首页 > 学术论文知识库 > 毕业论文翻译脂质体

毕业论文翻译脂质体

发布时间:

毕业论文翻译脂质体

太专业了!!!

在毕业论文写作过程中阅读翻译外文文献是一个非常重要的环节,尤其是研究生同学,一般导师都会要求阅读一定数量的英文文献,这是因为许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。

如何写开题报告,如何写文献综述,如何阅读外文文献,可以说,阅读一定数量的外文文献是毕业论文写作的必经之路。

要求如下:

1、前言

简要说明写作的目的,有关的概念以及综述范围,说明有关主题的现状或争论焦点,所要解决的问题等。一般以 100~200 字为宜,使读者在读完前言后对有关问题获得一个初步的轮廓。

2、主体

主体部分是全文的主要部分,具体写法以能较好地表达综述的内容为准则。通常根据内容的多少,将主体部分分为几段,每段有小标题。

可按年代顺序综述。也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述。

主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。

主体部分每一段落的开始应是综合提炼出来的观点,即论点;接着是文献所提出的实验结果或调查事实,即论据,可见主体部分是按论点和论据组织材料的。

总之,综述主体部分是以综合概括的论点开头引路,继之以诸家的资料、实验结果为论据展开层次论证。所以,综述也是一种论证文章的体裁,只是论点与论据都是前人文献所提供。

如果前人的观点分散或不甚明确,则需作者整理概括,成为开头。在论述某些观点时,作者可有倾向性,但对相反的观点也应简要如实列出。对存在的矛盾和问题应充分如实描述。

3、总结

常见的方式有:

①扼要的概括、精练主题部分的主要内容;

②介绍尚待解决的问题及对前景的展望;

③某些篇幅较小的综述,也可以省略结束语。

4、参考文献

通常凡引述的资料和主要的论点都应注明文献出处,以便使读者检索查阅。所引文献应以近 3 年内者为主;另外,未公开发表的资料不宜作为参考文献。

在我国许多期刊希望列出重要的参考文献,一般限为 20~30 条为宜;但国际上许多生物医学期刊的综述文章,其参考文献甚多,全篇所列文献常达数百条之多。参考文献的著录格式国内尚不统一,应按各刊「投稿须知」要求撰写。

扩展资料:

1、如何查询国内专利文献

可通过中国国家知识产权局()和中国专利信息中心()网站上的「专利检索」。

可以免费检索全部中国专利信息(有文摘)。如需获取专利全文,则需前去中国国家知识产权局查阅,也可通过 CSDL 馆际互借和原文传递系统代为办理。

2、如何查询国外专利文献

科学院用户可首先选择查询 Web of Knowledge 中Derwent Innovations Index (德温特世界专利索引),它是检索专利的权威数据库,收录全球了 40 多个专利机构的 900 万条基本专利,1800 万项专利,该库大部分有文摘,小部分有全文。

3、其它可供利用的网上免费数据库

欧洲专利局专利数据库:

 (免费 文摘)

美国专利商标局专利数据库:

(免费 文摘、全文)

WTO知识产权组织:

(免费 文摘)

IBM专利数据库资源:

(免费 文摘、部分全文)

更多请参见中国专利信息网上的(国外)专利网站:

毕业论文用英语的翻译:毕业 论文 迅捷在线翻译:Graduation (毕业) thesis(论文)参考一下

毕业论文thesis[英][ˈθi:sɪs][美][ˈθisɪs]n.论文,毕业论文; 论点,论题; 命题; 复数:theses易混淆单词:THESIS例句: completed his doctorate in 1999 with his thesis on the technical subject of structural design. 1999年,朱竞翔获得博士学位,博士论文写的是结构设计的技术问题。 is a beguilingly simple thesis, one particularly attractive to the western business executives who have joinedthe china gold rush. 但这是一个具有欺性的简单论点,对参与中国淘金浪潮的西方企业高管尤其有吸引力。 have a grand new thesis of the emerging markets. 我们现在得出了一套全新的新兴市场理论。 question now is whether the overstretch thesis was wrong or simply premature. 目前问题是,过度扩张说是错误命题还是只是言之过早。 thesis is that women still do so badly at work mainly because we are not ambitious enough. 书的主题是:女性的工作表现仍如此糟糕,主要是因为我们不够有雄心。同义词:dissertation[英][ˌdɪsəˈteɪʃn][美][ˌdɪsərˈteɪʃn]n.专题论文,学位论文; 学术演讲; essay[英][ˈeseɪ][美][ˈɛsˌe, ɛˈse]n.散文; 随笔,杂记文; 尝试,企图; 试验; vt.尝试; 试验; 经常说的:English dissertation(英语论文)Graduation thesis(毕业论文)

脂质体毕业论文

人参皂苷Rg3是一种提取自人参中的的四环三萜类皂苷,具有多方面的药理活性,如增效解毒,提高免疫力,改善气虚症状,促进记忆,抑制肿瘤细胞增殖、浸润和转移的作用。然而Rg3的水溶性很低,这限制其临床疗效。人参皂苷Rg3口服后血浆浓度很低,口服后C_(max)仅为(166) ng/ml, Tmax为()h。一般认为,口服后血药浓度很低的是由于:口服后经胃肠道吸收的药量少;药物口服后进入胃肠道内的被其中的酶或肠道细菌所代谢;药物虽可被胃肠粘膜吸收,但药物被肠壁或肝脏的酶所代谢,即首过效应。 为了提高Rg3在体内的生物利用度,需要设计一种更加安全高效的Rg3制剂。脂质体是一种由一层或多层两性双分子层组成,内部包含水性区域的微囊泡,可以用作药物载体。其已经用作多种药物的载体。多种疏水性药物例如紫杉醇和多西他赛,可以结合进入脂质体磷脂双层,从而达到提高药物溶解性,延长循环时间,改变药物在体内分布,提高药效和降低副作用的目的。 基于以上原因,本论文的主要目的在于,通过人参皂苷Rg3脂质体新剂型的构建,提高其生物利用度,提高抗肿瘤疗效。 本文主要包括如下内容: 1.人参皂苷Rg3理化性质的测定。对Rg3的理化性质包括油水分配系数、在不同溶剂中的溶解度进行了考察,同时考察了Rg3在甲醇溶液中的稳定性。结果Rg3的油水分配系数为,为一脂溶性药物。Rg3溶解于甲醇、乙醇、二氯甲烷,不溶于水、乙醚、氯仿。其甲醇溶液在室温和加速实验条件保存6个月后,Rg3浓度略有下降,性质相对稳定。 2. Rg3脂质体的制备及性质考察。采用聚碳酸酯膜挤出法制备Rg3脂质体(L-Rg3)。在单因素实验的基础上,选择了脂药比,磷脂与胆固醇比例和磷脂浓度三个因素对包封率影响较为显著的因素优化脂质体的组成。以包封率为响应值,采用效应面法(RSM)对因素间的相互作用进行考察。Design-Expert软件用于因素间作用的数据拟合分析。通过RSM分析得到模型预测方程,根据预测的最优组合制备了三批次脂质体,并测定了各批次的包封率。三批次L-Rg3的平均包封率(EE)为,与预测包封率十分接近。此时脂质体的组成为磷脂浓度,磷脂与胆固醇比例,脂药比。对得到的L-Rg3的理化性质和稳定性进行了考察,结果表明制备得到的脂质体为小单室脂质体,同时该脂质体在4和25条件下12个月内稳定性良好。 3. L-Rg3的药物动力学和组织分布研究。为了对L-Rg3脂质体的药物动力学特征和组织分布进行研究,建立了稳定、快速、准确的生物样品中Rg3含量液质联机分析法。将30只Wistar大鼠随机分为6组,每组5只,分别静脉注射给予Rg3或L-Rg3(给药剂量分别为,,1mg/kg)。在给药12h后,脂质体组动物血浆中仍有Rg3检出,然而游离药物组,在给药5h后动物血浆中已无药物检出。脂质体组的Cmax和AUC分别是游离药物组的和倍(p<)。组织分布结果表明在给药后Rg3可以广泛的分布于多种组织,脂质体可以提高其在各组织中的浓度。相比于游离药物,L-Rg3显著提高了药物在肝脏和肺部的吸收(p<)。 4. L-Rg3药效学研究。在体外抗肿瘤实验中,以Rg3为阳性药物,用MTT法测试了L-Rg3和Rg3对两种肿瘤细胞系(A549和HepG-2细胞)的半数抑制浓度。实验结果表明,两种细胞的增殖都受到了药物的抑制作用,并且抑制效果呈现浓度相关性。Rg3和L-Rg3对A549细胞的IC50分别为μg/ml和μg/ml,对HepG-2细胞的IC50分别为μg/ml和μg/ml。对于两种细胞系,空白脂质体均未表现出细胞毒性。在体内抗肿瘤实验中,以A549荷瘤小鼠为模型,评估了不同制剂在给药后的抑瘤率和动物生存质量(给药剂量1mg/kg)。分别测量并记录了肿瘤体积和动物生存率。与对照组相比,Rg3组和L-Rg3组的肿瘤生长都受到了抑制(对照组,肿瘤体积1335mm3,P<)。L-Rg3组抑瘤率()显著高于Rg3组抑瘤率()(P<)。在21天的实验结束后,不同组别小鼠无一死亡。各组小鼠没有明显的精神、应激、进食和毛发异常。各组荷瘤小鼠体重变化的结果表明,在抑瘤实验过程中荷瘤小鼠的体重变化为超过正常范围,说明制剂的毒副作用很小。但是,相比于给药组,对照组小鼠体重流失更为明显。进一步的,采用CD34抗体免疫组化法分析肿瘤组织中微血管密度(MVD)。与对照组相比,Rg3和L-Rg3组的MVD均有所下降,尤其是脂质体组(P<)。总之,L-Rg3体内外抗肿瘤效果均优于Rg3。 5.制剂安全性研究。

【关键词】 靶向给药;药剂学;药物载体0引言常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.1载体介导的靶向给药常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒( μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在 μm范围的占总数,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.2受体介导的靶向给药利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为,比未修饰纳米粒的靶向效率高倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.3抗体介导的靶向给药mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.用于治疗白血病的CMA676是由一种人源化的mAb hp 与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.4制成前体药物一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.5化学传递系统化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.【参考文献】〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1): ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8): L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12): Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7): JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.

药学论文格式由以下6部分组成:论文题目;作者署名、工作单位和邮编;摘要(目的、方法、结果、结论);关健词;正文(资料与方法、结果、结论)参考文献。药学论文[1]是医学科学研究工作的文字记录和书面总结,是医学科学研究工作的重要组成部分, 也是取得学历、学位、晋升职称的必要条件 。医学论文一般分为药学论文,医学论文,临床医学论文。医学论文报道医学领域领先的科研成果;是医学科学研究工作者辛勤劳动的结晶,是人类医学科学发展和进步的动力。 从事医学科研究工作的同志,经常撰写医学论文,不仅可以扩大视野,掌握国内、外医学动态,而且能提高科研设计能力和研究能力,以及教学能力和业务水平。反过来,如果科研能力、业务水平及教学能力提高了,工作成绩显著,又能写出高质量的医学论文。论文一经发表,即被社会所承认,也是该项目取得科研成果的必要途径。 由此可知,医学论文像一面镜子一样,反映出一个国家、一个省、一个地区、一个单位的医学科学水平和工作风貌,更能反映出人才的多少和水平的高低。因此,如何撰写出高质量的医学论文是广大医务工作者应该掌握的基本技能,是摆在每个医务工作者面前的一个重要课题。

这个毕业论文市价都上千,你也太天真了吧!网上下的进系统就给你查出来,你还真敢用!!!

脂质体制备硕士毕业论文

注入法、薄膜分散法、超声波分散法、逆向蒸发法。脂质体作为药物载体的临床应用1、抗肿瘤药物载体:阿霉素脂质体和顺铂脂质体已在国外上市。2、抗寄生虫药物载体:苯硫咪唑脂质体和阿苯达唑脂质体等。利用脂质体的被动靶向性,提高药物的生物利用度,减少用量,降低毒副作用。3、抗菌药物载体:庆大霉素脂质体和两性霉素B,可减少药物的耐药性,降低心脏毒性。4、激素类药物载体。给药途径脂质体的给药途径主要包括(1)静脉注射;(2)肌内和皮下注射;(3)口服给药;(4)眼部给药;(5)肺部给药;(6)经皮给药;(7)鼻腔给药。体内过程脂质体与细胞之间作用的主要形式包括膜间转运(细胞膜的脂质交换)、接触释药、吸附、融合和内吞。脂质体具有类细胞结构,进入体内主要被网状内皮系统吞噬而激活机体自身的免疫功能,并改变包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数、减少药物的治疗剂量和降低药物的毒性。新型靶向脂质体1、前体脂质体:将脂质吸附在极细的水溶性载体如氯化钠、山梨醇等聚合糖类(增加脂质分散面积)制成前体脂质体,遇水时脂质溶胀,载体溶解形成多层脂质体,其中载体的大小直接影响脂质体的大小和均匀性。前体脂质体可预防脂质体之间相互聚集,且更适合包封脂溶性药物。2、长循环脂质体: 经过PEG修饰,以增加脂质体的柔顺性和亲水性,通过单核-巨噬细胞系统吞噬,减少脂质体脂膜与血浆蛋白的相互作用,延长循环时间,称为长循环脂质体(long-circulating liposome)。长循环脂质体有利于肝脾以外的组织或器官的靶向作用。同时,将抗体或配体结合在PEG的末端,既可保持长循环,又可保持对靶体的识别。3、免疫脂质体:脂质体表面联接抗体,对靶细胞进行识别,提高脂质体的靶向性。如在丝裂霉素(MMC)脂质体上结合抗胃癌细胞表面抗原的单克隆抗体3G 制成免疫脂质,在体内该免疫脂质体对胃癌靶细胞的M85杀伤作用比游离MMC提高4倍。4、热敏脂质体:利用在相变温度时,脂质体的类脂质双分子层膜从胶态过渡到液晶态,脂质膜的通透性增加,药物释放速度增大的原理制成热敏脂质体。例如将二棕榈酸磷脂(DPPC)和二硬脂酸磷脂(DSPC)按一定比例混合,制成的3H甲氨喋呤热敏脂质体,再注入荷Lewis肺癌小鼠的尾静脉后,再用微波加热肿瘤部位至42℃,病灶部位的放射性强度明显的高于非热敏脂质体对照组。5、pH敏感性脂质体:由于肿瘤间质的pH比周围正常组织细胞低,选用对pH敏感性的类脂材料,如二棕榈酸磷脂或十七烷酸磷脂为膜材制备成载药脂质体。当脂质体进入肿瘤部位时,由于pH的降低导致脂肪酸羧基脂质化成六方晶相的非相层结构,从而使膜融合,加速释药。总之,脂质体作为药物载体是临床应用较早,发展最为成熟的一类新型靶向制剂。美国FDA批准上市的脂质体产品有两性霉素B、阿霉素脂质体。批准进入临床试验的脂质体有丁胺卡钠霉素。未来脂质体的研究主要集中在以下三个方面:1、膜结构与载药性质之间的关系;2、脂质体在体内的靶向特性;3、在体外培养中将基因和其他物质导入细胞内有望成为基因药物载体。脂质体是由脂双分子层组成的颗粒,可介导基因穿过细胞膜。通过脂质体介导比利用病毒转导进行基因转移具有以下明显的优势:①脂质体与基因的复合过程比较容易;②易于大量生产;③脂质体是非病毒性载体,与细胞膜融合将目的基因导入细胞后,脂质即被降解,无毒,无免疫原性;④DNA或RNA可得到保护,不被灭活或被核酸酶降解;⑤脂质体携带的基因可能转运至特定部位;⑥体外和体内试验都表明,接近染色体大小的DNA片段也能被转运至宿主基因组中并增长;⑦转染过程方便易行,重现性好。脂质体是具有双层膜的封闭式粒子,自身聚集性脂类分子包封内水相介质,可分为大、小多层,寡多层和单室脂质体,医学应用较多为小单室脂质体。基于脂质体作为药物载体系统的经验,理想的用于转运基因的脂质体,对于质粒DNA具有高包封率,保护DNA不被血浆核酶降解的特点,它们粒径分布范围窄,粒径平均为100 nm或者更小。为使脂质体接近血管外区域,故采用具有广泛的结合潜力脂类,这种特殊脂类可促进与细胞膜融合和/或提高脂质体在循环系统中的稳定性。第1种为传统上的脂质体,人们可控制其体外行为,但不能控制其体内行为,它们很快被灭活或被固定;第2种为无活性脂质体(即不与外界作用),由于聚合物包封于表面的立体稳定性而抑制其相互作用;第3种脂质体表面结合抗原、凝集素或其他基团,由于表面结合的特定配基,也可特定地相互作用;第4种为反应活性脂质体,如离子型、靶敏感型和融合性脂质体,这种脂质体有时指相转变的多孔脂质体,脂质体内有离子敏感亚基,Ca2+其他金属离子敏感性脂质体,也包括阳离子脂质体,阴离子脂质体。阴离子脂质体不属于有反应活性类,但特殊的试验如试管内与相反电荷(多)离子相互作用例子除外[1]。常规脂质体进入细胞转运DNA实验,其原理是脂质体增强细胞体的聚集,即加速大分子、荷电多的分子透过膜,该过程相当复杂,尤其在包封较大片段时,在实践中这种技术只在体外使用且要用融合剂,荷电越多用途越少。

【关键词】 靶向给药;药剂学;药物载体0引言常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.1载体介导的靶向给药常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒( μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在 μm范围的占总数,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.2受体介导的靶向给药利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为,比未修饰纳米粒的靶向效率高倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.3抗体介导的靶向给药mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.用于治疗白血病的CMA676是由一种人源化的mAb hp 与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.4制成前体药物一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.5化学传递系统化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.【参考文献】〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1): ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8): L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12): Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7): JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.

脂质体稳定性研究论文

人参皂苷Rg3是一种提取自人参中的的四环三萜类皂苷,具有多方面的药理活性,如增效解毒,提高免疫力,改善气虚症状,促进记忆,抑制肿瘤细胞增殖、浸润和转移的作用。然而Rg3的水溶性很低,这限制其临床疗效。人参皂苷Rg3口服后血浆浓度很低,口服后C_(max)仅为(166) ng/ml, Tmax为()h。一般认为,口服后血药浓度很低的是由于:口服后经胃肠道吸收的药量少;药物口服后进入胃肠道内的被其中的酶或肠道细菌所代谢;药物虽可被胃肠粘膜吸收,但药物被肠壁或肝脏的酶所代谢,即首过效应。 为了提高Rg3在体内的生物利用度,需要设计一种更加安全高效的Rg3制剂。脂质体是一种由一层或多层两性双分子层组成,内部包含水性区域的微囊泡,可以用作药物载体。其已经用作多种药物的载体。多种疏水性药物例如紫杉醇和多西他赛,可以结合进入脂质体磷脂双层,从而达到提高药物溶解性,延长循环时间,改变药物在体内分布,提高药效和降低副作用的目的。 基于以上原因,本论文的主要目的在于,通过人参皂苷Rg3脂质体新剂型的构建,提高其生物利用度,提高抗肿瘤疗效。 本文主要包括如下内容: 1.人参皂苷Rg3理化性质的测定。对Rg3的理化性质包括油水分配系数、在不同溶剂中的溶解度进行了考察,同时考察了Rg3在甲醇溶液中的稳定性。结果Rg3的油水分配系数为,为一脂溶性药物。Rg3溶解于甲醇、乙醇、二氯甲烷,不溶于水、乙醚、氯仿。其甲醇溶液在室温和加速实验条件保存6个月后,Rg3浓度略有下降,性质相对稳定。 2. Rg3脂质体的制备及性质考察。采用聚碳酸酯膜挤出法制备Rg3脂质体(L-Rg3)。在单因素实验的基础上,选择了脂药比,磷脂与胆固醇比例和磷脂浓度三个因素对包封率影响较为显著的因素优化脂质体的组成。以包封率为响应值,采用效应面法(RSM)对因素间的相互作用进行考察。Design-Expert软件用于因素间作用的数据拟合分析。通过RSM分析得到模型预测方程,根据预测的最优组合制备了三批次脂质体,并测定了各批次的包封率。三批次L-Rg3的平均包封率(EE)为,与预测包封率十分接近。此时脂质体的组成为磷脂浓度,磷脂与胆固醇比例,脂药比。对得到的L-Rg3的理化性质和稳定性进行了考察,结果表明制备得到的脂质体为小单室脂质体,同时该脂质体在4和25条件下12个月内稳定性良好。 3. L-Rg3的药物动力学和组织分布研究。为了对L-Rg3脂质体的药物动力学特征和组织分布进行研究,建立了稳定、快速、准确的生物样品中Rg3含量液质联机分析法。将30只Wistar大鼠随机分为6组,每组5只,分别静脉注射给予Rg3或L-Rg3(给药剂量分别为,,1mg/kg)。在给药12h后,脂质体组动物血浆中仍有Rg3检出,然而游离药物组,在给药5h后动物血浆中已无药物检出。脂质体组的Cmax和AUC分别是游离药物组的和倍(p<)。组织分布结果表明在给药后Rg3可以广泛的分布于多种组织,脂质体可以提高其在各组织中的浓度。相比于游离药物,L-Rg3显著提高了药物在肝脏和肺部的吸收(p<)。 4. L-Rg3药效学研究。在体外抗肿瘤实验中,以Rg3为阳性药物,用MTT法测试了L-Rg3和Rg3对两种肿瘤细胞系(A549和HepG-2细胞)的半数抑制浓度。实验结果表明,两种细胞的增殖都受到了药物的抑制作用,并且抑制效果呈现浓度相关性。Rg3和L-Rg3对A549细胞的IC50分别为μg/ml和μg/ml,对HepG-2细胞的IC50分别为μg/ml和μg/ml。对于两种细胞系,空白脂质体均未表现出细胞毒性。在体内抗肿瘤实验中,以A549荷瘤小鼠为模型,评估了不同制剂在给药后的抑瘤率和动物生存质量(给药剂量1mg/kg)。分别测量并记录了肿瘤体积和动物生存率。与对照组相比,Rg3组和L-Rg3组的肿瘤生长都受到了抑制(对照组,肿瘤体积1335mm3,P<)。L-Rg3组抑瘤率()显著高于Rg3组抑瘤率()(P<)。在21天的实验结束后,不同组别小鼠无一死亡。各组小鼠没有明显的精神、应激、进食和毛发异常。各组荷瘤小鼠体重变化的结果表明,在抑瘤实验过程中荷瘤小鼠的体重变化为超过正常范围,说明制剂的毒副作用很小。但是,相比于给药组,对照组小鼠体重流失更为明显。进一步的,采用CD34抗体免疫组化法分析肿瘤组织中微血管密度(MVD)。与对照组相比,Rg3和L-Rg3组的MVD均有所下降,尤其是脂质体组(P<)。总之,L-Rg3体内外抗肿瘤效果均优于Rg3。 5.制剂安全性研究。

一、脂质体的分离 适当化学结构的亲脂性药物是镶嵌在双层膜内而被包裹在脂质体中,其包封率取决于所用脂质的浓度。在这种情况下,包封率可达到90%,就不一定要除去未包裹药物。但是对水溶性药物而言,被包裹的药物仅是总量中的一部分,就必须从脂质体悬液中除去未包裹药物。由于脂质体比被包裹的药物分子要大得多,因此可利用它们的不同大小来分离除去未包裹的药物,这些方法有凝胶过滤柱层析法,渗析法等;若被包裹的物质是蛋白质或DNA,或者未被包裹的药物可能形成较大的聚结物,则可利用它们与脂质体浮力、密度的不同而采用诸如离心等方法进行分离。 (一)柱层析法 凝胶渗透层析技术广泛用于从脂质体悬液中分离除去未包裹药物,也可用于对悬液中的脂质体大小分组,这一技术在实验室中很有效且快速。在大规模生产上,虽然也可用凝胶过滤来纯化,但技术较困难且价格昂贵。另外,脂质体被洗脱介质稀释后可能需要增加浓缩步骤。 柱层析填料常用葡聚糖如Sephadex G-50,其步骤与常规方法一致。但必须指出:①在葡聚糖表面存在着能与脂质体膜结合并相互作用的微小部位。虽然这种作用并不影响脂质体在凝胶柱上的流动特征,但仍可导致少量脂质的损失,使膜的不稳定性增加,从而导致膜渗透性的改变及包裹物质的渗漏。这种现象在脂质浓度较低的情况下特别应予注意,一般可通过加大脂质体样品上柱量或用空脂质体预先将柱子饱和来解决。通常使用20mg脂质制成的小单层脂质体可饱和10g凝胶;②若凝胶颗粒太细,较大的脂质体可能被滞留在凝胶柱上,因此对多层脂质体宜选用中粗级的凝胶(粒径大小为50~150µm),而对小单层脂质体则可用任何级别的凝胶。 (二)渗析法 此法是最简单的也是最常用的除去未包裹药物的方法(大分子化合物除外)。它不需要复杂的技术,也无须昂贵的仪器,且能够扩大生产。通过不断改换渗析介质可除去所有的游离药物。但是此法很费时,一般在室温条件下,要除去95%以上的游离药物至少需要更换三次渗析介质,时间在10~24h以上。此外,渗析介质的渗透强度应与脂质体悬液一致,否则在渗析中就会改变脂质体悬液的体积,且可能引起包裹物质的渗漏。 (三)离心法 在不同的离心力下离心是分离除去不同种类脂质体中游离药物的有效方法。为了完全除去游离药物,常常需重复悬浮和多次离心。使脂质体下沉所需的离心力取决于脂质体的大小,在某种程度上还取决于混悬液的絮凝状态。如果脂质体小且分布窄,就需要高速离心及冰冻条件。低速(2000~4000r/min)离心只能使大脂质体沉降。 显然,对于大量脂质体利用高速冰冻离心是极其耗能和昂贵的,因此此法不适于分离小脂质体。对于比较大的脂质体,低速离心可缩短操作时间并且可同时将较稀的脂质体悬液浓缩到所需浓度。为了避免脂质体遭到破坏,必须注意保证重复混悬介质的渗透压与脂质体悬液的渗透压相一致。 二、脂质体包封率的测定 (一)百分包封率的测定 显然,在考查包裹物质在生物体内的行为之前必须测定该物质在脂质体中的量,采用上述方法分离除去未包入脂质体中的游离物质,就可利用下式计算出百分包封率(Encapsulation percentage。EN%) EN%=(1一Cf/Ct)×100% 式中,Cf为游离药物的量;Ct为脂质体悬液中药物的总量。 这里再介绍两种快速、用量少且适应性广的分离游离物质并测定EN%的方法。 1.微型柱离心法(minicolumn centrifugation method) 取一塑料注射针筒,填上过滤膜作衬片,装入用生理盐水溶胀的Sephadex G-50,再将针筒置一离心管中低速离心(2000r/min,3min)除去多余的生理盐水,此时,凝胶柱变干并可能与针筒内壁分离,精确定量加入脂质体样品,注意勿滴入柱床边缘,离心(2000r/min,3min)使脂质体进入离心管中,待测。再在凝胶柱上加入少量生理盐水,依上法离心,此次离心液中可能不再有脂质体或仍含有少量,这主要取决于脂质体的大小及组成,但游离药物在此过程中因葡聚糖吸附而不会被离出,然后可在凝胶柱上再加生理盐水,离心使柱干,此时游离药物被洗脱进入离心液中,反复几次,直至全部游离药物均从柱子上离心洗脱下来,分别测定包封药物及游离药物浓度,就可计算出EN%(图20—10)。微型柱离心法的优点是脂质体悬液几乎没有被稀释,对于实验室小规模的试验,可较好地用来分离除去未包裹药物和快速地测定包封率。 2.鱼精蛋白凝聚法(protamine aggregation) 此法可用于任何组成的脂质体,如中性或带负电荷的脂质体(图20-11)。方法如下:取脂质体悬液于10ml锥形离心管中,加入鱼精蛋白溶液(10mg/ml),搅匀,静置3min,再加3ml生理盐水,在室温条件下离心,吸取2ml上清液,测定游离药物的浓度。将剩余上清液弃去,沉淀物以 10% Triton X-100重新混悬,使脂质体膜材溶解,再补充生理盐水至总体积为,测定包封药物的浓度,就可方便地算出EN%。 (二)包裹容积的测定 包裹容积(entrapped volume)是指制成的脂质体相对于每毫克磷脂所占的内水相的体积,一般以微升(µl)表示。包裹容积的计算可通过测定包裹在脂质体内药物的总量来推测。假设在脂质体内水性介质中药物的浓度与开始制备时所用的药物浓度一样,经分离除去未包裹药物后没有物质从脂质体中渗漏出来,则很容易计算。但是在许多情况下,这样的假设往往不能成立。例如用二次乳化法制备脂质体时,在干燥除去有机溶剂时内水相可能也会失去;另外由于内外渗透压的差异,水分子可以进入或逸出脂质体,因此测定内部容积最好的办法是直接测定水的量。例如利用具有光谱性的液体代替内相介质,利用核磁共振法(NMR)测定,然后测出水的量。将脂质体在高速离心(200000g,6h)下沉降成为紧密的沉淀,小心除尽上清液,将沉淀物以D20(deuterium oxide)重新混悬,由于膜对于水的渗透性使整个体系中H20和D20很快达到平衡,取出少量用于磷脂量测定,剩余部分可作水的NMR扫描,峰高与D20中含水浓度成正比,与标准溶液对照即可求得水的量,从而计算出脂质体的包裹容积。 三、脂质体的稳定性 脂质体在放置过程中可能发生多种不同的变化。如磷脂质会氧化和水解,生成短链的磷脂,并在膜中形成具溶解性的衍生物;另外脂质体还可发生凝聚、融合等物理变化,从而导致包裹物质的渗漏。因此脂质体制剂若要发展为产品应市,必须在贮藏期间具有良好的稳定性;在体内到达靶组织之前或发挥其缓释作用之前亦须保持一定的大小及完整性。已证明脂质体在血液中比较稳定,但随磷脂的化学性质、胆固醇的比例和脂质体的大小、双分子层的数目等的不同,脂质体在体内的稳定性也会有所不同。但若在贮存过程中,药物从脂质体迅速渗漏,则必将限制脂质体的应用价值。 (一)化学稳定性 脂质体组分磷脂的氧化降解应在制备时即加以防止,可采用一些措施尽可能地降低氧化程度,例如,使用新鲜提纯的磷脂和新鲜蒸馏的溶剂,尽量避免高温,并在充氮和无氧的条件下完成制备过程,最后将脂质体贮存于惰性环境等。 在膜材组成中加入抗氧剂也是一种有效的方法。目前常用的抗氧剂是α-生育酚,为一种无毒的食用脂质。据认为蛋卵磷脂的氧化分解可因α-生育酚的加入大大减缓。另一可选择的降低氧化程度的方法是使用饱和磷脂代替不饱和磷脂,在天然来源的磷脂中,其不饱和度随植物、蛋黄、哺乳动物依次增加,对于蛋黄磷脂,不饱和度取决于动物的饲料及所用的提纯方法。 但是,无论是不饱和还是饱和磷脂,在脂质体的水性悬液中,都可能水解而形成溶血磷脂和脂肪酸,溶血磷脂进一步水解而形成甘油磷脂和脂肪酸,甘油和磷酸之间的酯键很难水解,所以不产生游离的磷酸和甘油。精制天然豆磷脂在脂质体水性悬液中的水解动力学已有研究。结果表明,豆磷脂的水解主要受H+和OH+的催化作用,在左右水解速率最小。体系中加入缓冲离子如醋酸、枸橼酸和缓血酸铵也可轻度增加豆磷脂的水解。 (二)物理稳定性 脂质体中包裹药物的渗漏和凝聚、融合成大的团块等物理稳定性问题是脂质体研究工作中的一大难题。一些研究表明,小单层脂质体在贮存中体积增大,药物渗漏与脂质成分及包裹药物的性质有关。由中性磷脂制备的脂质体的凝聚主要是由于范德华力相互作用所致,可在膜材中加入少量负电荷磷脂(如10%PA或PG)来克服。在膜材中加入微量的1,3-二乙酰-2-磷脂酰胆碱也可以阻止较小脂质体的融合。 较大的脂质体在制备方法适当的条件下一般不发生融合,而小于40nm的小单层脂质体由于膜的曲率大,易于发生融合,特别在相变温度时更易发生。 采用前体脂质体等重建脂质体的方法可以较好地避免脂质体在贮存中发生的化学和物理变化。重建脂质体有以下三种类型:含药或不含药的干脂质膜;含药或不含药的冻干脂质混合物:含药冻干脂质体。对于干脂质膜或冻干脂质混合物,重建时所获得的药物包封率是有限的,特别是对亲水性药物的包封率常常不高,悬液中含有较多的游离药物,实际应成价值不大。对于具有适当结构的亲脂性药物,重建产品可达到较满意的包封率,但在重建过程中所需的条件,例如搅拌程度和方法,要求在高出常温下超声处理等,实际应用不甚方便。 对于亲水性药物,可选择含药冻干脂质体这一重建形式,有报道在冰冻过程中若加入亲水性聚合物,如葡聚糖能产生自由流动能,利于冻干脂质体在水性介质中重建。例如当含有胰岛素的冻干脂质体用这种方法处理时,其重建后的包封率可达原来的70%,即在冰冻和重建过程中胰岛素的渗漏率大约为30%。如果包裹的是低分子量药物,渗漏率可能更高些。但是,这种技术为保证脂质体制剂在贮存中的稳定性提供了一个有效的方法。 四、脂质体大小的测定 脂质体的大小将影响脂质体在体内的处置,也是脂质体重要的质量指标之一。测定脂质体大小的方法有激光扫描法,电子显微镜法或库尔特粒度分析法。无疑,电镜测定法最为准确。因为人们可以直接观察每一个脂质体,并获得各个大小范围内脂质体外形的精确信息。但是要观察大量脂质体样本非常费时。相反.激光扫描法非常简单且操作快速,但仅能测出脂质体的平均性质。与之类似,采用库尔特粒度分析仪也可测出脂质体的大小分布,但后二种方法均难以描述更精细的结构。关于粒度测定的细节可参见本书第十二章。 五、脂质体的成分分析 (一)磷脂质的分析 1.含量测定 直接精确测定磷脂质浓度比较困难,因为干燥磷脂中总含有一定量的残留溶剂或其它杂质磷脂,因此最广泛使用的测定磷脂的方法是非直接法,例如含磷量的测定。对于制备脂质体的大多数磷脂而言,每摩尔磷脂均含1mol磷,仅有个别例外,如每摩尔心磷脂含有2mol磷。因此样品中磷脂的浓度可通过测定磷含量来计算。这里介绍二种磷测定法。 (1)Bartlett法 将磷脂的有机磷酸解成无机磷后,加入钼酸铵使之转化成磷钼酸,磷钼酸可用萘磺酸铵定量还原为蓝色,蓝色的强度由分光光度法测定,与标准品(如磷酸二氢钾)对照即可计算出含磷量。该法灵敏度较高且重现性好,但若样品中含有少量无机磷则会干扰测定。 (2)Stewart法 当脂质体混悬于磷酸盐缓冲液中,此时宜采用Stewart法。该法是利用磷脂在有机溶剂中与亚铁硫氰酸铵形成有色复合物,而不受无机磷存在的影响进行测定。在计算时,使用一与磷脂结构有关的转换因子将吸收值换算成磷脂毫克数,该因子随磷脂头基不同而异。也可利用磷脂标准液绘制标准曲线来计算。因此该法不适于测定含有未知磷脂的混合物。特别须指出的是,该法不能用于甘油磷脂的测定,若脂质体中含有卵磷脂和甘油磷脂,则可用该法对前者定量,再通过Bartlett法测定总的磷脂,就可计算出甘油磷脂的量。 2.磷脂质的薄层层析 薄层层析是检查磷脂质纯度的主要手段。与所有的层析法一样,磷脂质的薄层层析也是利用磷脂在液态有机相中对亲水性固定相有不同的亲和性,当液相在固定相展开时,不同的磷脂具有不同的保留时间,可根据亲水性的强弱改变展开剂的组成,从而改变磷脂在两相中的分配系数。最常用的固定相是硅胶,展开剂则常用含有氯仿的溶剂。如①氯仿:甲醇:水:(65:25:4 V/V);②氯仿:甲醇:水:氨水(65:35:: V/V);③氯仿:丙酮:甲醇:醋酸:水(6:8:2:2:1 V/V);④乙酸乙酯:环己烷(1:1 V/V)等。最常用的显色剂为碘,也可用50%的硫酸 - 甲醇液或重铬酸钾液显色。 (三)磷脂氧化程度 1.磷脂的氧化 磷脂脂肪酸的氧化主要是由于游离基的作用。在电磁波辐射或者微量游离金属离子的催化下。脂肪酸碳链上首先脱去一个氢原子形成游离基,进而与空气中的氧发生连锁反应。含有双键的碳链更易受影响,因此聚合不饱和磷脂特别容易氧化降解。在含有单个或多个不饱和脂肪酸的脂质混合物中,磷脂的氧化分成三个阶段进行:①单个双键的偶合;②过氧化物的形成;③形成乙醛及链断裂。 值得注意的是,在无氧情况下仍会发生游离基反应导致双重或三重偶合的形成,但不产生过氧化物。另外,降解的最后一步过程要消耗偶合双键,因此在最终降解产物增加的同时,笫一步的降解产物将会减少。故很难用一种试验方法评估磷脂的氧化程度,甚至即使应用几个不同试验仍仅能大致估计氧化过程相对速率大小。 2.氧化指数的测定 氧化指数是用来检测游离基偶合的指标,因为氧化偶合后的磷脂在230nm左右具有紫外吸收峰而有别于未氧化磷脂。典型的紫外吸收图谱如图20-12。国内有人提出作为制备脂质体膜材的卵磷脂,其氧化指数应控制在以下,测定方法是,将磷脂溶于无水乙醇,配成一定浓度的澄明溶液,分别测定在波长233nm及215nm吸收值。按下式计算:氧化指数 = A233nm/A215nm 3.过氧化物的测定 卵磷脂氧化产生丙二醛及溶血磷脂等。丙二醛(MDA)在酸性条件下可与硫巴比妥酸(TBA)反应,生成一种红色染料(TBA-Pigment)该化合物在波长535nm处有特异吸收,吸收值的大小即反映磷脂的氧化程度。有人对丙二醛量与溶血之间的关系进行了研究,实验证明,当每毫升含卵磷脂的生理盐水中丙二醛含量超过µg时,在37℃放置1~2h即产生溶血。 除上述方法可估计磷脂的氧化程度外,根据聚合不饱和脂肪酸链在氧化最后阶段发生断裂或缩短,也可用气 - 液色谱法了解这些酰基链的变化。 (四)胆固醇的分析 与磷脂质类似,胆固醇的纯度及其氧化产物可用气 - 液色谱法进行检测。另外,由于胆固醇不论是游离型还是酯化型都能与含高氯酸铁的乙酸乙酯和硫酸试剂反应生成铁复合物,在波长610nm处有紫外吸收,采用标准胆固醇溶液对照,就可计算出胆固醇的量。 六、脂质体的灭菌 许多研究论文都认为脂质体不宜用加热灭菌的办法,且对各类辐射及各种化学灭菌剂也敏感,所以只能使用过滤灭菌或采用无菌操作法进行制备。这也是影响脂质体广泛应用于临床的一个重要原因。 近年来,国内有人采用100℃ 30min湿热灭菌法获得成功,灭菌前后脂质体的形态及大小均无明显的变化,渗漏率约为5%。另有人采用辐射灭菌法,即用60钴发出的γ射线,对三磷酸腺苷脂质体和甲氨蝶呤脂质体作辐射灭菌,照射剂量为15~20kGy,无菌试验结果均由试验前的阳性转为阴性。脂质体粒径灭菌前后无显著变化。灭菌所致渗漏率较小。 灭菌方法的实用性可能与混悬介质种类、磷脂组成及纯度等有关。采用121℃加热20min灭菌处理几种脂质体,发现在生理盐水中脂质体发生凝聚,而在等渗糖溶液和多羟基化合物溶液中不发生凝聚。加热灭菌后,具有较高的过氧化物值的含蛋卵磷脂的分散液稍变黄,改用具低过氧化物值的蛋卵磷脂、氢化蛋卵磷脂或DPPC则无此变化。在中性pH时充入氮气也可阻止颜色变化,但加入α-生育酚无效。经µm膜过滤的由蛋卵磷脂组成的脂质体的大小变小。在这一变化中,介质的类型也有明显影响。加热灭菌期间,包裹有羧基荧光素阴离子的负电荷脂质体(PC/chol/PG)发生渗漏,而使用正电荷脂质体(PC/chol/十八胺)不仅在加热灭菌期间不发生渗漏,且可贮存很长时间不渗漏。

如何利用脂质体研究膜蛋白与atp酶为例研究论文:该研究以特征明确的AcrB为原型,提出了一种方便的工作流程,用于对嵌入脂质体中的膜蛋白进行冷冻-EM结构分析。结合优化的蛋白脂质体分离,冷冻样品制备和有效的颗粒选择策略,以的分辨率获得了嵌入脂质体中的AcrB的三维(3D)重建。该研究方法可广泛应用于具有独特可溶域的膜蛋白的冷冻EM分析,为功能受跨膜电化学梯度或膜曲率影响的整体或外围膜蛋白的冷冻EM分析奠定了基础。生物膜包围着拓扑隔离的隔室,包括细胞和细胞器,并为各种完整的和外围的膜蛋白(MP)提供了栖息地。这些物理屏障使生命必需的电化学梯度得以生成和维持,这是由于离子和化学物质在整个不可渗透膜上的不对称分布所致。各种生理过程都取决于这些梯度,例如由质子梯度(质子动力)驱动的三磷酸腺苷(ATP)合成和依赖跨膜电场存在的动作电位。因此,许多膜蛋白,例如电压门控离子通道(VGIC)以及一级和二级活性转运蛋白,都依赖于跨膜电化学梯度来执行其生物学功能。

他妈的批,知道得了癌症每个患者肯定都希望能保命,卖药的抓住患者和家属的心理就把药卖那么高。凡是跟治疗癌症所有相关的药和治疗都相当的贵,而且贵得吓人。挣癌症患者钱的都他妈的是杂种,不是人

毕业论文英文翻译字体

毕业论文字体大小要求如下:

一、封面题目:小二号黑体加粗居中。各项内容:四号宋体居中。

二、目录目录:二号黑体加粗居中。章节条目:五号宋体。行距:单倍行距。

三、论文题目:小一号黑体加粗居中。

四、中文摘要1、摘要:小二号黑体加粗居中。2、摘要内容字体:小四号宋体。3、字数:300字左右。4、行距:20磅。5、关键词:四号宋体,加粗。词3-5个,每个词间空一格。

五、英文摘要1、ABSTRACT:小二号Times New 、内容字体:小四号Times New 、单倍行距。4、Keywords:四号加粗。词3-5个,小四号Times New Roman.词间空一格。

六、绪论小二号黑体加粗居中。内容500字左右,小四号宋体,行距:20磅

七、正文1、正文用小四号宋体2、安保、管理类毕业论文各章节按照一级标题序号如:一、二、三、标题四号黑体,加粗,顶格。二级标题序号如:(一)(二)(三)标题小四号宋体,不加粗,顶格。三级标题序号如:.标题小四号宋体,不加粗,缩进二个字。

八、结束语小二号黑体加粗居中。内容300字左右,小四号宋体,行距:20磅。

九、致谢小二号黑体加粗居中。内容小四号宋体,行距:20磅。

有关毕业论文格式要求及字体大小的设置

毕业论文格式要求是什么?对于字体大小有什么要求呢?下面是我分享的有关毕业论文格式要求及字体大小的设置,欢迎大家阅读。

一、毕业论文字体大小的设置:

各类标题(包括“参考文献”标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用Times New Roman字体。

二、毕业论文格式要求与字体大小:

(1)论文标题2号黑体加粗、居中。

(2)论文副标题小2号字,紧挨正标题下居中,文字前加破折号。

(3)填写姓名、专业、学号等项目时用3号楷体。

(4)内容提要3号黑体,居中上下各空一行,内容为小4号楷体。

(5)关键词4号黑体,内容为小4号黑体。

(6)目录另起页,3号黑体,内容为小4号仿宋,并列出页码。

(7)正文文字另起页,论文标题用3号黑体,正文文字一般用小4号宋体,每段首起空两个格,单倍行距。

(8)正文文中标题

一级标题:标题序号为“一、”,4号黑体,独占行,末尾不加标点符号。

二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。

三级标题:标题序号为“1.”与正文字号、字体相同。四级标题:标题序号为“(1)”与正文字号、字体相同。五级标题:标题序号为“①”与正文字号、字体相同。

(9)注释:4号黑体,内容为5号宋体。

(10)附录:4号黑体,内容为5号宋体。

(11)参考文献:另起页,4号黑体,内容为5号宋体。

三、页眉页脚的设置

1.页眉

(1)设置:。字体:统一使用汉语:小五号宋体。割线:3磅双线;内容:××学院本科期末论文,居中。

2.页脚

内容:页码,居中。

纸型及页边距:A4纸(297mm×210mm)。

页边距:天头(上)20mm,地角(下)15mm,订口(左)25mm,翻口(右)20mm。

四、毕业论文正文格式要求与字体大小

正文部分的要求如下:

①正文部分与“关键词”行间空两行;

②日语正文文字采用小四号宋体;英语正文文字采用Times New Roman 12号,标题日语采用四号黑体,英语采用Times New Roman14号,每段首起空两格,倍行距;

③段落间层次要分明,题号使用要规范。理工类专业毕业设计,可以结合实际情况确定具体的序号与层次要求;

④文字要求:文字通顺,语言流畅,无错别字,无违反政治上的原则问题与言论,要采用计算机打印文稿;

⑤图表要求:所有图表、线路图、流程图、程序框图、示意图等不准用徒手图,必须按国家规定的工作要求采用计算机或手工绘图,图表中的文字日语用小五号宋体;英语采用Times New Roman 号;图表编号要连续,如图1、图2等,表1、表2等;图的编号放在图的下方,表的编号放在表的上方,表的左右两边不能有边;

⑥字数要求:一般不少于1500(按老师要求);

⑦学年论文引用的'观点、数据等要注明出处,一律采用尾注。

五、注释

注释部分的要求如下:

①与正文部分空出两行;

②按照文中的索引编号分别或合并注释;

③“注释”采用五号黑体,注释内容日语采用小五号宋体,英语采用Times New Roman 9号。 英语注释具体要求如下:

①在文中要有引用标注,如×××[1];

②如果重复出现同一作者的同一作品时,只注明作者的姓和引文所在页码(姓和页码之间加逗号);格式要求如下:[1](空两格)作者名(名在前,姓在后,后加英文句号),书名(用斜体,后加英文句号),出版地(后加冒号),出版社或出版商(后加逗号),出版日期(后加逗号),页码(后加英文句号)。

[2](空两格)作者名(名在前,姓在后,后加英文句号),文章题目(文章题目用“”引起来)(空一格)紧接杂志名(用斜体,后加逗号),卷号(期号),出版年,起止页码,英文句号。

六、参考文献

参考文献部分的要求如下:

①与注释部分间空两行;

②应列明期末论文参考的主要文献资料,“参考文献”采用五号黑体,参考文献内容日语、汉语采用小五号宋体,英语Times New 号。参考文献的著录,按著录、题目、出版事项顺序排列,其格式为:

期刊类:著者.题名[J].杂志名,年份,(期号)。书籍类:著者.书名[M].城市名:出版社,年份,页数。网络类:著者.题名[EB/OL].www.***.com.年-月-日。

③英文作者超过3人写“etal”(斜体)。英文参考文献格式要求如下:

[1](空两格)作者名(姓在前,名在后,姓与名之间用逗号分开,后加英文句号),书名(用斜体,后加英文句号),出版地(后加冒号),出版社或出版商(后加逗号),出版日期(后加英文句号)。

[2](空两格)作者名(姓在前,名在后,姓与名之间用逗号分开,后加英文句号),文章题目(文章题目用“”引起来)(空一格)紧接杂志名(用斜体,后加逗号),卷号(期号),出版年,英文句号。

七、装订要求:先将目录、内容摘要、正文、参考文献、写作过程情况表、指导教师评议表等装订好,然后套装在学校统一印制的论文封面之内(用胶水粘贴,订书钉不能露在封面外)。

知识扩展:会议论文格式摘要模板范文

1.专题编号:五号字体;靠左。

2.论文题目:四号字体,加粗;居中。

3.作者姓名:五号字体;居中。

4.作者信息:五号字体;居中;包括所在单位、所在省市名称及邮政编码,E-mail地址,电话号码。要标明二级单位(大学:院系;研究院所:处、室)。

5.摘要:小五号字体;字数500-900字。

6.关键词:小五号字体;关键词3~5个,用空格间隔。

7.作者简介:五号字体。

8.格式设置规范

页面设置:A4;页边距,左右厘米,上下3厘米。

行距:倍行距;论文题目后、作者姓名后、作者信息、关键字后空一行。

注:论文初稿完成,最好提前进行论文查重修改,这样就可以避免在学校论文查重检测修改时间不够,导致不能顺利通过检测,无法进行答辩的困境了。

文科类毕业论文要求及字体大小

一、封面

题目:小二号黑体加粗居中。

各项内容:四号宋体居中。

二、目录

目录:二号黑体加粗居中。

章节条目:五号宋体。

行距:单倍行距。

三、论文题目:小一号黑体加粗居中。

四、中文摘要

1、摘要:小二号黑体加粗居中。

2、摘要内容字体:小四号宋体。

3、字数:300字左右。

4、行距:20磅

5、关键词: 四号宋体,加粗。 词3-5个,每个词间空一格。

五、英文摘要

1、ABSTRACT:小二号 Times New Roman.

2、内容字体:小四号 Times New Roman.

3、单倍行距。

4、Keywords: 四号 加粗。 词3-5个,小四号 Times New Roman. 词间空一格。

六、绪论小二号黑体加粗居中。内容500字左右,小四号宋体,行距:20磅

七、正文

(一)正文用小四号宋体

(二)安保、管理类毕业论文各章节按照一、二、三、四、五级标题序号字体格式

章:标题 小二号黑体,加粗,居中。

节:标题 小三号黑体,加粗,居中。

一级标题序号 如:一、二、三、 标题四号黑体,加粗,顶格。

二级标题序号 如:(一)(二)(三) 标题小四号宋体,不加粗,顶格。

三级标题序号 如:. 标题小四号宋体,不加粗,缩进二个字。

四级标题序号 如:(1)(2)(3) 标题小四号宋体,不加粗,缩进二个字。

五级标题序号 如:①②③ 标题小四号宋体,不加粗,缩进二个字。

(三)表格

每个表格应有自己的表序和表题,表序和表题应写在表格上方正中。表序后空一格书写表题。表格允许下页接续写,表题可省略,表头应重复写,并在右上方写“续表××”。

(四)插图

每幅图应有图序和图题,图序和图题应放在图位下方居中处。图应在描图纸或在洁白纸上用墨线绘成,也可以用计算机绘图。

(五)论文中的图、表、公式、算式等,一律用阿拉伯数字分别依序连编编排序号。序号分章依序编码,其标注形式应便于互相区别,可分别为:图、表、公式()等。

文中的阿拉伯数字一律用半角标示。

八、结束语小二号黑体加粗居中。内容300字左右,小四号宋体,行距:20磅。

九、致谢小二号黑体加粗居中。内容小四号宋体,行距:20磅

十、参考文献

(一)小二号黑体加粗居中。内容8—10篇, 五号宋体, 行距:20磅。参考文献以文献在整个论文中出现的次序用[1]、[2]、[3]……形式统一排序、依次列出。

(二)参考文献的格式:

著作:[序号]作者.译者.书名.版本.出版地.出版社.出版时间.引用部分起止页

期刊:[序号]作者.译者.文章题目.期刊名.年份.卷号(期数). 引用部分起止页

会议论文集:[序号]作者.译者.文章名.文集名 .会址.开会年.出版地.出版者.出版时间.引用部分起止页

十一、附录(可略去)

小二号黑体加粗居中。 英文内容小四号 Times New Roman. 单倍行距。翻译成中文字数不少于500字 内容五号宋体,行距:20磅。

是毕业论文吗?我毕业论文要求是:中文部分【摘要】(小五号黑体,加粗) 摘要内容采用小五号楷体,加粗;英文部分英Abstract: 内容五号“Times New Roman”,加粗 Key Words: 内容五号“Times New Roman”,加粗,关键词间隔,请使用分号“;”

不要什么格式,前面写Abstract:然后是摘要的内容。后面要列出文中主要的关键词,关键词是Key Words:如Research;Fiber(光纤);用分号分开Abstract:This article describes ……。或The research on……is presented。Key words:……;……;

  • 索引序列
  • 毕业论文翻译脂质体
  • 脂质体毕业论文
  • 脂质体制备硕士毕业论文
  • 脂质体稳定性研究论文
  • 毕业论文英文翻译字体
  • 返回顶部