来学习高中数学知识, 不能适应高中的数学教学, 于是在学习能 力有差异的情况下而出现了成绩分化,学习情绪急降。作为教师应特别关注此时的衔接,要 充分了解学生在初中阶段学了哪些内容?要求到什么程度?哪些内容在高中阶段还要继续 学习等等, 注意初高中数学学习方式的衔接, 重视培养学生正确对待困难和挫折的良好心理 素质,适应性能力,重视知识形成过程的教学,激发学生主动的学习动机,加强学法指导, 引导学生阅读、归纳、总结,提高学生的自学能力,善于思考、勇于钻研的意识。三、教学中反思教学中进行反思,即及时、自动地在行动过程中反思。教学过程既是学生掌握知识的过 程,发展学生智力的过程,又是师生交往、积极互动、共同发展的过程。教学中的师生关系 不再是“人、物”关系,而是“我、你”关系;教师不再是特权式人物,教学是师与生彼此 敞开心扉、相互理解、相互接纳的对话过程。在成功的教学过程中,师生应形成一个“学习 共同体” ,他们一起在参与学习过程,进行心灵的沟通与精神的交融。波利亚曾说: “教师讲 了什么并非不重要, 但更重要千万倍的是学生想了些什么, 学生的思路应该在学生自己的头 脑中产生,教师的作用在于“系统地给学生发现事物的机会” 。教学中教师要根据学生反馈 的信息,反思“出现这样的问题,如何调整教学计划,采取怎样有效的策略与措施,需要在 哪方面进行补充” ,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行,这 种反思能使教学高质高效地进行。 教学时应注意,课堂回答问题活跃不等于教学设计合理,不等于思维活跃,是否存在为 活动而活动的倾向,是否适用所有学生,怎么引起学生参与教学。教师必须围绕教学目的进 行教学设计,根据学生已有的知识水平精心设计,启发学生积极有效的思维,从而保持课堂 张力。设法由学生自己提出问题,然后再将学生的思考引向深入。学生只有经过思考,教学 内容才能真正进入他们的头脑, 否则容易造成学生对老师的依赖, 不利于培养学生独立思考 的能力和新方法的形成。有时我们在上课、评卷、答疑解难时,自以为讲清楚明白了,学生 受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从 根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题, 学生当时也许明白了,但并没有理解问题的本质性的东西。还有,教师在激发学生学习热情 时,也应妥善地加以管理,使课堂教学秩序有利于教师“教”和学生的“学” ,要引导学生 学会倾听,并加强学生合理表达自己观点的训练。四、对学生学习方法的反思就上面讲到的初高中数学存在巨大差异,高中无论是知识的深度、难度和广度,还是能 力的要求,都有一次大飞跃。学生有会学的,有不会学的,会学习的学生因学习得法而成绩 好,成绩好又可以激发兴趣,增强信心,更加想学,成绩越拔尖,能力越提高,形成了良性 循环。不会学习的学生开始学习不得法而成绩不好,如能及时总结教训,改变学法,变不会 学习为会学习,经过一番努力能赶上去;如不思改进,不作努力,成绩就会越来越差,当差 距拉到一定程度以后,就不容易赶上去了,成绩一差会对学习丧失兴趣,不想学习,越不想 学成绩越降,继而在思想上产生一种厌恶,害怕,对自我怀疑,对学习完全失去了信心,甚 至拒绝学习。由此可见,会不会学习,也就是学习方法是否科学,是学生能否学好数学的极 其重要的因素。当前高中生数学学习方法还处在比较被动的状态,存在问题较多,主要表现 在:1、学习懒散,不肯动脑;2、不订计划,惯性运转;3、忽视预习,坐等上课,寄希望 老师讲解整个解题过程,依赖性较强,缺乏学习的积极性和主动性;4、不会听课,如像个 速记员,边听边记,笔记是记了一大本,但问题也有一大堆;有的则一字不记,只顾听讲; 有的学生只当听老师讲故事时来精神等等; 5、死记硬背,机械模仿,教师讲的听得懂,例 题看得懂,就是书上的作业做不起;6、不懂不问,一知半解;7、不重基础知识,基本方法, 基本技能,而对那些偏、难、怪题感兴趣,好高骛远,影响基础学习;8、不重总结,轻视 复习。 对于我们面上中学,大部分是居于中等及以下的学生,基础知识、基本技能、基本数学 思想方法差, 思维能力、 运算能力较低, 空间想象能力以及实践和创新意识能力更无须谈说。 上面所谈到的学生问题表现尤为突出,因此教师需多花时间了解学生具体情况、学习状态, 对学生数学学习方法进行指导,力求做到转变思想与传授方法结合,课上与课下结合,学法 与教法结合,统一指导与个别指导结合,促进学生掌握正确的学习方法。只有凭借着良好的 学习方法,才能达到“事半功倍”的学习效果。五、对小组合作学习的反思《高中数学新课程标准》指出,教师应倡导“自主、合作、探究”的学习方式,促进学 生在教师的指导下主动、有个性地学习,促进学生能力的发展,培养学生良好的合作品质和 学习习惯。现“小组合作学习”已经成为新课标理念下的一项重要教学组织形式,但在实践 中,我们发现小组合作学习方式的实施存在着误区: (1)小组合作活动流于形式,缺乏实质 的合作。 教师为追求学习方式的多样化, 不根据教学内容的特点和学生实际盲目地采用小组 合作学习方式。(2) 合作人员搭配不合理,责任扩散和"搭车"现象时有发生, 不利于让不同特质、不同层次的学生进行优势互补、相互促进。(3)学生社交技能欠缺,之间缺乏沟通和 深层次的交流,合作效率低下,结果是优等生的想法代替了小组其他成员的意见和想法,差 生成了陪衬。(4)教师课前对合作学习的目的、时机及过程没有认真设计,也有教师在合作 学习中只是按照预定的设计,把学生往教学框架里赶。(5)合作时间给予不足。在小组合作 学习时,往往是教师呈现问题后未留给学生片刻思考的时间就宣布“合作学习开始” ,不到 几分钟就叫“合作学习停止” 。这时,有的小组还未真正进入合作学习主题,有的小组才刚 刚开始。 这样的小组合作学习不但达不到合作学习的目的, 而且很容易挫伤学生合作学习的 热情,养成敷衍了事的不良习惯,下次开展合作活动学生也懒得配合了。(6) 表面上的“假 热闹” ,实际上“活而无序” 课堂秩序混乱,学生发言七嘴八舌,听不清究竟谁的思维不 。 严密,谁的思维缺少条理性。教师对小组学习缺乏必要的计划、调控等组织技能,指导作用 没有跟上,当学生和小组面临问题时,教师无法对一些问题进行辨别、分析并对学生们进行 帮助。(7)评价体系没有跟上,三重三轻突出,小组合作名存实亡。小组代表或个别优等生 的发言多数一听就知不是代表本组意见,而是代表个人意见。合作学习结果变为:重个体评 价轻小组评价;重学习成果评价轻合作意识、合作方法、合作技能评价;重课堂随机评价轻 定期评价等。 我们应明确,合作学习这只是有效学习方式中的一种,教学中根据教学目标、教学内容 等合理的选择教学行为和学习方式,要避免“将所有的原料配料放入合作学习之盘” 教师 。 需关注学情,提前建立评价建体系,挖掘合作点,顺学而导,使学生掌握技能会合作,同时 应提供充裕的合作学习时间,激活内因真正促发展。六、对习题、试卷评讲的反思 对习题、习题、试卷评讲不能停留于指出不足、改正错误及讲解方法,而应当着眼于数学能力的 培养。要结合示例挖掘、归纳其中的思想方法,抓“通病”与典型错误,抓“通法”与典型 思路,加深学生对思想方法的认识,使其领悟思想方法实质,不断提高解题能力和纠错、防 错能力。 在数学教学中需要反思的地方很多,没有反思,专业能力不可能有实质性的提高,教师 要在数学教学过程中充分理解新课程的要求,不断地更新观念、不断探索,提高自身的学识 和身心修养,掌握新的专业要求和技能,在教学过程中只有勤分析,善反思,不断总结,以 适应新课程改革的需要,教育教学理念和教学能力才能与时俱进,全面开展素质教育。
活动意义 1、让学生知道数学与生活是密切联系的; 2、让学生体验数学与生活是能够联系的; 3、让学生展示数学与生活是怎么联系的; 4、让学生释放数学与生活相联系的能力。 参与对象 鼓楼区各小学1-6年级学生及指导教师。活动内容 高年段(五、六年级)活动内容: 1、应用数学知识为校园、教室、自己的家或者公共场所进行一项局部设计。设计要求:(1)要实用。或者改善周围环境,或者改进空间结构,或能改变传统认识。(2)有价值。设计的效果应该比原来更科学合理,更方便实用,更新颖美观,更富有创意。(3)有数学。设计要体现出设想、测量、计算、实际验证等具有数学意义、数学内容和有效数据真实资料,写一份图文并茂的《×××设计报告》。 2、应用数学知识做一个自己喜欢的专项研究,内容不限。写一份体现数学作用、研究数据真实、图文并茂的《×××研究报告》。
学好高一数学论文:如何学好高一数学高中数学与初中数学相比,不仅是内容增多了,更大的变化体现在思维形式上,数学语言的抽象化对思维能力提出了更高的要求,因此,不少同学进入高一学习后很不适应,觉得数学特别难学,这种状况如果不及时改变,他们的成绩将越来越差。下面就高一数学的学习谈几点建议,供同学们参考。一、培养学生学习数学的兴趣兴趣是最好的老师,有了兴趣就有了动力,才能发挥自己的潜能,才会增强学习的主动性和积极性。在平时的学习中,要不断地从成功(哪怕是微不足道的进步)中获得愉悦,从而激发学习的热情,提高学习的兴趣。平时应注意数学知识与日常生活、生产、现代科技的密切联系,让数学概念回归自然、回归现实,从实践中增强学习数学的兴趣。另外多参加数学的研究性学习,多参加数学兴趣小组的活动,在参与中不断培养学习数学的兴趣。二、转变学习观念初中数学知识内容少,相对比较浅显,老师将各种题型建立起统一的思维方法,通过反复练习,即可提高成绩,这使得一部分同学产生了这样一种观念:跟着老师走就行了,这种观念其实是极其错误的,因为高中数学内容多、系统性强,理论性、抽象性更强,这就需要同学们在学习上更积极、更主动、多思考、多研究。三、提高课堂效率课堂是同学们学习的主要场所,是同学们获取知识的主要途径,因此听课效率的高低,直接影响着学习效果的好坏。提高听课效率应注意以下几点:1.搞好课前预习通过预习可以了解本节课要学的基本内容,发现学习中的重点、难点、易混点,对本节课要用到的没有掌握好的旧知识,提前复习一下,可以降低听课的难度,在听课时更有针对性,更好地掌握听课的主动权,另外预习也能使学生锻炼自己的自学能力。2.认真听课新知识的接受、数学能力的培养主要在课堂上进行,预习中的重点、难点、易混点是听课中要重点解决的问题。(1)关注老师对新课的导入,温故而知新,激发起对新知的好奇心;(2)认真领会老师的主要精神和意图,特别是老师对定义、定理的加工解读,要把老师讲的真正听懂听会;(3)要学会独立思考、分析问题,把自己对知识的理解与老师的讲解对比、分析,不断提高自己的思辨能力。3.做好笔记在听课的过程中,能否做好数学笔记对数学学习的影响也很大。做好笔记一方面有利于同学们及时复习小结,另一方面也有利于以后整理和修改数学笔记,同时也是回归教材的重要一环。要重点记好老师和其他同学思维的闪光点、自己的疑点、失误分析、注意事项等,但不要面面俱到,否则影响了听课将得不偿失。四、课后及时复习对老师讲的每一节课,当天必须做好复习,先把上课老师讲的内容回忆一遍,尽量想得完整一些,然后再与课本、笔记对照,当场出现的问题及时抓,遗留问题有针对性地补,注重实效,然后适当做一些有针对性的练习,以检验知识的掌握程度。五、注意反思,提高能力数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题和解决问题的能力的重任。只有通过反思,才能使能力不断提高,因为反思是一次再学习的过程,是对所学知识再加工的过程;通过反思,进一步揭示知识间的内在联系,才能把所学知识由“活”到“悟”地掌握,融会贯通。
一、函数的起源(产生) 十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。 十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。 人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。 二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。 实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。 函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念 函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( )提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。 对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。 对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。 到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。 三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。 ⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
函数是这些高等数学课程的一条主线,在数学系课程中,尤显突出,例如,数学分析、复变函数、实变函数、常微分方程、偏微分方程、泛函分析等等,这些课程都是把函数作为研究对象。
2017大学数学论文范文
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。
几类特殊函数的性质及应用
【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。
【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分
1.引言
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。
特殊函数定义及性质证明
特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。
特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。
2.伽马函数的性质及应用
伽马函数的定义:
伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。
Г函数在区间连续。
事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。
,伽马函数的递推公式
此关系可由原定义式换部积分法证明如下:
这说明在z为正整数n时,就是阶乘。
由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....
用Г函数求积分
贝塔函数的性质及应用
贝塔函数的定义:
函数称为B函数(贝塔函数)。
已知的定义域是区域,下面讨论的三个性质:
贝塔函数的性质
对称性:=。事实上,设有
递推公式:,有事实上,由分部积分公式,,有
即
由对称性,
特别地,逐次应用递推公式,有
而,即
当时,有
此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为
由上式得以下几个简单公式:
用贝塔函数求积分
例
解:设有
(因是偶函数)
例贝塔函数在重积分中的应用
计算,其中是由及这三条直线所围成的闭区域,
解:作变换且这个变换将区域映照成正方形:。于是
通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。
贝塞尔函数的性质及应用
贝塞尔函数的定义
贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。
贝塞尔函数的'递推公式
在式(5)、(6)中消去则得式3,消去则得式4
特别,当n为整数时,由式(3)和(4)得:
以此类推,可知当n为正整数时,可由和表示。
又因为
以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。
为半奇数贝塞尔函数是初等函数
证:由Г函数的性质知
由递推公式知
一般,有
其中表示n个算符的连续作用,例如
由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。
贝塞尔函数在物理学科的应用:
频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令
称为的Fourier变换。它的逆变换是
若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,
这就是Shannon取样定理。Shannon取样定理中的母函数是
由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:
以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。
首先建立取样定理
设:
其中是零阶贝塞尔函数。构造函数:
令
经计算:
利用分部积分法,并考虑到所以的Fourier变换。
通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:
类似地
经计算:
经计算得:
则有:设是的Fourier变换,
记则由离散取样值
因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。
例,利用
引理:当
当
因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式
首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:
(1)
其中
函数的幂级数展开式为:
则关于幂级数展开式为: (2)
由引理及(2)可得
(3)
由阶修正贝塞尔函数
其中函数,且当为正整数时,取,则(3)可化为
(4)
通过(1)(4)比较系数得
又由被积函数为偶函数,所以
公式得证。
3.结束语
本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。
参考文献:
[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.
[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)
[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.
[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.
[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.
[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.
[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.
[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.
[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.
[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.
数学源于生活,生活中又充满着数学。学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际。在课堂教学中,把数学和学生的生活实际衔接起来,让数学贴近生活,使学生感到生活中处处有数学,学起来自然、亲切、真实。实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。 如何把握数学与生活的衔接,提高教学效果,我在教学中注意从以下几方面入手。一、 数学语言生活化,理解数学前苏联数学教育家斯托利亚尔曾说过:数学教学也就是数学语言的教学。在课堂教学的师生交往中,主要是通过言语交流。同一堂课,不同的教师教出来的学生接受程度不一样,主要还是取决于教师的语言素质如何,尤其是在我们数学课堂教学中,要将抽象化的数学使学生形象地接受、理解。一个没有高素质语言艺术的教师是不能胜任的。看似枯燥无味的数学,实则里面蕴藏着生动有趣的东西。鉴于此,教师的数学语言生活化是学生引导理解数学、学习数学的重要手段。教师要结合儿童的认知特点、兴趣爱好、心理特征等个性心理倾向,在不影响知识的前提下,对数学语言进行加工、装饰,使其通俗易懂、富有情趣。如认识“ <”、“>”,教师可引导学生学习顺口溜:大于号、小于号,两个兄弟一起到,尖角在前是小于,开口在前是大于,两个数字中间站,谁大对谁开口笑。区别这两个符号对学生来说有一定的难度,这个富有童趣的顺口溜可以帮助学生有效的区分。又如把教学长度单位改成“长长短短”;把教学元、角、分改成“小小售货员”,把比大小说成“排排队”等等,学生对这些生活味十足的课题知识感到非常好奇,感到学习数学很有趣。二、数学问题生活化,感受数学新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。因此,通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。比如:生活中每时每刻都要用到估算,要求学生估算一下每天上学到校需多少时间,以免迟到;或估算一下外出旅游要带多少钱,才够回来等等。在教学中引导学生寻找生活中的数学问题,既可积累数学知识,让学生通过如此切身的问题感受到学数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。三、数学情境生活化,体验数学教育心理学的研究表明:学生在没有精神压力,没有心理负担,心情舒畅,情绪饱满的情境下,大脑皮层容易形成兴奋中心,思维最活跃,实践能力最强。在日常的教学中,应该提供这样的思维环境,创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就像在日常生活中遇到了数学问题一样,需要大家一起来实践解决,通过自己的动手操作,集体的共同研究,最终得出学习结论。如在空间与图形的教学中,要充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组到操场上选定一个建筑物,让学生站在不同角度看这个建筑物,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生在方格纸画出示意图:假设图书馆在学校的正东方向200米处,小红家在学校正北方向500米处,医院在学校的正南方向1000米处,车站在学校的正西方向800米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师再及时组织引导学生进行交流,逐步发展学生的空间观念。又如教学“元角分的认识”,组织学生开展一次“我是一位出色的售货员”活动,让他们在逼真的买卖中掌握、消化和应用知识。再如,相遇问题应用题教学,教师采用学生登台表演,情景再现的方法,把抽象的相关的各种数学术语让学生迅速地理解,既活跃了课堂气氛,又高效率地完成了教学任务。四、数学作业生活化,运用数学数学来源于生活而最终服务于生活。尤其是小学数学知识 ,在生活中都能找到其原型。把所学的知识应用到生活中,是学习数学的最终目的。由于课堂时间短暂,所以作业成了课堂教学的有益延伸,成了创新的广阔天地。学生适当运用课堂内容的自然延伸,能从广阔的大千世界中学习知识。教师在教学中应努力激发学生运用知识解决问题的欲望,引导学生自觉地应用知识解决生活中相关的问题。如学习了长度单位,可以测自己和父母的身高,从家到学校的路程;认识了人民币可以用自己零用钱买所需要的东西;学习了统计知识和百分比应用题,可以去统计本校学生人数以及男女生比例;会计算图形面积可以算一算自己家里的面积,所用瓷砖的块数等。再如布置学生“观察你家中的物品,找出几道乘法算式”;“你家一天的生活费用是多少,记录下来,制成表格,再进行计算”,这样把抽象的知识具体化,有助于学生理解,同时能用所学的知识解释生活中的现象,也培养学生收集处理信息的能力、观察能力、实践能力。这样,学生在轻松愉快地交流中,学得积极、主动,思维随之展开,兴趣随之激起。将数学教学与生活相衔接,让学生从生活中寻找数学素材,感受生活中处处有数学,学习数学如身临其境,就会产生强烈的亲近感和认同感,有利于形成似曾相识的接纳心理。教学实践使我体会到:数学即生活,只有将学生引到生活中去,切实地感受数学在生活的原型,才能让学生真正的理解数学,使学生感受到我们生活的世界是一个充满数学的世界,从而更加热爱生活,热爱数学生活中的数学在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?一天,我就遇到了这样一道实际生活中的问题:某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?面对问题我们并不能一目了然。我做了一个假设,假如有16人,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客,二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000= 14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为280000元(14000÷5%=280000)。所以由此可得:(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多.(2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是14000元,优惠较大。(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。像这样的问题,我们在日常生活中随处可见。例如。有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好?这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。作为跨世纪的小学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。再给你一些地址:自己拼接吧
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
你以为这是奴隶社会啊。