首页 > 学术论文知识库 > 灰岩矿成因分析论文参考文献

灰岩矿成因分析论文参考文献

发布时间:

灰岩矿成因分析论文参考文献

业渝光

(地质矿产部海洋地质研究所)

提要采用14C、铀系和氧同位素地层学3种独立的方法测定了西沙石岛风成灰岩的形成年代,结果差异极大。其原因不是方法不成熟,而是经受淡水改造的风成沉积物样品未能满足一些方法建立的前提。通过对各种年代学方法的讨论和对比,认为石岛风成灰岩形成于距今28ka左右的末次冰期高海平面期,风成灰岩的基底是距今124ka末次间冰期高海平面期的产物。由于海平面的变化和石岛的微微下沉,其间有近10万a的沉积中断。

地质矿产部海洋地质研究所继1983年发现西沙石岛风成灰岩后,又于次年得到了长达200m的西石一井钻孔岩心(西石U-1),尔后采用14C和氧同位素地层学两种独立的测年方法对风成灰岩的形成年代进行了测定,用铀系法测定了风成灰岩的礁灰岩基底,为深入研究石岛的形成打下了良好的基础。但是由于石岛特定的复杂地质环境,这些测定结果相差甚大,14C法测得的校正后的年代为距今28ka,氧同位素地层学的结论为65ka,铀系法测定的礁灰岩基底年代为131ka。这几种方法都是比较成熟的,在不同的研究领域中都得到了成功的应用。然而,为何在对石岛风成灰岩形成年代的测定结果中会出现如此大的差异呢?这些差异是如何产生的?哪种方法的数据比较接近于风成灰岩的实际年代?为搞清楚这些问题,本文对用于石岛测年一些样品和测年方法进行了较为深入的检验和讨论。

1测年方法和样品的讨论

测年

我们不但对西沙石岛许多地表样品进行了14C年代测定,还测定了西石一井岩心样品的14C年代,结果见表1。

西石一井的位置和剖面的描述已由文献给出。由表1可看出西石一井的14C年代普遍比地表样品的14C年代老,这说明岩心样品经受淡水改造的程度比地表样品小。10#样品取自风成灰岩的最下部,位于水下(井口标高),为此我们又做了10#和11#样品的化学分析和X射线衍射分析,以确定其化学成分和矿物成分,从而进行年代校正。分析结果见表2。

按照文献的方法计算出10#样品次生碳酸盐所占的比例范围是6%~38%。据大洋海平面变化曲线-处在距今大约8ka时被海水淹没不再受到淡水的作用,由此计算出校正后的年代范围是~。

表1西石—井风成灰岩14C测年结果

铀系测年

对风成灰岩的基底(西石U-1)用铀系方法进行了测年,测定结果见表2。现代珊瑚礁大都是由文石质的六射珊瑚所建造,样品中文石含量是一项重要指标。珊瑚礁与其他海湖相生物成因的碳酸盐不同,珊瑚骨骼中的Sr/Ca摩尔比应与海水一致,在开阔大洋海水的Sr/Ca摩尔比为摩尔比也可反映样品的化学封闭程度。分析结果见表2。

表2分析结果及校正后的年代

这两个样品的年代是用锾-铀法测定的,简化的测年计算为:

地质年代学理论与实践

由式(1)看出实测的230Th/234U直接与所测定的年代有关,230Th/234U比值越大,测得的年代越老。就矿物中的238U和234U而言,238U的衰变使矿物的晶格广泛地受到损伤,这使234U迁移到矿物的微毛细裂痕中去,在这里230U被氧化形成溶于水的双氧铀离子,与占据着稳定晶格位置的238U相比,234U优先进入水相,丢失234U的过程发生在淡水淋滤时,结果使230Th/234U的比值增大。由表2我们可见基底样品(西石U-1)保持化学封闭体系,年代结果可信;样品86047的化学封闭体系就差一些,年代偏老。根据文石在淡水改造下转变为方解石的比例,可判断丢失234U的程度,从而对样品年代进行校正,校正后的年代也列入表2。基底样品校正后的年代和Kaufman统计的世界上100余个末次间冰期高海平面期珊瑚礁的铀系年代完全一致,因此,风成灰岩基底的铀系年龄还是准确可信的。样品86047校正后的年代和下面岩心铀系年代的顺序也是一致的,这种校正方法看来切实可行。

氧同位素测年

把δ18O作为独立测年工具最成功的应用是在深海沉积物上,因为深海沉积物在海洋中的自然沉积,一般认为是连续的,随着深度增加,年代也增大。对测定的δ18O曲线,也就是古气候变化记录的解释取决于沉积记录是否具有连续性,而且必须知道岩心中不同深度沉积物年代。用西石一井的岩心做稳定同位素分析无疑使石岛风成灰岩的研究更加深入,然而就岩心以上的风成灰岩而言,可能在以下几方面值得进一步的探讨和研究。

(1)没有放射性同位素年代时间尺度 西石一井的δ18O曲线不是按照年代顺序排列,而是按岩心深度排列的。诚然,深海沉积物的δ18O曲线也是按岩心深度排列的,但是这种排列和石岛氧同位素曲线的排列却决然不同。未受扰动的深海沉积物,如果是连续的而且沉积速率恒定,可以把深度也看成年代尺度,但必须有一些放射性同位素测年的数据来限定时间尺度。西石一井的氧稳定同位素曲线却没有一个放射性同位素年代数据,这是一个很大的不足,对未受扰动的深海沉积物也许影响不大,但对石岛却至关紧要。最棘手的是,石岛风成灰岩的氧同位素曲线可能并没有反映当时的气候史,因为在风成过程中,出现了不同年代沉积物的上下层混合甚至颠倒等现象,这已为许多14C年代数据所证明,所测样品在岩心中没有反映出沉积的时间顺序,因而难以反映气候史。

图1现代软体动物和珊瑚的δ18O范围(据Aharon,1986)

(2)分析的样品为全岩 风成灰岩氧同位素分析的样品全部是全岩,这是一个极好的尝试,可是也带来了一些复杂的问题。西沙石岛风成灰岩是由珊瑚、珊瑚藻、有孔虫、软体动物和棘皮动物等生物骨骼所组成,这些生物在全岩样品中所占的比例并不恒定,全岩的氧同位素记录实际上是组成灰岩所有生物种属氧同位素记录叠加的结果。

虽然各种生物都可能由于气候的冷暖变化而改变其δ18O值,但对单一种属,氧同位素变化幅度并不十分大。被称为“标准”深海沉积物氧同位素记录的东太平洋V19-30岩心,在同位素2~4阶段(相当于10~75ka左右)δ18O的最大变化也没有超过×10-3,而西石一井δ18O的变化幅度都十分大,可达(5~60)×10-3。如此大的变化似乎不大可能是由于冰期和间冰期的气候变化而引起的,很可能是由于被分析样品中生物种属所占比例的不同而引起的。如图1所示,我们可以看出现代珊瑚和软体动物的818O相差很大,这种变化大超过气候变化而引起的δ18O的变化。同一年代形成的全岩样品,由于其中的软体动物和珊瑚所占的比例不同,都可能引起类似冰期或间冰期的δ18O变化,软体动物所占的比例大,全岩样品的δ18O值就能引起类似冰期的特征富重,珊瑚占的比例大则可能类似间冰期的特征富轻。

(3)受淡水严重的影响 西沙石岛风成灰岩受到大气降水强烈的淋滤,次生成分很多,占相当比例的文石和高镁方解石,由于重结晶的胶结作用而转变成低镁方解石,淡水在这个过程中起着重要的作用,样品的氧同位素组成可能已发生了变化。大气水中的δ18O值变化范围极大(0~60×10-3),这些淡水改造了西沙石岛的风成灰岩,这也可能是西石一井δ18O变化幅度大的原因之一。

2地质意义的讨论

风成灰岩和化石土壤层的形成年代

复杂的风成机制使西沙石岛上的沉积物不是按年代顺序堆积的,因此,建立西沙石岛风成灰岩的时标比较困难。但是,无论海洋的或陆地的风成沉积物(黄土)的形成都受全球气候变化所支配,而深海沉积物的δ18O曲线也反映了全球的气候变化,将它们和风成沉积物的气候旋回进行对比应该是比较合理的。国内一些著名学者采用控制年代点的方法用类似的办法将西石一井的岩心剖面和深海沉积物岩心V19-30的δ18O的变化曲线进行对比,以求出各土壤层的形成年代。

世界上许多风成碳酸盐岩都形成于海侵过程中,只有在这个过程中才能提供足够的沉积物的物源,西沙石岛也不例外。如上所述,假如西沙石岛风成灰岩的14C年代在~间,在这个阶段,V19-30岩心的氧同位素曲线δ18O最轻处()的年代为28ka,此时氧同位素曲线上有一明显的高峰,表明气候温暖,海平面上升(图2),因此,我们有理由推断西沙石岛风成灰岩的形成年代为28ka。以28ka为基准,也就是风成灰岩的下限年代。由于西沙石岛没有全新世的沉积物,以10ka为上限年代,把西石一井的深度、风成灰岩的底部和各化石土壤层的位置标绘在年龄界限10~28ka的V19-30氧同位素曲线图上,在岩心各化石土壤层的位置下找出相应的高峰,其下的年代就是在暖湿气候下形成的化石土壤层的年代。

标绘的结果十分令人满意,风成灰岩的底部和4个化石土壤层与A,B,C,D,E5个明显的高峰出乎意料地完全匹配。因此,第Ⅰ~Ⅳ化石土壤层的形成年代相应为和左右,这些年代与我们根据地表样品年代划分的范围一致,第Ⅳ化石土壤层~,第Ⅲ化石土壤层为~,第Ⅱ化石土壤层为万~万a。曹家欣等对山东庙岛群岛和蓬莱沿岸的马兰黄土的研究表明,这些风成沉积物主要形成于距今10~30ka,而且在南长山岛信号山南的马兰黄土中也发现了古土壤层。这些研究成果也支持西沙石岛风成灰岩和古土壤层的形成年代,同时也说明无论南方海相和北方陆相风成沉积物的形成都受全球气候变化所支配。

图2西石一井岩心与V19-30深海沉积物氧同位素曲线对比(A,B,C,D,E为同位素曲线高峰位置)

沉降岛屿的立论

有人应用西沙石岛的14C年代数据,根据其海拔说明西沙石岛是上升的岛屿。然而近年来西沙石岛风成灰岩的发现,越来越多的14C年代数据,尤其是西石一井风成灰岩基底年代的确定,均不能支持西沙石岛是上升岛屿的结论。西沙石岛非同一般的珊瑚礁岛,风成机制使所测得样品的位置没有反映出古海面的变化,因此,也就难以推测出石岛的上升速率。

据西石一井资料,这套风成灰岩基底明确,侵蚀面清楚,最底部校正后的14C年代为28ka,原生礁最上部经检验处于化学封闭体系的铀系测年为124ka。由此我们可看到原生礁到这套风成沉积物间有近100ka的沉积中断。

124ka前是末次间冰期的高海平面期,此时海平面的高度与现今海平面差不多,有可能稍高一点。据与西沙石岛经纬度差不多的南海北部深海平原晚更新世以来沉积环境和古气候变化的研究,130ka前的古海面比现在高 10m左右,现在风成灰岩基底位于水下,由此可求出130ka的平均下沉速率为左右。

有近100ka沉积中断的主要原因就在于西沙石岛是微微下沉的。在末次间冰期高海面期后,海平面升升降降,但总的趋势是下降,海平面的下降速率大于西沙石岛的下沉速率,因此,珊瑚及其他生物种属不会生长在130ka的原生礁上,而在古岛礁坪的四周发育;在降到28ka的高海平面期,此时西沙石岛的高度与海平面相差无几,这样才能接受风成沉积物作为其基底。

风成灰岩的形成过程

西沙石岛风成沉积物来自古石岛本身及邻近的礁坪。124ka的原生礁在距今大约28ka成为海侵礁,具备接受沉积物的物源条件后,逐渐进入末次冰期最盛期。干冷的气候是形成风成灰岩的主要条件。海平面急剧下降,风成灰岩的基底处仍没有珊瑚礁发育,但所在礁坪四周继续发育着珊瑚礁,它们在西石一井岩心中不能看到。随着气候的变化,古风向的变化,海平面剧烈变化或相对稳定,礁坪周围发育的珊瑚厚薄不一样。当海平面相对稳定时,礁坪不再沿垂直方向发育而是向侧向发育,外侧较年轻,内侧较老;海平面变化较快时,仅发育成较薄的一层珊瑚礁。海浪的冲蚀、海潮流的分选和风力的搬运使这些生物碎屑经过无数次的磨蚀,沉积在现今的西沙石岛上。这些外界营力不仅改造了珊瑚礁,而且也使一些基底较老的生物碎屑沉积在西沙石岛上,那时古礁坪的范围可能比现在大得多,这样才能提供一个沉积物多次磨蚀的古地理环境。进入全新世时,气候温暖,冰盖融化,海平面迅速上升,淹没了许多古礁坪,断绝了沉积物的来源,失去了多次磨蚀的古地理环境,这也是这套风成灰岩缺失全新世界质的原因。假如这个过程是真实的,对西沙石岛已测定的14C年代数据都能做出较好的解释。

3结语

沉积物测年方法至今已发展到近20种,每一种方法都有自己的假设前提,都有测定的最佳年代范围,都有最适宜的样品。同一地质背景的样品采用不同的方法可能获得不同的结果,这个问题一直困扰着地质学家;每年都有大量的年代学数据发表,如何使用好这些数据也是一个值得研究的问题。要想解决这些问题必须开展各种测年方法的互相交叉和对比的研究,以满足地球科学日益发展的需要。笔者试图通过对西沙石岛样品不同测年方法的初步讨论,而引起地质学家和年代学家的注意,期待进一步做更深入的研究。

参考文献(略)

(第四次中国海洋湖沼科学会议论文集,科学出版社,1991,51~57页)

工程地质勘察是完成工程地质学在经济建设中“防灾”这一总任务的具体实践过程,其任务从总体上来说是为工程建设规划、设计、施工提供可靠的地质依据,这是我为大家整理的工程地质职称论文,仅供参考!

浅论工程地质勘查

【摘要】工程地质勘察是完成工程地质学在经济建设中“防灾”这一总任务的具体实践过程,其任务从总体上来说是为工程建设规划、设计、施工提供可靠的地质依据,以充分利用有利的自然和地质条件,避开或改造不利的地质因素,保证建筑物的安全和正常使用。本文主要分析了建筑工程地质勘察有关问题。

【关键词】建筑工程地质勘查质量

中图分类号: TU761 文献标识码: A 文章编号:

一、引言

工程地质学早在21世纪30年代就已成为一门独立的学科,近期的研究成果更是高深至运用非线性科学研究其复杂性问题。地质情况是复杂、多变的,因区域、地区、场地而各异。在各类建筑地基基础设计中,为保证其安全必须同时满足两个技术条件:①地基强度条件,即保证地基稳定性,不发生剪切破坏或滑动破坏;②地基变形条件,即沉降量、沉降差、倾斜、局部倾斜都不超过地基容许变形值。地质勘察报告是建筑工程设计的重要依据,是保证满足上述两个技术条件的必备资料。科学的地质勘察报告不仅能提高建筑设计质量,还可节省工程量,减少投资,从而带来较大的经济效益。

近些年来,我国工程地质勘察工作已有了长足发展,已经成为了我国地质工程建设的左右手。地质勘察是对地质工程相关区域范围内的岩石、地层、构造、水文、地貌等地质情况进行调查了解,确定工程建设的规划、设计、施工提供必要的依据及参数。地质勘察报告的内容将会决定出不同的投资投入和施工管理方案,不同的施工方案决定不同的工程质量。

二、工程地质勘察中存在的问题

建筑工程地质条件复杂或有特殊施工要求的重大建筑物地基,有时通过详细勘察尚不能全部查明情况或取得全部所需资料时,则需进行施工勘察。当前在民用建筑工程地质勘察中存在着一定问题,主要表现在以下几个方面:

1、对工程地质勘察的重要性和价值认识不够

地质勘察主要是两个方面,一是揭示地质构成,二是提供土体的力学指标;地质构成决定基础处理方案的选择,力学指标对工程造价影响很大。众所周知,地下是看不见摸不着的,只有靠钻探勘察,建设场地是唯一性的,勘察成果也没有可比性,因此建设单位选择一家专业技术强,操作规范严谨,能准确提供成果的勘察单位相当重要,对建筑的安全、工程施工顺利进行、节约投资都有重要的意义。

2、地勘部门地勘报告质量不高

地勘部门提出的地勘报告,质量不高,并不乏错误。现某些地勘报告其内容简化到不提供土工试验指标,不作评价,不作明确的结论和提出建议性工程处理意见等。一些报告中该省略的不省略,不该省略却没有;不该附的图附上,需要的表格又没有;文字不多,却废话连篇。其做法是蒙哄不懂专业的管理人员和去迎合部分设计人员只要提供地基承载力这一指标。

3、勘探方法不对

一些勘察部门用所谓的静载荷试验压裂探坑两侧土层为准来确定承载力,其做法是一种误导,是不科学的。试想,压裂较浅和较深的两侧土层所需的压力大小都不一样,究竟取用哪一压力定值来作为地基承载力。另外,压裂两侧土层不能替代或者说明该压力值就是竖直方向土层地基持力层的承载力。

4、工程地质勘察缺乏监管

一是工程地质勘察在工程的前期阶段进行,由建设单位自主选择勘察单位,一般建设单位缺少这方面的专业知识,对地质勘察的重要性认识不足,因此对勘察单位要求不高,有个成果就可以,钻探费用上考虑多点,对技术的要求就轻了。二是地质勘探是野外作业、土工试验和资料整理,整个过程只有勘探单位独自完成,没有监督,到底钻了几个孔,钻了多深,取了多少土样,土工试验做了多少,这些都存在漏洞,是勘探单位的“良心”活。现在施工图审查也对地质勘察成果进行审查,那都是事后了,只要资料造得过得去都能通过,地质构成与实际施工严重不符时有发生,力学指标的精确性更是无法判别。

三、工程地质勘查工作的对策

1、确立工程地质勘查工作的规范和制度

工程地质勘查工程师在进行正式的勘查工作之前,应详细地了解和掌握建设单位对岩土勘测工作的要求,及其所负责工程的结构形式、用途、载荷大小,并根据施工现场情况编制勘察规范和制度,根据实际情况制定出科学合理的时间计划,合理安排内业资料整理、土工试验、外业施工等环节,规定取样及试验、原位测试、钻探施工等技术要求,明确勘测过程中与规范和制度相冲突时应作出的技术调整要求。

2、做好对勘查数据的提炼,提高地质勘查报告质量

做完地质勘查工作,得到勘查数据之后,还应结合项目自身及周边环境特点来做好勘查数据的整理、分析和提炼,以确保土层划分的科学性和测量数据的准确性,并做好与设计人员的沟通,对于差异较大的参数要进行必要的说明,使得设计人员更好地掌握相关的情况。

3、选择合适的勘察测试方法

勘察主要有钻探、取样和试验三种方法,它们都拥有着非常强的针对性,选择合适的勘察方法可以起到事半功倍的效果,否则不但起不到应有的作用,还有可能会浪费大量的工作时间和资金。选择既经济又合理可行的工程勘察方法,首先应当详细了解场地已有地质资料、沿线构造物情况、与工程建设设计人员充分交流、明确要解决的工程地质问题,然后开展勘察工作,特别是对未知区域的勘察,要分阶段的多次完成勘察工作。针对不同的材料与地质结构,采取的方法有:干钻取芯钻进、泥浆护壁回转钻进等。

4、做好勘查现场的监督工作

开工前,工程地质勘查人员须结合建设方提供的各类报告对施工现场进行勘测与核实;要对钻机所使用钻杆的尺寸和长度予以核对,确保其各部分技术参数符合勘测和施工的要求;岩土勘测工作中的各项原位测试项目,应满足《岩土工程勘察规范》及其他相关规范和制度的要求;合理选择钻进方式,在对岩层进行钻进时,应根据岩层强度合理确定钻进速度,在钻进位于地下水位以下的粉土、砂土、软弱土层时,须采用泥浆护壁钻进法,并严格限制钻进速度;做好取样管理,取样时,应严格控制钻杆尺寸,不得通过切取岩芯管的方式取原状土样,对取好的样应及时贴好标签,并妥善保管;对于高程和水位的测量,高程的测量应首先选择黄海高程,若条件不允许而须采用假定高程,最好是将基准点埋设在不易遭到破坏的地方,应在工程施工结束后统一进行地下水位的测量工作;工程师要及时对外业资料进行核对和验收,确保原位测试数量和主要持力层的取样数量满足要求,同时,还要注意做好持力层的起伏情况的控制工作,对可能存在的异常点进行小规模钻探,探明具体情况。

5、控制好工程地质勘察周期

勘察周期作为工程地质勘察项目的重要因素必须满足计划要求。在制定勘察纲要时,应根据工程项目情况、勘察工作量和勘察方法、场地地形地质条件等情况,对野外业工作、岩土试验和室内资料整理时间进行统筹安排人员和设备。树立项目全寿命周期成本观念,有效控制工程造价。勘察设计要统筹考虑规划、建设、养护、运营的全过程,运用项目全寿命周期成本观念,进行技术方案比选,合理确定项目的功能水平,实现技术与经济的有机结合,确保勘察设计工作质量。设计阶段是项目寿命周期成本控制最关键的阶段,要从项目生命周期的全过程去看待成本,不仅要重视建设成本、维修成本、养护成本的控制,还要重视环境成本和社会成本的控制,通过运用科学的方法合理评价设计方案,在确保安全和功能的前提下,通过提高技术含量,合理、灵活地运用设计指标,达到最佳技术与经济效益。

结束语

勘察的成果主要表现在工程地质勘察报告上,优良的勘察报告无疑会给设计提供可靠的工程地质依据。相反,不合格的报告会给设计带来严重的不良后果,甚至造成质量事故。因此要对勘察工作有明确的定位,重视工程地质勘察,落实管理和规范,只有这样才能确保拥有比较可靠的勘察成果。

参考文献

[1] 黄光琼. 工程地质勘查及高层建筑物地基处理措施探讨[J]. 现代商贸工业. 2011(02)

[2] 张美元. 建筑工程地质勘察探析[J]. 商品与质量. 2009(S6)

[3] 刘涛. 民用建筑工程地质勘察应注意的几个问题[J]. 科技资讯. 2009(16)

工程地质勘察探讨

摘要:介绍了工程地质勘察的目的以及决定勘察任务的因素,具体阐述了工程地质勘察流程,包括前期准备、各阶段勘察内容及工程地质勘察报告,以期指导相关人员正确进行工程地质勘察,为设计施工提供准确的地质资料。

关键词:工程地质勘察;目的;任务;勘察报告

建筑是建在地面以上的,地面以下土层的分布,土质的疏松、强度,地下水的深度等都会影响到在建建筑的安危。所以,为了确保建筑及其地基设计的准确性,就必须有建筑场地的地质资料作为科学依据。只有对建筑场地的地质资料有个全面的了解、准确把握才能更好的对建筑及其地基进行设计。

一、工程地质勘察的目的

工程地质勘查的主要目运用坑深、触探、钻探等勘查手段和方法,对在建工程的场地进行调查研究分析,为工程设计和施工提供所需的地质资料。

二、决定勘察任务的因素

(一)建筑场地的复杂程度

根据建筑场地的地形情况将场地复杂程度分为三个级别:简单场地,对建筑地基影响不大;中等场地,对建筑的地基可能会造成一定的影响;复杂场地,对建筑的地基存在很大的影响。

(二)工程所在场地地质条件的研究机当地建筑工程经验

比如,在某一陌生区域,对当地的地质条件缺少研究,则勘查工作量就有加大;相反,如果在此地有工程施工经验,则花费时间及工作量都会减少。

三、建设规模及建筑物等级

依据所建工程类类型,建筑地基负荷大小、建筑地基损坏后造成建筑整体后果的程度等,可将建筑分为三个等级。一级建筑物,主要指的是关键性或有纪念意义的建筑物,破坏后果很严重。二级建筑,主要指的是地基负荷较大的建筑物,破坏后果严重。三级建筑,主要指的是建筑地基负荷不大,破坏后果不严重。

勘察工作的准备。1)接受工程地质勘查任务书,结合工程场地地质条件制定相应的勘查工作计划;2)建筑规模较大或地质条件复杂的场地,应当进行工程地质测绘,并实地观察场地地质情况;3)设置勘查点和勘查线,采用各种地质勘查手段或方法探明场地地质情况,并取得地质试样;4)对取得地质试样进行物理力性测试和水质分析测试。

四、地质勘察各阶段的内容

(一)选址勘察

1.目的

选址勘查是指对工程场地的地质的稳定性和适宜性做出评价。

2.选址阶段的勘察工作

1)对工程场地所在区域的地形地貌、地震、矿产资源和工程地质信息以及气候、自然条件等信息进行收集;2)工程现场实地踏勘,初步了解场地的土层结构情况,形成原因和大致成型年代,主要土层、地下水位等情况。3)对附近区域的建筑物规模、结构、地质资料等情况有所了解;4)工程场地地质情况复杂,现有资料不能不能准确反映地质信息,应当进行必要的地质测绘及勘探工作。

(二)初步勘察?

1.目的

1)对在建建筑的地基稳定作出评价;2)为建筑的总体平面提供必要信息;3)为工程的主要建筑地基施工发案提供参考资料;4)如遇不良地质现象提交防治方案。

2.主要任务

1)对场地地质初步了解。2)对地下水水位和冻结深度有个初步了解3)查明场地中不明地质现象,范围,对工程项目的影响和发展趋势

(三)详细勘探

1.目的

1)从工程地质角度评价建筑地基,提出相应建议;2)为建筑地基设计提供详细的地质工程资料;3)为建筑地基的加固和处理提供工程资料支持;4)为不良地质情况的防治提供地质资料。

论文百事通

2.主要任务

1)详细勘查主要采用的手段以原位测试、勘探和室内试样检测为主。2)复杂场地或一、二类建筑物,详细勘探点宜按主要柱列线布置;对其他场地和建筑物可沿建筑物周边或建筑群布置;对重要设备基础应单独布置。3)要以地基主要受力层为原则钻探勘探孔深度。如果地基需要进行变形验算,部分勘探孔可以底基层压缩深度。4)对场地进行详细勘探时,原位测试井、探孔数量级所取地质试样,应依据地质的复杂程度、建筑规模或类别进行确定。取试样和进行原位测试部位,应依据设计要求、地基情况进行确定。

(四)施工勘察

1)对较重要建筑物的复杂地基需进行验槽。验槽时应对基槽地质素描,实测地层界限,查明人工填土的分布和均匀性等,必要时应进行补充勘探测试工作。2)基坑开挖后,地质条件与原勘察资料不符,并可能影响工程质量。3)深基坑设计及施工中,需进行有关地基监测工作。4)地基处理、加固时,需进行设计和检验工作。5)地基中溶洞或土洞较发育,需进一步查明及处理。6)施工中出现边坡失稳,需进行观测及处理。

五、工程地质勘察报告

(一)文字部分

1)勘查工作的任务和概况;2)是否存在影响建筑物地基不稳情况存在及其影响程度;3)工程场地的地质土层结构、强度及各土层物理力学性质;4)低下水位的深度、水质情况、变化情况及对建筑材料的腐蚀程度;5)在地震设防区划分场地类型和场地类别,并判别饱和沙土及粉土;6)对建筑地基基础方案进行分析,提出经济可行的设计方案意见,尤其对地基设计和施工中需注意的地方检出建议;7)当工程需要时,尚应提供:深基坑开挖的边坡稳定计算和支护设计所需的技术参数,论证其对周围已有建筑物和地下设施的影响;基坑施工降水的有关技术参数及施工降水方法的建议;提供用于计算地下水浮力的设计水位。

(二)图表部分

1)勘探点平面布置图;?2)工程地质剖面图、综合工程地质图或工程地质分区图;?3)土的物理力学性试验总表。重大工程根据需要,绘制综合工程地质图或地质分区图、地质柱状图或综合地质柱状图和有关试验曲线。

参考文献:

[1] 韦俊行. 欧家村水电站工程地质勘测工作中的教训与启示[J]. 水力发电, 1990, (02)

[2] 邱贤荣. 浅论地质勘测各阶段技术要点分析[J]. 中国水运(下半月), 2008, (08)

[3] 刘涛,甄星灿. 某高层建筑工程质量事故实例分析与加固处理[J]. 建筑结构学报, 2002, (02)

我很无奈,非专业。

岩石矿物学杂志参考文献

提要20世纪80年代初,作者基于对红旗岭矿床的研究,提出了硫化铜-镍矿床的矿浆成

因观点,十余年来已引起中外同行专家、学者的重视。本文拟通过对吉林长白山区赤柏松矿

床的地质学、地球化学、岩石物理化学、地质热力学等方面的研究成果,进一步论述硫化铜-

镍矿床的矿浆成因模式。

关键词长白山区赤柏松铜-镍矿床矿浆成因模式

自20世纪80年代初作者提出硫化铜-镍矿床矿浆成因观点[1]以来,先后发表了十余篇论文[2~5]论述有关硫化铜-镍矿床的矿浆成矿问题,引起了国内外同行专家、学者的关注。笔者以长白山区赤柏松镍矿田为靶区,经多年反复研究,特撰此文,拟对其矿浆成因模式做进一步论述,倘有不妥之处,请惠于指正。

1 矿床地质简述

赤柏松矿田中发育有几十个基性岩体,尽管它们的硫化铜-镍矿床规模不等、远景不一,然而它们的成岩成矿作用却几乎是一致的。本文拟对其中甚为典型、研究程度较高的赤柏松1号岩体及其矿床的成岩成矿作用与矿床成因模式作重点论述。

赤柏松1号岩体系早元古代五台期产物。其钾-氩同位素年龄为1962~2242Ma,产于华北地台北缘东段太古宙地体中,受古陆边缘浑江古裂谷控制。主要岩体为橄榄辉长苏长岩复式杂岩体,呈岩墙状产出(图1之1~5),总体走向5°~10°,倾向与倾角均有变化。北段倾向南东东,倾角由北向南渐陡,变化在55°~86°之间。北端翘起,向南东东侧伏,侧伏角45°左右。岩体长4800m,宽40~140m,面积约。沿走向膨缩不一,岩体底部形态不规整,呈参差不齐的根须状。主要由多期次侵入的辉长辉绿岩(图1之3),中、暗色橄榄辉长苏长岩(图1之1~2),细粒辉长苏长岩(图1之4)与辉长玢岩(图1之5)等侵入岩相构成。其中暗色橄榄辉长苏长岩、细粒辉长苏长岩是主要含矿岩相。另外,中、暗色橄榄辉长苏长岩浆的混熔岩带中,矿化尤为富集,研究表明与岩浆混合作用有关(详见下文)。

岩体侵入在太古宙黑云角闪斜长片麻岩(图1,Ars)中,总体上斜切围岩的北西-南东至东西向的片麻理,接触带具明显的热接触变质及接触混染现象。

矿体主要分布在岩体边缘及部分围岩内,其分布、产状与形态明显受岩相及构造裂隙控制,总体产状与岩体一致。矿石矿物主要是磁黄铁矿、镍黄铁矿、黄铜矿、针镍矿、紫硫镍铁矿、辉镍矿、方黄铜矿、黄铁矿等,此外尚有自然金及铂族元素矿物。矿石结构主要有共结结构、交代结构、似显微文象结构及固溶体分解结构。矿石构造有浸染状、斑点状、角砾状、块状与条纹状等。在成因上主要是矿浆贯入成因,结晶熔离者显居次要地位。

图 1 赤柏松 1 号岩体地质图

2 成岩成矿物质来源及物理化学条件

物质来源

硫同位素信息

45个取自含矿岩体与矿体的磁黄铁矿、镍黄铁矿、黄铜矿等的硫同位素分析结果(表1)表明,①δ34S变化在-‰~+‰之间,绝大多数为-‰~+‰,变化幅为1‰;②32S/34S=~,主要在~区间,变化很小,与陨石标准值()相比,离差幅度在~之间;③硫同位素塔式分布图(图2)的塔式效应明显;④不同成矿阶段硫化物中δ34S值稳定(图3)。以上足见硫化物同出一源———上地幔,而且,它们所经历的硫同位素分馏历程是一致的。

氧同位素信息

由表2可知,所分析的不同岩相中斜长石的δ18O,除因混染作用(CTD6-8c)使其值偏高(+‰)外,90%左右的δ18O值介于‰~‰之间,与球粒陨石的δ18O值(‰~‰)颇相接近,尤其接近于正常玄武岩的δ18O值(‰~‰)[6]。由此可见,各岩相中的斜长石组分来自上地幔玄武岩岩浆体系。

图 2 赤柏松 1 号岩体硫同位素塔式分布图

续表

表 1 赤柏松 1 号岩体硫同位素数据表

图3 赤柏松1号岩体中不同成矿阶段δ34S对比图

表2 赤柏松1号岩体各侵入岩相中斜长石的δ18O分析结果

分析单位:中国地质科学院宜昌地质矿产研究所同位素室。

锶同位素信息

不同岩相中单矿物的87Sr/86Sr值(表3),除混染岩相(CTSr6-8c)与变质辉绿岩(CTSr38-2c)中斜长石的87Sr/86Sr为~外,余者均变化在~之间,与上地幔现代玄武岩中的87Sr/86Sr值(±)非常接近[6],此亦证明成岩物质来自上地幔。

REE信息

含矿岩相∑REE=×10-6~×10-6,LREE/HREE=~,δEu=~,(La/Yb)N=~(表4)。这些数据不仅变化小,而且∑REE与大陆型非洲玄武岩(∑REE=22×10-6)和大陆型德鲁斯辉长岩(∑REE=50×10-6)很接近[7]。在(La/Yb)N-∑REE图(图4)与(La/Yb)N-(Yb)N图(图5)上的分布位置,明显趋近于球粒陨石,故系上地幔产物。尤其是(La/Yb)N值介于大洋岛屿拉斑玄武岩与大陆拉斑玄武岩之间,进一步显示出其大陆边缘产出的地质环境。

表3 赤柏松1号岩体不同侵入岩相中单矿物的87Sr/86Sr值表

分析单位:中国地质科学院宜昌地质矿产研究所同位素室。

表4 赤柏松 1 号岩体不同侵入相与矿石中稀土元素数据表

成岩成矿的物理化学条件

橄榄石结晶温度

橄榄石是岩体中结晶最早的主要造岩矿物之一,其结晶温度即是岩浆温度的下限,又是固相开始晶出温度的上限。

按夏林圻(1981)提供的方法[8],由橄榄石化学成分算得的XFo=80,XFa=20,XMg=,XFe=,K1=4,K2=,代入公式:

T(℃)=[(-lnK1/K2)×104÷]+273℃算得的温度为1412℃。

图4 赤柏松1号岩体(La/Yb)-∑ REE含量图解

图5 赤柏松1号岩体(La/Yb)N-(Yb)N变异图

辉石类矿物的结晶温度、压力

由辉石类矿物地质温度、压力计计算的温度、压力见表5。

表5 赤柏松 1 号岩体辉石类矿物的结晶温度、压力计算表

*括号内为计算的样品数。

值得强调的是中、暗色橄榄辉长苏长岩相中的辉石拥有两个结晶温度梯度,一是在数量上占优势的~℃;另一是为数较少的~℃。不言而喻,这两种结晶温度的辉石是在不同压力、深度条件下的产物。研究表明,它们是两次温度相近,成分有别的岩浆(即中、暗色橄榄辉长苏长岩岩浆)发生混合作用的结果。

斜长石的结晶温度

作者采用王润民改进了的和(1970)方法[9]的“基质法”,计算了岩体中斜长石的结晶温度,暗色橄榄辉长苏长岩中斜长石为℃,中色橄榄辉长苏长岩中斜长石为℃,它们分别与相应岩相中辉石的结晶温度接近,与同岩相中近共结的辉长结构相协调。

硫化物矿物的结晶温度

运用爆裂法、矿物对硫同位素计算法与磁黄铁矿d102法测定或计算的不同侵入岩相中硫化物矿物的结晶温度不同(表6)。

表6 赤柏松 1 号岩体硫化物矿物结晶温度测算表

表6 表明所述矿床硫化物矿石在 470 ~280℃温度区间结晶的。然而,尚应指出,爆裂曲线出现两个峰值,亦即硫化物也有两个形成温度梯度,与辉石相一致,可见硫化物的形成也与两期岩浆的混合作用有关。

2. 2. 5 成岩压力

基于岩石中有中长石、顽透辉石与石英的共生组合存在,表明岩石在结晶过程中存在以下两种反应:

傅德彬地质学论文选集

按文献 [9],其中 ( 1) :

傅德彬地质学论文选集

因αSiO(β-θ)2=1,故lgαSiO(β-θ)2=0

傅德彬地质学论文选集

其中(2):

傅德彬地质学论文选集

按等(1971):

傅德彬地质学论文选集

按等(1973):

傅德彬地质学论文选集

在平衡状态情况下:

傅德彬地质学论文选集

亦即:

-309/t+-(P-1)/t=-1410/t-(P-1)/t+lgαCaAl2Si2O(Pl)8-lgαCaAl2SiO(Cpx)6

整理后得:

傅德彬地质学论文选集

傅德彬地质学论文选集

则化简后:

傅德彬地质学论文选集

据中色橄榄辉长苏长岩中Pl与Cpx的化学分析结果计算:

傅德彬地质学论文选集

代入(3)式:

傅德彬地质学论文选集

把辉石形成的平均温度(℃)代入(4)式,算得成岩压力为×105Pa。

成岩氧逸度(fo2)

利用不同岩相中橄榄石与辉石的端元组分(Fa,Fs)与结晶温度求得成岩氧逸度(表7)。由表7可知,中色橄榄辉长苏长岩相的fo2高于暗色橄榄辉长苏长岩相,足见后者是在相对更为还原的环境下形成的。暗色橄榄辉长苏长岩相中fs2、αs,相对较高可资佐证。

表7 赤柏松1号岩体成岩氧逸度(fo2)测算表

成岩成矿的Eh-pH条件

在对不同成矿阶段矿石的研究中,铁的硫化物与氧化物在生成顺序上为:磁铁矿→磁黄铁矿→磁铁矿(-黄铁矿)。表明在成岩成矿过程中,Eh-pH具反复变化特点。据铁的硫化物与氧化物的Eh-pH值图解,不难看出,所述含镍岩体各成岩成矿阶段的pH值变化在4~7之间,Eh值变化在-~+之间。一言蔽之,金属硫化物矿石是在弱酸性介质条件下,还原环境中形成的。

3岩、矿浆形成机制

除了原始矿浆外,大部分矿浆乃系岩浆在分异演化过程中的衍生产物[3]。作为本区大陆型岩浆作用,其岩浆形成机制与地幔深部层位热能聚集有关。诸如由于构造活动、放射性热与化学反应热等热能的聚集均可使地幔部分熔融成为岩浆(或原始矿浆)。但应指出,大陆地壳(或岩石圈)在岩浆(矿浆)形成中具有双重效应:一是上覆巨厚的(一般为70~100km)大陆岩石圈物质,热导率低,是良好的热传导屏蔽层,有利于原生地幔物质的熔融;二是当热流向稳定地块边缘迁移(或传导)至地球壳层时,受热的地层在该地段因热导率低而起着制动或阻塞热流传播的作用,使热能大量聚集,结果在稳定地块边部便形成了经常含硫化物的基性-超基性岩浆,甚至形成原始硫化物矿浆等。此乃世界上主要镍矿床大都分布在太古代地块边缘活动带中的缘由所在。这时的熔融体因温度高,可以使地幔熔化物质中的硫化物熔体在氧化物-硅酸盐熔体中保持悬浮状态,二者一道沿上升通道侵入到地壳适当部位中的岩浆库内。

研究表明,岩浆进入岩浆库往往是多次重复贯入的。

如系一次侵入的,其硫化物与硅酸盐间的层状液状不混熔作用,主要是由于温度降低,铁镁组分晶出,CaO,Al2O3,SiO2,Na2O,K2O的增加降低了硫的溶解度,加之此时硫呈二原子气体与铁、镍、铜的化学亲和力增强,当硫蒸气压大于离解压时,硫便与铁、镍、铜化合成化合物,当熔体中硫离子与金属离子的浓度积大于相应硫化物溶度积时,便以硫化物形式从熔浆中熔离出来,形成硫化物矿浆,并在重力场作用下,沉到岩浆库底部。其上部的硅酸盐岩浆,因其准晶态组构系由硅氧四面体聚合而成的复杂络阴离子或分子团[SixOy]z-同金属阳离子与氧组成的配位多面体[MeOx]2x-n两种群聚态组组成。当不同聚合程度的[SixOy]z-与不同金属的[MeOx]2x-n键合时,因所含O2-的多寡及金属阳离子种类与比重的不同,使不同组分的群聚态组具有不同的重力差,在重力场作用下,轻者上浮,重者下沉,遂使熔浆产生了层状液态分异作用,使岩浆库中的熔浆变成了层状分异岩浆与矿浆。岩浆在上,矿浆在下(图6)。

如熔浆系多次贯入岩浆库中的,自然不具备上述层状液态分异条件,这时岩浆发生层状液态分异作用的因素主要是“双扩散对流”(double-diffusive convection)作用[10~12]。

按双扩散对流理论,当中色橄榄辉长苏长岩岩浆注入岩浆库后,密度相对较大的暗色橄榄辉长苏长岩岩浆贯入岩浆库底部时,由于后者密度大、温度高,经过一段时间在岩浆库底部形成一个稳定的双扩散对流层(double-diffusive convecting layer),层之间由扩散界面(double-diffusive interface)隔开。这样,多次注入岩浆库中的镁铁质岩浆在双扩散对流作用下,便形成了层状液态分异岩浆与矿浆[11](图6)。需要指出的是,在双扩散对流过程中,当后注入的岩浆由于向上热扩散作用而降低温度,引起橄榄石等铁镁矿物的结晶,从而降低了后注入岩浆的密度,即温度差驱动力抵消成分差效应,使其密度与上层岩浆密度相等时,则发生强烈的岩浆混合作用[13,14]。岩浆混合作用降低了岩浆的温度,改变了岩浆的成分,使岩浆中所含的硫化物因发生不混熔作用[15]而熔离出来成为矿浆,并沉降到岩浆库底部。

在地台(地盾)较为稳定的条件下,熔浆在岩浆库中实现层状液态分异作用,形成岩浆与矿浆之后,在构造运动作用下上侵。首先是上部较轻的硅酸盐岩浆多次侵位,冷凝后形成复式岩体;然后是下部相对较重的硫化物矿浆相继多次贯入在岩体底部接触带、岩体内部与围岩的构造裂隙中,形成具多次成矿特征的矿浆矿床(图6)。由此可得出两个重要结论:①双扩散对流作用与岩浆混合作用在硫化铜-镍矿浆及其矿床的形成中起了决定性作用;②越是较晚侵入的岩浆,含矿性越佳,越是较晚期侵位的矿浆,硫化物矿石越富,此二规律,对中国已知大型与特大型硫化铜-镍矿床来说几乎概莫能外,如金川、红旗岭、力马河、喀拉通克等矿床。

4成岩成矿作用与矿床的矿浆成因模式

综上所述,大约在1960~2184Ma间,地球上发生了一次规模宏大的构造-岩浆活动,在北美称为Kenoran运动(1700~2000Ma),在非洲称做Limpopo运动(1650~2150Ma),在我国为五台运动(1950~2500±100Ma)。这次构造-岩浆热事件,形成了举世闻名的萨德贝里、布什维尔德、贝辰加等硫化铜-镍矿床。

五台运动在华北地台上的多次活动,使得龙冈陆核早元古代边缘活动带中的古裂谷与之相应地多次复活,结果使上述岩浆库中的层状岩浆与矿浆熔融体多次侵位,造就了所述岩体与矿床。

图6 赤柏松矿床矿浆成因模式图

进而言之,伴随早元古代五台期构造运动的多次活动,岩浆库中已经过层状液态分异的岩、矿浆由上至下依次间歇式贯入,先后形成辉长辉绿岩、中色橄榄辉长苏长岩、暗色橄榄辉长苏长岩、细粒辉长苏长岩与辉长玢岩等侵入岩相,构成赤柏松 1 号复式基性岩体。各岩相间均为侵入与隐秘侵入接触关系。

研究证实,当暗色橄榄辉长苏长岩岩浆侵入中色橄榄辉长苏长岩岩浆时,在二者接触处由于双扩散对流作用而发生了岩浆混合作用,形成了矿化异常富集的混熔岩 ( hybrid) 。混熔岩中矿化之所以富集 ( 图 7) ,除上述原因外,A. J. Naldrett ( 1990) 实验研究表明,新鲜岩浆的注入可以使所产生的混合岩浆中的硫化物达到过饱和而熔离出来,促进硫化物的富集[16]。(1977)亦曾指出,“镁铁质岩浆混合可引起硫化物的不混熔性”。等(1983)研究认为非洲布什维尔德杂岩体麦伦斯基硫化物矿脉的形成与岩浆的混合作用有关。

图 7 赤柏松 1 号岩体岩浆混熔过程中化学成分变异图解

复式岩体形成后,接踵而至的是纯硫化物矿浆沿岩体边缘(往往是岩体底部)与围岩破碎接触带贯入,先后形成以镍及铜为主的两次硫化物矿浆贯入成矿,分别形成致密块状矿脉与条纹状矿脉。矿浆成因矿石的主要宏观标志是:①以硫化物为主,特别是纯硫化物矿体,均以贯入方式沿构造裂隙贯入在岩体内、岩体接触带上、甚至变质岩围岩中;②矿体与围岩界线清楚,几乎见不到二者呈过渡现象,即使是混熔岩中的矿体亦然;③矿石中常见母岩或围岩的角砾状捕虏体;④矿石中冷缩裂隙发育,且多被后期热液方解石-石英所充填;⑤近矿围岩蚀变弱,作者(1991)研究表明[17],与成矿关系较密切的为金云母化,系矿浆与围岩(母岩)反应之产物;⑥硫化物矿石中,除金属硫化物外,尚含有比例不定的先结晶的橄榄石与辉石等镁铁硅酸盐矿物,它们与硫化物矿物为共生关系;⑦小岩体有大矿。

基于所述含矿岩体的上述地质背景、生成条件与物理化学环境、控矿因素、成矿作用等方面的研究,作者编制了赤柏松1号岩体硫化铜-镍矿床成因模式图(图6),以综合概括、反映所述含镍基性岩体及其矿床的成岩成矿作用与矿浆成因。

最后,尚应指出,恩格斯曾说过“只要自然科学在思维着,它的发展形式就是假说”。所以,尽管所描述的成因模式来自于实践,毋庸置疑,仍未脱离假说形式,当然需要在更加广泛的实践中加以检验、修正,使其日臻完善,具有普遍的理论意义与找矿意义。须知,任何一种成因模式,都只适用于特定环境中的特定矿床,即使在一个大的成矿区带内也不可局限于一种哪怕是很成熟的模式,而必须结合具体的地质条件与成矿环境等选择更为合宜的模式,这点至关重要。

参考文献

[1] 傅德彬 . 论 H 含镍基 1 超基性岩体中的 “隐秘侵入接触”及矿浆成矿问题 . 中国地质科学院年报,北京: 地质出版社,1981. 181 ~182

[2] 傅德彬 . 论 401 矿区 1 号岩体硫化铜镍矿床的成因问题 . 吉林地质,1982,( 4) : 1 ~ 16

[3] 傅德彬 . 基-超基性岩硫化铜镍矿床矿浆形成机制及成矿作用特征 . 吉林地质,1983,( 2) : 12 ~ 24

[4] 博德彬 . 基-超基性岩硫化铜镍矿床深成矿浆贯入成因论 . 地质与勘探,1986,( 4) : 12 ~ 21

[5] 傅德彬 . 硫化铜镍矿床矿浆成矿的基本问题 . 吉林地质,1988,( 1) : 9 ~ 21

[6] Faure G. Principles of isotope Geology,John Wiley and Sons,1977,pp. 286,90 ~ 289

[7] Haskin L A,et al. The Abundance of rare earth element for certain basic rocks. Journal of Geophsical Research. 1968,73( 18)

[8] 夏林圻 . 橄榄石地质温度计 . 中国地质科学院西安地质矿产研究所分刊,1981,2 ( 1) : 73 ~ 81

[9] 王润民 . 新疆哈密土墩—黄山一带铜镍硫化物矿床控制条件及找矿方向的研究 . 矿物岩石,1987,( 1) : 1 ~ 159

[10] Huppert H E,et al. Double-diffusive convection due to crystallization in magmas. Aun. Rev. Earth planct. Sci.,1984,( 2) :11 ~ 37

[11] Turner J S and Campbell I H. Convection and mixing in magma chambers. Earth-Science Review,1986,23 ( 4) : 255 ~352

[12] Irvine T N,Keith D W and Todd S G. The J—M platinum-palladium reef of the Stillwater complex,Montana,Ⅱ origin bydouble-diffusive convetive magma mixing and implications for the Bushveld complex. Econ. Geol,1983, ( 78 ) : 1287~ 1334

[13] Huppert H E,Sparks R S J and Turner J S. Laboratory investigations of viscous effects in replenished magma cham-bers. Earth planet. Sci. Lett,1983,( 65) : 377 ~ 381

[14] Соболев В С. Проблема смешение магм при образовании изверженных пород. Зап. всесоюз. минер. обще,1981,( 6) : 641 ~ 645

[15] McBirney A R. Mixing and unmixing of magmas. J. Volcanol. Geotherm. Res,1980,( 7) : 357 ~ 371

[16] Naldrett A J,BruGmann G E. Models for the concentration of pge in Layered intrusions. Canadian Mineralogist. 1990,( 28) : 389 ~ 408

[17] 傅德彬 . 赤柏松 No. 1 含镍基性岩体中矿物界生 ( Synantectic) 现象浅析 . 岩石矿物学杂志,1991,( 4) : 365 ~369

A Genetic Model for Ore Magma ofThe Chibaisong Copper-NickelSulphide Deposit,Jilin

Abstract

Through geological, geochemical, physicochemical and thermodynamic studies of theChibaisong nickel-bearing rock bodies,this paper deals with the genetic model for ore magma ofthe Chibaisong Cu-Ni sulphide deposit.

( 1) The ore-bearing bodies occur on the margins of an old platform and are controlled by alower Proterozoic rift zone. The potassium-argon model ages of the ore-bearing bodies range from1900 to 2200Ma.

( 2) The ore-bearing body is a composite intrusion with a heterrogeneous texture formed bymultiple intrusions.

( 3) Ore-bearing intrusive rocks occur as dikes and hardly show good crystalli-zation differen-tiation.

( 4) The spatial position of the orebodies is mainly controlled by the intrusive fracture-contactstructural or ore-bearing intrusive rock facies and is not restricted at the bottom only.

( 5) The percentage of orebodies in the rock body is too high to be explained by the theory ofin-situ crystallization liquation. Fluidal structure is well developed in ore-bearing rock facies,which indicates the dominance of dynamic processes.

( 6) δ18O = 6. 1‰ ~ 7. 7‰ for plagioclase;87Sr /86Sr = 0. 70321 ~ 0. 70888 for plagioclaseand pyroxene; δ34S = - 0. 5‰ ~ + 0. 5‰ and32S /34S = 22. 218 ~ 22. 236 for ores. So rock-form-ing and ore-forming substances were derived from the upper mantle.

( 7) The order of crystallization of major rock-forming minerals in the rocks is divine→pyrox-ene→plagioclase. The crystallization temperature of the olivine was 1412℃ and that of the plagio-clase,1155. 81℃ ~ 1206. 26℃.

( 8) The pressure for the formation of intrusive bodies was 6. 48 × 108Pa.

( 9) fo2for the formation of the ore-bearing intrusive body ranged between × 105~× 105Pa.

( 10) pH = 4 ~ 7 and Eh = - 0. 1 ~ + 0. 16 for the formation of the orebodies indicate thatthe orebodies were formed in acidic media and under reduction conditions.

( 11) There occur clinopyroxenes with two compositional series ( End-Aug and Di-Sal) andtwo formation temperatures ( > 1000℃ and < 1000℃ ) are in the same ore-bearing rock faci-es. The results of this research indicate that their formation is related to the mixing of magmas.

Therefore,the author concludes that the Chibaisong copper-nickel sulphide deposit wasformed by multiple injections of sulfide-rich ore magma resulting from deep-seated liquation of pri-mary ore-bearing magma driven under regional stress; crystallization gravitative differentization insitu was only a secondary factor in the process of ore magma injection; and hence; according tothe genetic type this ore deposit belongs to an “abyssal ore magma in jection deposit”.

Key words: Chibaisong, Changbai Mountains, copper-nickel deposit, genetic model ofore magma

A Study of Event Message-bearing Sedimentary Rocks of the Proterozoic Dahongyu Formation from the Ming Tombs District,Beijing

宋天锐和政军丁孝忠张巧大

原文发表在《岩石矿物学杂志》,2000年,第19卷,第4期;在本书中做了如下修改补充:①将原文中黑白照片改为彩色照片;②补充说明了K2O、∑REE、226Ra、U、187Os/186Os、Pt、Ir等在事件分析中所代表地震灾变事件的意义,与原文有较大区别。

北京十三陵元古宙大红峪组在不足4km的距离内岩相急剧变化,实为国内外罕见。从东至西,泰陵剖面由灰色角砾硅化岩+黑色粉砂凝灰页岩+黄色含长石石英砂岩组成,山顶剖面由不纯砂岩+泥质白云岩组成,德胜口剖面由泥质白云岩+石英砂岩+层凝灰岩组成。本文仅对泰陵剖面大红峪组的三种岩石进行系统研究。宏观、微观特征、地球化学和同位素地球化学分析数据表明:泰陵剖面大红峪组的灰色角砾硅化岩和黑色粉砂凝灰页岩是受火山-地震事件影响形成的沉积岩,而覆盖其上的黄色含长石石英砂岩形成于正常滨海环境中。最后提出大红峪组含事件信息的沉积岩形成模式图。

北京十三陵是著名古迹风景区。长期以来,对于该地区元古宇的研究相继积累了大量资料,但有关长城系大红峪组的文献却较为鲜见。在燕山裂陷槽中,蓟县至平谷一带是大红峪组的主要发育区,尤其是火山岩分布广、厚度大,局部可达400m。以北京地质调查所在山顶实测资料为依据,北京十三陵地区的大红峪组总厚度为80m,并未见到火山岩[1]。笔者等于20世纪80年代首次在泰陵发现大红峪组的硅化岩中含有藻类丝状体以及凝灰质成分[2],之后杨慧宁等又在德胜口发现了层凝灰岩[3]。虽然泰陵和德胜口一带的大红峪组出露不全,多有第四系覆盖,但是这一带大红峪组在河沟中出露的灰色角砾硅化岩和黑色粉砂凝灰页岩都含有火山-地震事件的信息,因此,本文将泰陵剖面作为研究重点。此外,由东至西,从泰陵—山顶—德胜口直线距离不足4km,而大红峪组岩相变化十分剧烈(图1),这在国内外均属罕见事例,将其作为海相沉积的特殊类型加以剖析也是很有意义的。

坚硬的硅质岩中,有些角砾与基质的边界模糊不清,呈逐渐过渡现象。笔者对角砾的

图1 北京十三陵大红峪组剖面示意图

A—泰陵剖面;B—山顶剖面;C—德胜口剖面。1—硅化岩;2—页岩;3—石英砂岩;4—长石砂岩;5—泥质白云岩;6—石英岩;7—泥岩;8—白云岩;9—层凝灰岩。Chc-Chch—常州沟组-串岭沟组;Cht-Chd—团山子组-大红峪组;Chg—高于庄组;Jxw—雾迷山组;Jxt-Qbx-Qbc-Q bj—铁岭组-下马岭组-长龙山组-景儿峪组;Jxh—洪水庄组;Jxy—杨庄组

倾向和倾角进行了仔细测量,认为有一部分角砾与原岩层面有较大位移,而另一些角砾则无甚大错位,角砾倾角多为60°~90°(表1)。根据表1校正后的角砾分布方位图(图2左)和角砾倾角在<30°,30°~60°,60°~90°的分解数图(图2右),可以看出角砾分布在不同的方位,虽然向东的个数较大一些,而且角砾的1/3以上是近直立的,但各种角度都有散布,与十三陵雾迷山组的地震角砾呈菊花状、板刺状分布很相似[4,5]。大红峪组的角砾块体很大并有熔弯现象,说明受火山-地震事件的双重影响。由于大红峪期的强烈火山活动发生在十三陵以东的平谷—蓟县一带[6,7],而且燕山裂陷槽的海侵由东向西扩展[8],故受火山热水硅化后角砾的滑塌也趋于向东倾斜。

表1 角砾倾向、倾角测量值与校正值(岩层倾向为152°∠45°)

图2 大红峪组硅质角砾倾向和倾角图示(按表1校正)

1岩石的宏观特征

灰色角砾硅化岩

灰色角砾硅化岩位于泰陵剖面的最底层,下面出露不全,厚度 m。角砾大小不等,形状各异,包括扁平状、不规则状和熔融弯曲状等(图3-a,b,c),角砾最大可达30cm,最小5cm,散布在硅化岩基质中,总体呈坚硬块状。硅化岩本身也由大小不等的米粒状、豆状和条带状硅化质点组成,大小由1mm至5mm不等(图3-d)。角砾和基质基本上都是由SiO2组成。

黑色粉砂凝灰页岩

岩石呈坚硬的薄层状,单层厚2~3cm,露头厚约12cm,平整地覆盖在角砾硅化岩层面上。在每一单层粉砂凝灰页岩层面上,都有交错分布的胶缩纹槽沟,平直沟口宽5~7mm,反映水下胶缩特点,与一般的层面干裂显然不同。值得指出的是没有在山顶剖面处见到这套黑色粉砂凝灰页岩。笔者后来在山脊以西的德胜口一带的建筑工地地基中,发现一套层凝灰岩。由东至西不到4km的距离内,大红峪组产生如此截然不同的岩相组合真令人不可思议。

黄色含长石石英砂岩

黄色含长石石英砂岩已经石英岩化,为中厚层状(约50cm),与下伏的黑色粉砂凝灰页岩由于覆盖未见直接接触关系,但二者倾向和倾角均一致,可视为整合过渡关系。砂岩层上部出现小角度交错层理,赵澄林等[9]认为大红峪组—高于庄组形成时,以陆表海内潮汐水动力为主,属浅水滨滩环境,与小角度交错层理的形成条件相一致。

2 岩石的微观特征

在角砾硅化岩中曾发现过颤藻属遗迹Oscillatoriopsis sp.[10,11],在粉砂凝灰页岩中曾发现凝灰质自形晶长石[2]。以下介绍新的研究成果。

图3 北京十三陵含事件信息的沉积岩——角砾硅化岩和凝灰质粉砂岩

角砾硅化岩

硅化岩由1~2mm的硅化球粒组成,球的核心周边往往散着一层铁质矿物小点,其中有钛铁矿自形晶。硅化球粒周边由~之放射状石英柱体构成,相间有不规则丝带状泥晶白云石小点的交代残留物。

颤藻属遗迹仅发现于一种“眼状”的硅化岩中,估计为一种藻类核形石交代后的遗迹。

黑色粉砂凝灰页岩

不连续的纹层显示层理构造,局部具显微层内错动并发育砂体液化盲脉,表现出地震事件所特有的沉积构造特征[12]。粒度为粗粉砂(~),碎屑颗粒为长石晶屑和石英,凝灰杂基充填含量占半数以上,凝灰质均脱玻化和粘土化,结构与德胜口大红峪组层凝灰岩显然不同。粒度分析概率图为一段悬浮式,系数为:

Md=φ(≈)

Mz=φ(≈)

σ1=

SK1=

KG=

平均圆度Po=,属次棱角;

综合结构系数Td=,属不成熟级[13,14]。

黄色长石质石英砂岩

碎屑颗粒以粒径之细粒为主,含少量粒径大于粗砂。造岩矿物中石英占85%,长石15%(±)。长石为风化的钾长石和斜长石,部分为新鲜的条纹长石碎屑。含少量磷灰石等重矿物,出现少量变质成因的透闪石。粒度概率图为三级跳跃总体式,系数为:

Md=φ(~)

Mz=φ(~)

σ1=

SK1=

KG=

平均圆度Po=,属于圆级;

综合结构系数Td=,属于成熟阶段砂岩[13,14]。

3岩石的化学成分特征

为了查明事件沉积岩在地球化学特征方面的反应,本文通过岩石化学、稀土元素、γ-能谱、等离子光谱和硅同位素分析对其进行了对比研究。

岩石化学分析

黑色粉砂凝灰页岩是火山沉积事件的直接证据。元古宙的火山活动以碱性岩为特征,而K2O含量是最为敏感的化学成分。蓟县一带K2O含量为~,德胜口一带为[3],而相距4km的泰陵一带则为。任富根认为蓟县的大红峪组中包含四期火山活动产物,主要为熔岩、火山角砾岩和凝灰岩,均以富钾低钠为特征[6]。据白志民等(1999)[15]研究,平谷一带是燕山地区大红峪组火山岩最集中的地方,富钾火山岩与石英砂岩、白云岩等互层,厚度可达400m,与其中K2O含量比较,泰陵的粉砂凝灰页岩的含量也比一般的火山岩高(表2)。

表2 北京十三陵和蓟县大红峪组火山岩化学成分(wB/%)对比表

稀土元素分析

关于大红峪组事件沉积岩的稀土元素特征,和政军等(1999)已有专文讨论[19],本文仅就十三陵泰陵一带大红峪组的三层岩石做了分析(表3)。

表3 泰陵剖面大红峪组三层岩石的稀土元素分析数据(wB/10-6)

由表3和图4可以看出:火山成因的粉砂凝灰岩稀土总量最高(∑REE=×10-6),其次是角砾硅化岩(∑REE=×10-6)。虽然主要造岩成分SiO2与砂岩很接近,但是砂岩含稀土总量最少(∑REE=×10-6),进一步说明前二者是事件沉积,后者是正常沉积物;Eu/Eu*分别为和,也说明了前二者在成因上的紧密联系。从图4也可以看出,粉砂凝灰页岩和角砾硅化岩都具有明显的Eu亏损,而砂岩则不明显。

图4 泰陵大红峪组三层岩石的稀土元素球粒陨石标准化配分图

(1)角砾硅化岩;(2)粉砂凝灰页岩;(3)石英砂岩

岩石的γ能谱分析

应用多道γ能谱仪对粉砂凝灰页岩、角砾硅化岩和砂岩进行分析,所得数据(表4)显示:Th,Ra,K和U的含量在角砾硅化岩和粉砂凝灰页岩中相对高于砂岩,这也说明前两者是有成因联系的事件沉积岩,而后者是正常沉积环境之下形成的。

表4 泰陵剖面大红峪组三层岩石γ能谱分析数据

贵金属元素分析

贵金属元素分析数据见表5。由表5可以看出粉砂凝灰页岩中含贵金属元素相对较高,特别是187Os/186Os达到。据国外研究资料,这个比值愈是接近1愈是说明与地质事件有关[18]。我们根据地质研究的资料得出与之一致的结论。

表5 泰陵剖面大红峪组三层岩石的贵金属元素分析值(wB/10-9)

硅同位素(δ30Si)分析

泰陵一带大红峪组角砾硅化岩中δ30Si分析值为‰,这是火山热水硅化成因的标志[7],而杨庄组、雾迷山组和高于庄组中的硅化结核δ30Si分析值为‰,‰和‰,都大大高于大红峪组的角砾硅化岩。

杨庄组中所含的红色、绿色、黄色硅质结核是由陆源Si组成的,其中Fe3+、Fe2+也都是来自陆地,与该组地层间夹红色泥灰白云岩及砂质白云岩等近陆源沉积环境是一致的;雾迷山组的藻席状小叠层石(Pseudogymnosolen sp.)[11]是典型的潮间带标志,其硅化部分也是来自陆源Si;高于庄组的硅化核形石是由藻席叠层石破碎以后滚动形成,硅化部分也是陆源Si为主[7]。以上硅化物质都是正值较高,只有大红峪组δ30Si值为‰,反映受到火山Si的影响。

值得注意事件岩层中的岩石化学分析、稀土元素分析、γ能谱分析和贵金属元素分析的相互对比;特别是K2O、∑REE、226Ra、U、187Os/186Os、Pt和Ir的对比值。①K2O含量为10%~12%。在华北元古宙沉积岩中普遍较高是一个重要特征,甚至与周边地区的火山岩层大致一致,说明了大红峪期火山喷发物的同源性;②∑REE含量较高,尤其是∑LREE高出北美标准页岩(NASC)许多倍,作者认为华北元古宙富钾富稀土沉积岩是内蒙古白云鄂博巨型稀土矿源层在大陆增生成矿作用中的一个范例(宋天锐等,2005)[16];③226Ra异常在大红峪组角砾硅化岩中出现是地震事件引发的,由此可见Rn也会异常;④Th在角砾硅化岩中异常和Ra、Rn的异常应该是一致的,代表火山-地震中普遍出现的现象;⑤187Os/186Os在黑色凝灰粉砂岩中出现是事件信息反映之一;⑥Pt、Ir在黑色凝灰粉砂岩中相对偏高则可能是碎屑重矿物含量升高引起的。

4讨论

北京十三陵元古宙大红峪组包含有地质事件的沉积物,在泰陵一带出露的角砾硅化岩是受火山Si影响和地震波冲击等事件共同作用的产物,其上部覆盖的黑色粉砂凝灰页岩是火山喷出的晶屑经过海浪淘洗而沉积的,二者之上的含长石石英砂岩属于正常滨岸沉积物(图5)。

图5 北京十三陵元古宙大红峪组事件沉积模式图

1—白云岩;2—硅化岩;3—粉砂凝灰页岩;4—砂岩;5—角砾构造;6—胶缩构造;7—交错层构造;8—基底;9—火山灰;10—火山灰降落;11—火山喷发;12—Si质;13—地震波;14—海平面;15—火山Si进入;16—地震波传入

值得指出的是,由德胜口大红峪组的层凝灰岩至山顶一带正常的白云岩、砂岩互层再至泰陵一带的角砾硅化岩+粉砂凝灰页岩+石英砂岩,在相距不到4km的范围内竟产生如此剧烈的相变,说明火山活动伴随地震对浅海区域的影响是很不均匀的。

参考文献

[1]汪长庆,肖宗正,施福美等.北京十三陵地区的震旦亚界.见:中国地质科学院天津地质矿产研究所编.中国震旦亚界.天津:天津科学技术出版社,1980,332~340

[2]宋天锐,高健.北京十三陵前寒武系沉积岩.北京:地质出版社,1987,107~112,145~146

[3]杨慧宁,须湘官,王琳.北京十三陵地区长城系大红峪组中层凝灰岩的发现.岩石矿物学杂志,1988,7(3):211~214

[4]宋天锐.北京十三陵前寒武纪碳酸盐岩地层中的一套可能的地震-海啸序列.科学通报, 1988,8:609~611

[5]Song probable earthquake tsunami sequence in Precambrian carbonate strata of the Ming Tombs Tongbao(Chinese Science Bulletin),1988,33(15):1121~1124

[6]任富根,蓟县大红峪组火山-沉积岩系的基本特征.中国地质科学院天津地质矿产研究所所刊,1987,16:91~108

[7]Song Tianrui,Ding new probe of application ofs ilicon isotopicδ30Si in siliceous rocks to sedimentaryfacies Science (9):761~766

[8]和政军,宋天锐,丁孝忠等.燕山中元古代裂谷早期同沉积断裂活动及其对事件沉积的影响.古地理学报,2000,2(3):83~91

[9]赵澄林,李儒峰,周劲松.华北中新元古界油气地质与沉积学.北京:地质出版社,1997,81~114

[10]宋天锐,高健.北京十三陵地区上前寒武系沉积岩中发现16亿年的藻类综状体.科学通报, 1985,10: 769~771

[11]Song Tianrui,Gao of algal filaments from sedimentary rock in Upper Precamorian(1600 Myr BP)of the Ming Tombs District, Tongbao(Chinese Science Bulletin),1985,30(9):1227~1230

[12]宋天锐.沉积地层中的地震事件记录及其意义.见:北京大学地质系编.北京大学国际地质科学学术研讨会论文集.北京:地震出版社,1998,212~221

[13]宋天锐.薄片中砂岩“主要结构”系数的新公式,附砂岩结构成熟度的数学分类,地质论评, 35(1):79~83

[14]Song Tianrui,Textural maturity of arenaceous rocks derived by microscopic grain size analysis in thin section In: applacation of particle size University Press:163~173

[15]白志民,马鸿文,杨静等.北京平谷—天津蓟县一带钾质响岩岩石学特征及综合利用研究,地质论评,增刊,1999,45卷:541~551

[16]宋天锐,万渝生,陈振宇.关于华北元古宙富钾、富稀土沉积岩是白云鄂博大型稀土矿床矿源层的讨论,矿床地质,2005,24(5)541~552

[17]Luck, Allegre, study of molybdenites through the187Re/187Os and Planetary Science ~296

[18]Luck Allegre Re/187Os Systematic in meteorites and cosmichemical (10):130~132

[19]Luck, Allegre, isotopes in and Ptanetany Science Latters,1991,107:406~415

[1]段长强,孟庆芳,张泰,等.现代化学试剂手册第一分册通用试剂.北京:化学工业出版社,1986:253.

[2] Frost R L,Locos O B,Kristof J,Kloprogge J spectroscopic study of potassium and cesium acetateintercalated Spectroscopy,2001,26:33~44.

[3] RuizCruz M D,Franco Duro F data on the kaolinite-potassium acetate Minerals,1999,34:565~577.

[4] Gardolinski J E,Carrera L C M,Cantao M P,et polymer-kaolinite of materials science,2000,35(12):3113~3119.

[5]夏华,李学强,孟祥庆.高岭土/吡啶插层复合物的制备与表征.矿物学报,2003,23(3):216~220.

[6]王宝祥,李佳,赵晓鹏.高岭土/羧甲基淀粉插层复合微粒及其电流变性能.材料研究学报,2003,17(3):235~239.

[7]张生辉,夏华,杨薇,等.高岭石/苯甲酰胺插层复合物的制备与表征.硅酸盐学报,2004,32(5):631~635.

[8]张生辉,夏华,杨薇,等.高岭石/对硝基苯胺插层复合物的制备与表征.材料工程,2004,(3):24~27.

[9] Tunney J J,Detellier and characterization of two distinct ethylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.

[10] Tunney J J,Detellier Nanocomposite (ethyleneglycol)-Kaolinite ,1996,8(4):927~935.

[11] Gardolinski J E,Ramos L P,DeSouza G P,Wypych of benzamide into of Colloid and Interface Science,2000,221:284~290.

[12]任子平,鲁安怀,周平,方勤方.高岭土有机改性实验研究.岩石矿物学杂志,2001,20(4):485~489.

[13]丁述理,杨晓杰,刘钦甫.煤系高岭石有机夹层作用及在剥片中的应用.中国矿业,1997,6(5):17~21.

[14] Patakfalvi R,Oszko A,DeKany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.

[15] Frost R L,Kristof J,Paroz G N,Kloprogge J structure of dimethyl sulfoxide intercalated ,1998,102:8519~8532.

[16] Thompson J of solid state13C and29Si nuclear magnetic resonance spectra of kaolinite and Clay Minerals,1985,33(3):173~180.

[17] Franco F,Ruiz Cruz M X-ray diffraction,differential thermal analysis and thermogravimetry of the kaolinite-dimethyl sulfoxide intercalation and Clay Minerals,2002,50(1):47~55.

[18]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.

[19] Hayashi study of dynamics ande volution of guest molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.

[20] Michalkova A,Tunega D,Nagy L study of interactions of dickite and kaolinite with small organic of Molecular Structure(Theochem),2002,581:37~49.

[21]王林江,吴大清,袁鹏,等.高岭石-甲酰胺插层的Raman和DRIFT光谱.高等学校化学学报,2002,23(10):1948~1951.

[22]张生辉,王振中,沈承金,夏华.高岭石/乙酰胺插层复合物的制备及结构表征.矿物岩石,2007,27(2):7~11.

[23]陈祖熊,张建中.二维高岭土材料的制备与性质.华东理工大学学报,1995,21(1):54~57.

地质成因分析论文

各类工程的勘察基本要求 房屋建筑和构筑物 房屋建筑和构筑物(以下简称建筑物)的岩土工程勘察,应在搜集建筑物上部荷载、功能特点、结构类型、基础形式、埋置深度和变形限制等方面资料的基础上进行。其主要工作内容应符合下列规定: 1 查明场地和地基的稳定性、地层结构、持力层和下卧层的工程特性、土的应力历史和地下水条件以及不良地质作用等; 2 提供满足设计、施工所需的岩土参数,确定地基承载力,预测地基变形性状; 3 提出地基基础、基坑支护、工程降水和地基处理设计与施工方案的建议; 4 提出对建筑物有影响的不良地质作用的防治方案建议; 5 对于抗震设防烈度等于或大于6 度的场地,进行场地与地基的地震效应评价。 建筑物的岩土工程勘察宜分阶段进行,可行性研究勘察应符合选择场址方案的要求;初步勘察应符合初步设计的要求;详细勘察应符合施工图设计的要求;场地条件复杂或有特殊要求的工程,宜进行施工勘察。 场地较小且无特殊要求的工程可合并勘察阶段。当建筑物平面布置已经确定,且场地或其附近已有岩土工程资料时,可根据实际情况,直接进行详细勘察。 可行性研究勘察,应对拟建场地的稳定性和适宜性做出评价,并应符合下列要求: 1 搜集区域地质、地形地貌、地震、矿产、当地的工程地质、岩土工程和建筑经验等资料; 2 在充分搜集和分析已有资料的基础上,通过踏勘了解场地的地层、构造、岩性、不良地质作用和地下水等工程地质条件; 3 当拟建场地工程地质条件复杂,已有资料不能满足要求时,应根据具体情况进行工程地质测绘和必要的勘探工作; 4 当有两个或两个以上拟选场地时,应进行比选分析。 初步勘察应对场地内拟建建筑地段的稳定性做出评价,并进行下列主要工作: 1 搜集拟建工程的有关文件、工程地质和岩土工程资料以及工程场地范围的地形图; 2 初步查明地质构造、地层结构、岩土工程特性、地下水埋藏条件; 3 查明场地不良地质作用的成因、分布、规模、发展趋势,并对场地的稳定性做出评价; 4 对抗震设防烈度等于或大于6 度的场地,应对场地和地基的地震效应做出初步评价; 5 季节性冻土地区,应调查场地土的标准冻结深度; 6 初步判定水和土对建筑材料的腐蚀性; 7 高层建筑初步勘察时,应对可能采取的地基基础类型、基坑开挖与支护、工程降水方案进行初步分析评价。 初步勘察的勘探工作应符合下列要求: 1 勘探线应垂直地貌单元、地质构造和地层界线布置; 2 每个地貌单元均应布置勘探点,在地貌单元交接部位和地层变化较大的地段,勘探点应予加密; 3 在地形平坦地区,可按网格布置勘探点; 4 对岩质地基,勘探线和勘探点的布置,勘探孔的深度,应根据地质构造、岩体特性、风化情况等,按地方标准或当地经验确定;对土质地基,应符合本节第条~第 条的规定。 初步勘察勘探线、勘探点间距可按表 确定,局部异常地段应予加密。 初步勘察勘探孔的深度可按表 确定。 当遇下列情形之一时,应适当增减勘探孔深度: 1 当勘探孔的地面标高与预计整平地面标高相差较大时,应按其差值调整勘探孔深度; 2 在预定深度内遇基岩时,除控制性勘探孔仍应钻入基岩适当深度外,其他勘探孔达到确认的基岩后即可终止钻进; 3 在预定深度内有厚度较大,且分布均匀的坚实土层(如碎石土、密实砂、老沉积土等)时,除控制性勘探孔应达到规定深度外,一般性勘探孔的深度可适当减小; 4 当预定深度内有软弱土层时,勘探孔深度应适当增加,部分控制性勘探孔应穿透软弱土层或达到预计控制深度; 5 对重型工业建筑应根据结构特点和荷载条件适当增加勘探孔深度。 初步勘察采取土试样和进行原位测试应符合下列要求: 1 采取土试样和进行原位测试的勘探点应结合地貌单元、地层结构和土的工程性质布置,其数量可占勘探点总数的1/4~1/2; 2 采取土试样的数量和孔内原位测试的竖向间距,应按地层特点和土的均匀程度确定;每层土均应采取土试样或进行原位测试,其数量不宜少于6 个。 初步勘察应进行下列水文地质工作: 1 调查含水层的埋藏条件,地下水类型、补给排泄条件,各层地下水位,调查其变化幅度,必要时应设置长期观测孔,监测水位变化; 2 当需绘制地下水等水位线图时,应根据地下水的埋藏条件和层位,统一量测地下水位; 3 当地下水可能浸湿基础时,应采取水试样进行腐蚀性评价。 详细勘察应按单体建筑物或建筑群提出详细的岩土工程资料和设计、施工所需的岩土参数;对建筑地基做出岩土工程评价,并对地基类型、基础形式、地基处理、基坑支护、工程降水和不良地质作用的防治等提出建议。主要应进行下列工作: 1 搜集附有坐标和地形的建筑总平面图,场区的地面整平标高,建筑物的性质、规模、荷载、结构特点、基础形式、埋置深度、地基允许变形等资料; 2 查明不良地质作用的类型、成因、分布范围、发展趋势和危害程度,提出整治方案的建议; 3 查明建筑范围内岩土层的类型、深度、分布、工程特性、分析和评价地基的稳定性、均匀性和承载力; 4 对需进行沉降计算的建筑物,提供地基变形计算参数,预测建筑物的变形特征; 5 查明埋藏的河道、沟浜、墓穴、防空洞、孤石等对工程不利的埋藏物; 6 查明地下水的埋藏条件,提供地下水位及其变化幅度; 7 在季节性冻土地区,提供场地土的标准冻结深度; 8 判定水和土对建筑材料的腐蚀性。 对抗震设防烈度等于或大于6 度的场地,勘察工作应按本规范第 节执行;当建筑物采用桩基础时,应按本规范第 节执行;当需进行基坑开挖、支护和降水设计时,应按本规范第 节执行。 工程需要时,详细勘察应论证地基土和地下水在建筑施工和使用期间可能产生的变化及其对工程和环境的影响,提出防治方案、防水设计水位和抗浮设计水位的建议。 详细勘察勘探点布置和勘探孔深度,应根据建筑物特性和岩土工程条件确定。对岩质地基,应根据地质构造、岩体特性、风化情况等,结合建筑物对地基的要求,按地方标准或当地经验确定;对土质地基,应符合本节第 条~第条的规定。 详细勘察勘探点的间距可按表 确定。 详细勘察的勘探点布置,应符合下列规定: 1 勘探点宜按建筑物周边线和角点布置,对无特殊要求的其他建筑物可按建筑物或建筑群的范围布置; 2 同一建筑范围内的主要受力层或有影响的下卧层起伏较大时,应加密勘探点,查明其变化; 3 重大设备基础应单独布置勘探点,重大的动力机器基础和高耸构筑物,勘探点不宜少于3 个; 4 勘探手段宜采用钻探与触探相配合,在复杂地质条件、湿陷性土、膨胀岩土、风化岩和残积土地区、宜布置适量探井。 详细勘察的单栋高层建筑勘探点的布置,应满足对地基均匀性评价的要求,且不应少于4 个;对密集的高层建筑群,勘探点可适当减少,但每栋建筑物至少应有1 个控制性勘探点。 详细勘察的勘探深度自基础底面算起,应符合下列规定: 1 勘探孔深度应能控制地基主要受力层,当基础底面宽度不大于5m 时,勘探孔的深度对条形基础不应小于基础底面宽度的3 倍,对单独柱基不应小于 倍,且不应小于5m;2 对高层建筑和需作变形计算的地基,控制性勘探孔的深度应超过地基变形计算深度;高层建筑的一般性勘探孔应达到基底下~ 倍的基础宽度,并深入稳定分布的地层; 3 对仅有地下室的建筑或高层建筑的裙房,当不能满足抗浮设计要求,需设置抗浮桩或锚杆时,勘探孔深度应满足抗拔承载力评价的要求; 4 当有大面积地面堆载或软弱下卧层时,应适当加深控制性勘探孔的深度; 5 在上述规定深度内当遇基岩或厚层碎石土等稳定地层时,勘探孔深度应根据情况进行调整。 详细勘察的勘探孔深度,除应符合 条的要求外,尚应符合下列规定: 1 地基变形计算深度,对中、低压缩性土可取附加压力等于上覆土层有效自重压力20%的深度;对于高压缩性土层可取附加压力等于上覆土层有效自重压力10%的深度; 2 建筑总平面内的裙房或仅有地下室部分(或当基底附加压力p0≤0 时)的控制性勘探孔的深度可适当减小,但应深入稳定分布地层,且根据荷载和土质条件不宜少于基底下~ 倍基础宽度; 3 当需进行地基整体稳定性验算时,控制性勘探孔深度应根据具体条件满足验算要求; 4 当需确定场地抗震类别而邻近无可靠的覆盖层厚度资料时,应布置波速测试孔,其深度应满足确定覆盖层厚度的要求; 5 大型设备基础勘探孔深度不宜小于基础底面宽度的2 倍; 6 当需进行地基处理时,勘探孔的深度应满足地基处理设计与施工要求;当采用桩基时,勘探孔的深度应满足本规范第 节的要求。 详细勘察采取土试样和进行原位测试应符合下列要求: 1 采取土试样和进行原位测试的勘探点数量,应根据地层结构、地基土的均匀性和设计要求确定,对地基基础设计等级为甲级的建筑物每栋不应少于3 个; 2 每个场地每一主要土层的原状土试样或原位测试数据不应少于6 件(组); 3 在地基主要受力层内,对厚度大于 的夹层或透镜体,应采取土试样或进行原位测试; 4 当土层性质不均匀时,应增加取土数量或原位测试工作量。 基坑或基槽开挖后,岩土条件与勘察资料不符或发现必须查明的异常情况时,应进行施工勘察;在工程施工或使用期间,当地基土、边坡体、地下水等发生未曾估计到的变化时,应进行监测,并对工程和环境的影响进行分析评价。 室内土工试验应符合本规范第11 章的规定,为基坑工程设计进行的土的抗剪强度试验,应满足本规范第 条的规定。 地基变形计算应按现行国家标准《建筑地基基础设计规范》(GB50007)或其他有关标准的规定执行。 地基承载力应结合地区经验按有关标准综合确定。有不良地质作用的场地,建在坡上或坡顶的建筑物,以及基础侧旁开挖的建筑物,应评价其稳定性。

攀枝花地区位于康滇南北向构造带中段西侧,出露的地层较全,以元古界、古生界和中生界最发育,新生界分布少而零星。总厚度为36010— 47870米,出露地层约占全市面积的一半,其中以巨厚的中生界地层占主要地位。元古界的前震旦系变质岩主要分布在盐边新坪、渔门、桔子坪一带及米易北部的普威和市区中部的仁和;震旦系为砂页岩、白云岩沉积,分布在雅砻江与鱼敢鱼河汇合口附近及盐边西部和市区西北的老鹰岩至竹林坡一线。古生界的滨海—浅海相沉积,地层仅在盐边西北部的择木龙至大坪子成片出露,只有上二叠系的火山喷发岩——峨眉山玄武岩大片露出于米易东部的龙肘山、雅砻江的二滩一带及盐边北部,市区大黑山至格里坪也有分布。中生界的沉积岩主要是三叠系砂、砾岩夹煤和侏罗系的砂岩夹泥岩等陆相沉积地层,分布范围相当广,包括米易马颈子至盐边红坭、仁和区务本、宝鼎山和保安营等大片地区,其中上三叠系是主要产煤地层。新生界的沉积以第三系昔格达组粉砂质泥页岩为主,分布在市区东部红格一带及安宁河、金沙江河谷阶地上;第四系现代堆积仅零星分布剥蚀面、河流阶地上和河谷之中,为河流、湖泊相沉积,面积较昔格达组为小。

攀枝花位于攀西大裂谷的中南段,地质构造复杂,地势起伏,高差悬殊,属于南亚热带为基带的立体气候,水系发达,干支流纵横,以钒钛磁铁矿为首位的多种矿产资源高度富集,水能资源巨大,生物资源种类繁多,旅游资源大有潜力,被誉为“富甲天下的聚宝盆”。下面介绍一下攀枝花的地质—— 攀枝花地质构造复杂,岩体破碎,地质史上岩浆活动频繁,新构造活跃,滑坡、泥石流时有发生。一、地层攀枝花地区位于康滇南北向构造带中段西侧,出露的地层较全,以元古界、古生界和中生界最发育,新生界分布少而零星。总厚度为36010—47870米,出露地层约占全市面积的一半,其中以巨厚的中生界地层占主要地位。元古界的前震旦系变质岩主要分布在盐边新坪、渔门、桔子坪一带及米易北部的普威和市区中部的仁和;震旦系为砂页岩、白云岩沉积,分布在雅砻江与鱼敢鱼河汇合口附近及盐边西部和市区西北的老鹰岩至竹林坡一线。古生界的滨海—浅海相沉积,地层仅在盐边西北部的择木龙至大坪子成片出露,只有上二叠系的火山喷发岩——峨眉山玄武岩大片露出于米易东部的龙肘山、雅砻江的二滩一带及盐边北部,市区大黑山至格里坪也有分布。中生界的沉积岩主要是三叠系砂、砾岩夹煤和侏罗系的砂岩夹泥岩等陆相沉积地层,分布范围相当广,包括米易马颈子至盐边红坭、仁和区务本、宝鼎山和保安营等大片地区,其中上三叠系是主要产煤地层。新生界的沉积以第三系昔格达组粉砂质泥页岩为主,分布在市区东部红格一带及安宁河、金沙江河谷阶地上;第四系现代堆积仅零星分布剥蚀面、河流阶地上和河谷之中,为河流、湖泊相沉积,面积较昔格达组为小。二、岩浆岩(火成岩)攀枝花市辖区内岩浆岩十分发育,分布面积约占全市面积一半。岩浆活动种类复杂,形式多样,分布不均并具多期性。岩体出露严格受南北向为主的构造控制。各类岩体集中分布在金河一箐河断裂东南的南北向构造带内,形成南北向延展的“杂岩带”;金河一箐河断裂西北除玄武岩有大片分布外,其它岩类出露很少。晋宁期岩浆岩以酸碱性岩浆的喷发和侵入为主,出露面积最大,主要分布在南北向断裂带附近。包括同德、大田、岔河、水陆乡、南坝和大火山等闪长岩、石英闪长岩岩体及冷水箐、麻陇、干巴塘等基性超基性岩体。华力西期岩浆岩主要分布在元谋一昔格达南北向断裂带和攀枝花断裂带之间,即从米易的白马一直延伸到攀枝花、芭蕉岩及红格、新九一带,形成北东走向的岩浆岩带。本期的岩浆活动以玄武岩的喷发为其特征,其次是超基性、基性和碱性岩浆入侵,形成断续出露橄榄岩、辉岩、辉长岩、正长岩等岩体。这个时期的岩浆岩是渡口市多金属共生矿的主要成矿岩体,著名的攀西地区钒钛磁铁矿即产于基性、超基性岩岩体中,在正长岩岩体中,也发现一些稀有元素的矿化。自晋宁期到燕山期,全市辖区均有花岗岩岩浆的入侵,形成各个不同时期的花岗岩岩体,主要分布在盐边的百枝,仁和区的攀枝花、巴斯箐、红格及米易的白石岩、撒莲等地。三、断裂构造青藏和川滇构造及其活动,对市区的构造成生及活动均有影响。川滇南北向断裂构造带的中段经市区东侧,是影响市区构造和地震的主要断裂带。市区断裂构造主要有:昔格达断裂 该断裂指川滇南北断裂带中的磨盘山一绿汁江断裂中段,于九道沟(新九)以北分为东西两支,向南经昔格达、红格至拉鲊以南,区内长150公里,是市区规模最大、地震活动最强的断裂。总体走向呈南北,倾向时东时西,倾角一般60—70o,局部地段达85o,为压性断裂。该断裂切割了前震旦纪至中生代地层,局部地段在昔格达组和全新世地层中有迹象。破碎带宽度一般在1—5米,局部达30—80米。李明久断裂带 北起雅砻江东岸的荒田附近,向南经溜巴湾、李明久、了垭坪丫口、黑古田、小得石、柳树湾、簸箕鲊至安宁鲊附近消失,长70公里,总体走向近南北。断层面主要倾向东,局部西倾,倾角53—85o。桐子林断裂 位于李明久断裂东侧,主要展布于桐子林之南,经老台子梁岗、大平地、棉花地、石门坟至叭喇河桥一带,长20公里,总体走向呈北北西向,与李明久断裂南段近于平行展布,断层面倾向东,倾角50—60o。树河一普威断裂 北西端始于树河,向南东过雅砻江、火烧桥、张家闸、林海桥头、普威盆地至兰坝附近消失,全长46公里,构成共和断块北东界。断层总体走向呈北30—35o西,倾向北东,倾角60o左右。局部地段可达80o。破碎带宽—1米,影响带宽7—8米,具有反扭特征。金河一箐河断裂 北起里庄,向南经金河后,逐渐向西偏转,经盐边县的箐河进入云南省,与永胜一宾川断裂相接。该断裂在市区一段的走向为北40—45o东,倾向北西,倾角60—70o,长85公里,破碎带宽50—70米,最宽达250米,属压扭性。西番田断裂 该断裂在白岩脚地带与金河一箐河断裂相交,向南过鱼敢鱼河,向东偏转至务本,为盐边断块与共和断块的分界断裂。走向南北,倾向西,倾角60—73o,长60公里,破碎带12—30米,浅层断距2公里,深部为500—600米,属压扭性(反扭)。纳拉箐断裂 南起云南阿拉地,向北东经纳拉箐,于二台坡与西番田断裂相交,全长80公里。走向北15—35o东,倾向南东,倾角40—80o。破碎带宽几米至27米,最大达200米。倮果断裂 走向北35—40o东,倾向北西,倾角60—80o,长26公里,破碎带宽数米至10米,属压扭性(反扭)。惠明一红石岩断层带 位于纳拉箐断裂西侧,北起盐边的永兴,南经惠明、格里坪至红石岩附近,由若干南北向的基本上向东倾斜的断层组成,总体为北北西向,断续延长50公里左右,属压扭性,反时针扭动。除上述断裂外,还有麻陇断裂、大石头断裂和头滩断裂。

攀枝花位于攀西大裂谷的中南段,地质构造复杂,地势起伏,高差悬殊,属于南亚热带为基带的立体气候,水系发达,干支流纵横,以钒钛磁铁矿为首位的多种矿产资源高度富集,水能资源巨大,生物资源种类繁多,旅游资源大有潜力,被誉为“富甲天下的聚宝盆”。下面介绍一下攀枝花的地貌——攀枝花市属于侵蚀、剥蚀的中山丘陵、山原峡谷地貌。地史上,燕山运动后,该地区相对稳定,形成了广阔的剥夷面。自喜马拉雅山运动开始,原来统一的剥夷面遭到破坏。一方面沿着古老的断裂,有的地方升为山地,有的地方下陷为断陷盆地;另一方面河流下切作用加剧,形成深山峡谷,使地貌具有山高谷深、盆地交错分布的特点。地势由西北一东南倾斜,西北高,东南低,地形起伏,高差悬殊,山地地貌为主。山脉走向近于南北,是大雪山的南延部分。东部为小相岭—螺髻山—鲁南山系,中部为牦牛山一龙肘山系,西部为锦屏山—柏林山系。最高点位于盐边县柏林山穿洞子,海拔米,最低点位于仁和区平地乡师庄,海拔937米,相对高差达3200米以上,一般相对高差1500—2000米。地形被金沙江、雅砻江分为三大片区和两个峡谷。金沙江以北,雅砻江以西为西北片。其地形主要可分为四大支脉和两个河谷,即盐边县西北部的柏林山向南扩展的四大支脉:东支有青山、女儿山;中支有光头山、龙头山、大火山;中西支有五爪山、关刀山;西支有铜瓦山、尖山。山势横亘峻险,相对海拔在937—米之间。两谷:即金沙江支流巴关河河谷和雅砻江支流三源河河谷。巴关河河谷由北向南发展,在民政乡的谷底标高是1120米;三源河河谷由西向东发展,在健康镇的谷底标高是1083米。金沙江以北,雅砻江以东为东北片。其地形主要为两山两河谷。两山是米易县西部的白坡山,主峰米;米易县东部与会理接界的龙肘山,主峰光头坡海拔米。两河谷是:雅砻江支流安宁河河谷,在米易县攀莲镇的谷底,海拔为1118米;金沙江支流崖羊河河谷,在红格乡的谷底,海拔为1250米。整个金沙江以南为江南片。地形分为两山夹一谷。两山为西列山,由先锋营、乱板凳梁子、宝鼎山等组成,最高峰为乱板凳梁子,海拔米;东列山由宝兴山、马桑岩、保安营等山组成,最高峰宝兴山,海拔米。两列山之间为大河河谷,在仁和镇的谷底,海拔为1147米。介于三大片之间的两谷,即金沙江峡谷和雅砻江峡谷。金沙江峡谷的炳草岗江边,海拔为976米;雅砻江峡谷的小得石江边,海拔为1030米。攀枝花地貌成因类型,主要有侵蚀堆积地貌、剥蚀构造地貌、溶蚀构造地貌。

一、侵蚀堆积地貌分为河谷阶地、山间盆地、蚀余台地。河谷阶地,主要分布在安宁河、金沙江、大河、鱼敢鱼河等河谷地带。市内安宁河堆积地带一般宽1—3公里,主要由冰水堆积扇和洪积扇所占据,在湾丘一丙谷间河谷较开阔。发育有I一Ⅳ级阶地:一般I级阶地高出河面1—米,阶面平坦;I级阶地高出河面5—12米,零星分布;Ⅲ一Ⅳ级阶地与冰水扇、洪积扇、坡积裙相接,高出河面50—100米。金沙江河谷有I—V级阶地:I级阶地高出江水面16—20米,沿江断续分布;I级阶地高出江水面48—112米,阶面完整平坦;Ⅲ级阶地高出江水面93—140米,阶面常被河谷切割;Ⅳ级阶地高出江水面200—240米,阶面呈浅丘状起伏;V级阶地高出江水面340—350米,零星分散于两岸浅丘包上。其他河谷仅I—Ⅱ阶地较为发育。山间盆地为昔格达盆地,分布在昔格达至红格等地,盆地底部海拔高程1364米左右,呈南北向展布,长约24公里,宽约—6公里,面积约75平方公里。盆地内广泛出露第三系昔格达组成地层。经剥蚀侵蚀作用,显出浅丘地貌。蚀余台地为第三系昔格达组半成岩地层(主要为粉砂岩、粉砂质泥页岩),由于地壳上升、河谷下切、加上剥蚀作用所形成。零星分布于金沙江两岸斜坡及山间盆地,在金沙江与大河之间、桐子林—箐门口一带分布较集中。这些台地也呈浅丘状,顶平或浑圆而围陡,冲沟发育。二、剥蚀构造地貌分为:褶皱中山、褶断高山、褶断中山、断块中山。褶皱中山,主要分布在雅砻江、金沙江以西的碎屑沉积岩区,由近南北向的向斜山、背斜山、单面山等构成,一般山脊海拔大于2000米,切割深度大于1000米,山脊呈尖棱状、浑圆状,山体多单面山地貌。褶断高山,分布在柏林山、青山一带,山脊海拔大于3500米,切割深度大于1000米,由单面山构成,南东坡陡,呈绝壁,北西坡缓,有较明显的山原面。褶断中山,主要分布在白坡山一带,由一系列近南北向的断块单面山构成,海拔标高1000—3500米,山脊海拔大于2000米,切割深度大于1000米,多为高中山,山顶尖峭,丛林密布。断块中山,主要分布在安宁河西侧盐边、仁和一带,由岩浆岩及变质岩构成,山脊海拔大于2000米,切割深度大于1000米,多为高中山,只有金沙江与大河之间山脊海拔小于2000米,切割深度500—1000米,为中山。三、溶蚀构造地貌分为溶蚀构造高山和溶蚀构造中山。溶蚀构造高山分布在柏林山区,山脊海拔3500米以上,切割深度大于1000米,以峰丛—洼地为主,具有一级夷平面(山原面)。溶蚀构造中山,分布在金沙江以北、雅砻江以西的大片灰岩、大理岩区及市区南端金沙江西侧大理岩区。山脊标高一般大于2000米,切割深度大于1000米,多为高中山。盐边地区的溶蚀构造地貌主要有台丘—洼地、峰丛—洼地或漏斗、峰丛一峡谷3种形态。其他地区多为溶沟、溶槽、石芽、漏斗、溶洞、溶蚀洼地等形态。

攀枝花市西跨横断山脉,东临大凉山山脉,北接大雪山,南抵金沙江。地势西北高,东南低。攀枝花市东部为小相岭-螺髻山-鲁南山系,中部为牦牛山-龙肘山系,西部为锦屏山-柏林山系,山脉走向近于南北。境内最高点为西北部盐边县境内的百灵山穿洞子,海拔米;最低点是东南部仁和区平地镇的师庄,海拔937米。城市区海拔在1000~1200米之间, 主要农业区海拔在1000~1800米之间。金沙江、雅砻江、安宁河、大河、三源河及其支流深嵌在山地之间,形成雄伟的川西南峡谷区。攀枝花市地貌类型复杂多样,可分为平坝、台地、高丘陵、低中山、中山和山原6类,以低中山和中山为主,占全市幅员面积的。

浅谈土木工程地质野外实习 工程地质学是地质学的一个分支,是研究与工程建设有关的地质问题的学科。它的主要任务是:勘察和评价工程建筑场地的地质环境和工程地质条件;分析和预测工程建设活动与自然地质环境的相互作用和相互影响;选择最佳的场地位置;提出克服不良地质作用的工程措施;为工程建设的规划、设计、施工和运营提供可靠的地质依据。因此,工程地质学是每一个土木工程人员所应掌握的课程。 在工程地质学教学过程中,主要学习了基础地质和工程地质两部分内容。基础地质包括岩石和土的成因类型、地质特征及其工程性质;地质构造基本类型及特征、地史及地质图的基本知识;水的基本类型和特征等。基础地质是解决好工程地质问题必不可少的基本理论和知识。工程地质包括常见的各种地质灾害;地下洞室常见的工程地质问题;边坡工程常见的工程地质问题;地基工程常见的工程质问题等。这些知识要彻底掌握,必须作好野外实习工作。 在教学过程中学习得到的知识,如果不能运用于实践,这无疑于纸上谈兵。而要将课本知识转化为实践知识的最重要的手段就是野外地质实习。在课本上学习的知识很多是概念化的,或者说是标准化的东西。比如断层,在课本上是理想化的模型,断层面是一个平面,上下盘的移动方向在图上有标识,岩性差别也很明显,因此在课本上很容易识别。然而在野外,断层规模相差很大。小的断层在手标本上可以识别,而大的断层延伸数百公里甚至上千公里。断层是一种重要的地质构造,对工程建筑的稳定性起着重要作用。地震与活动性断层有关,隧道中大多数坍方、涌水均与断层有关。野外实际的断层不是课本上的模型,如何识别规模较大的断层呢?这就要野外实践知识。首先从地貌上识别,断层通过地区通常形成一些特殊的地貌现象,如断层崖、断层三角面、断层湖、断层泉等。其次岩层分布情况,往往断层会造成部分地层的重复或缺失现象。第三可观察断层伴生现象,如擦痕、阶步、摩擦镜面、牵引现象等。再比如说岩石,室内实习时见到的手标本均是比较标准的样本,而野外的岩石千差万别,形态各异。 虽然在课本上也能学到这些,但必须通过野外现场观察,亲手触摸、亲身体会才能记忆深刻,也就能够举一反三,遇到类似情况知道是什么,没有现场的体会根本就不知道野外的地质现象是什么样子,更不用说到野外进行识别。通过野外实习,不但巩固了课本上所学的知识,还能学到很多野外实践知识,这将为以后参加工作打下扎实的基础。

论文参考文献分页符灰色

在参考文献后加分页符的步骤如下:

1、点击“插入”,在下面的下拉菜单中点击“引用”→“脚注和尾注”,出现对话框。

2、在对话框中,位置下面选择尾注,然后在后面的下拉菜单中选择“节的结尾”。在最下面应用于的下拉菜单中选择应用于“整篇文档”,点击应用。

3、然后点击“文件”→“页面设置”。

4、进入对话框,在对话框上面选择“版式”,在“取消尾注”打勾√,在下面应用于选择“整篇文档”,点击确定。

5、然后再次点击“文件”→“页面设置”。

6、进入对话框,在对话框上面选择“版式”,在“取消尾注”前面取消勾√,在下面应用于选择“本节”,点击确定。

7、把光标至于“参考文献”之后,然后点击“插入”→“分隔符”。

8、在弹出的对话框中选择分页符类型下面的下一页,点击确定。

这样就完成了在参考文献后面插入分页符的操作。

我也遇到这样的问题,不插入新的分页页眉就没法设置呢,你是用尾注方式插入的参考文献吧,哎,用尾注就是默认你的参考文献是在文章的末尾,末尾后面当然不可能还有新的分页了。网上好多解决方法,我一个个试了,都没用。我现在知道的唯一的办法就是把参考文献全部换成手动标注的

学姐你是华理的么?

WORD20071、将光标定位在正文前1页末尾处,点击“页面布局——(页面设置)分隔符——(分节符)下一页”2、双击正文的页脚处,进入页眉和页脚的编辑状态,点击工具栏中的“链接到前一条页眉”按钮,使其使其退出高亮状态。3、点击“插入——页码——设置页码格式”,选择“起始页码”,并将其设置为“1”,然后点击“插入——页码——页面底端——普通数字2”即可。

食用菌成分分析论文参考文献

食用菌栽培技术的不断发展,使得食用菌不仅成为了富含人类生活所需的各种蛋白质,还能够广泛用于医药等领域。下面是由我整理的食用菌栽培技术论文,希望能对大家有所帮助。食用菌栽培技术论文篇一:《食用菌(平菇)的温室栽培技术》 摘要:食用菌的生长发育是由其生长习性和所处环境两种因素共同影响的,这两种因素共同作用影响着食用菌的产量和质量。随着国民经济的迅速发展,人们的物质生活极大丰富,进而导致人们的消费需求大幅度增加,从而对于食物的要求也从原来追求的吃饱转向吃好,大都讲究营养均衡。食用菌味道鲜美,营养价值高,越来越得到人们的青睐。生产食用菌的厂商为了获得更多的经济效益,也为了满足人们日益增长的多样化需求,由此开始采用温室栽培技术培育食用菌。本文以平菇为代表,从平菇的基本情况、鄂尔多斯达拉特旗王爱召镇地区的气候、地理位置条件出发,对食用菌温室栽培的技术要求和益处进行了综合论述。 1 平菇的基本情况 类型 平菇可以分为三种类型伞菌目、口蘑科、侧耳属。 品种类型多 除了平菇之外,还可以栽种许多侧耳属科目的菌类,例如凤尾菇、红平菇等等。 营养丰富 平菇营养丰富,味道鲜美。研究表明,平菇中含有多种微量元素和丰富的维生素,食用后可以给人补充丰富的营养,有极高的营养价值和食用价值。 药用价值高 平菇具有较高的药用价值,例如平菇可以抑制人体内癌细胞的产生和发展;降低血液中血脂、胆固醇等物质的浓度;促进人体肠胃蠕动,从而帮助消化;可以起到改善人体生理机能、促进新陈代谢等作用。 2 内蒙古鄂尔多斯达拉特旗王爱召镇地区的概述 地理位置 内蒙古鄂尔多斯达拉特旗王爱召镇地区位于鄂尔多斯高原北边、黄河中游地区的南岸部分,是“金三角”经济中心地带的中心处;并且当地所跨地形区域类型复杂,由此导致海拔相对高度差较大,进而使得温差较大,还有就是内蒙古鄂尔多斯达拉特旗王爱召镇地区经济发达,综合下来可以很好地满足食用菌温室培养所需的温度、水源、交通、经济等方面的因素,非常有利于食用菌的买卖流转。 气候条件 内蒙古鄂尔多斯达拉特旗王爱召镇地区是典型的温带大陆性气候,具有冬冷夏热,昼夜温差大,全年干燥少雨,降水主要集中在夏季,日照时间长等气候特点。特别是在冬季时节,昼夜温差大,更有利于子实体的分裂分化,促进食用菌的生长发育。 人口因素 内蒙古鄂尔多斯达拉特旗王爱召镇地区土壤资源丰富,灌溉便利,是我国有名的粮食产地和农业开发区。而且是经济发达的中心地带,人口聚集,人口数目众多。人口众多,对食用菌的需求量较大。 3 食用菌温室栽培的选用标准 位置要求 在冬天,温室栽培是最有效的栽培方式,应将大棚位置选在比较冷的地方。在比较冷的地方可以实行管道、暖气或者人工供暖,应采用最适合的供暖方式,冷暖的交替,可以促进子实体的生长发育,实现低成本、高利润的栽培。且在冬季栽培出来的平菇等食用菌病虫危害少,产量高、质量好、营养价值高。 原料要求 生料栽培是平菇温室栽培的首选 方法 。搭配合适的比例,将营养料在适当的条件下加工进行平菇栽培。让平菇在高温的条件下快速生长。 管理 措施 平菇等食用菌应采用定位出菇法,且装袋时应该提前留出孔,为食用菌提供氧气供其生长。还有就是定位出菇法可以减少水分的蒸发、平菇质量受损等现象,这种方法的应用有效地提升了食用菌的质量。 4 食用菌温室栽培的技术要求 营养要求 平菇等食用菌生长发育需要吸收的营养包括:有机酸、酶类、无机盐、氮元素、碳元素和其他微量元素(磷、钾、钙等)。 温度要求 平菇等食用菌生长发育需要在适宜的温度范围内。在内蒙古鄂尔多斯达拉特旗王爱召镇地区昼夜温差大,可以促进平菇的子实体快速分化,但需注意温度要保持在平菇的承受阈限内。 水分和湿度要求 水是生命之源,对于菇类也是如此。平菇的生长对于水分和湿度的要求比较高,在栽培中,应该将大棚内的水分和湿度控制在合适的范围内。达拉特旗王爱召镇地区位于黄河中游的南部,水资源丰富,易于灌溉,对平菇的培育生长极为有利。 空气要求 平菇好氧。要保证空气中的氧气含量,氧气浓度应较高。应选择在通风条件良好的地方利于空气的流通转换,并定时地进行通风。如果空气中二氧化碳的含量过高,会抑制子实体的呼吸活动,从而影响其生长发育。 光照要求 适度的光照对于平菇的生长发育极为重要。强光会影响到平菇的生长发育,温室大棚里边应该将光线调到较暗的状态。因为强光会刺激到子实体的分裂生长。 管理要求 要致力于追求规范化、精细化的管理。在食用菌的生长发育阶段应对湿度、水分、光照强度等指标做好监控记录工作,将其严格控制在食用菌生长的最佳范围内,以此来确保食用菌的健康生长。 播种要求 将已经按比例调配好的培养料按照严格的标准铺好,且相互之间的宽度间隔应合理规划,最后应该覆盖上保鲜膜进行栽种。 采摘要求 食用菌成熟后的采摘工作也是一项技术活,应该严格按照采摘标准来进行。且应该对食用菌是否成熟进行正确的评判,当食用菌菇盖的颜色由深变浅,孢子处在尚未放射的状态时就是成熟了,此时是进行采摘的最佳时机。 5 食用菌温室栽培的益处 食用菌有较高的营养价值和药用价值,食用后会给人们的身体带来极大的好处。食用菌温室栽培可以满足较高的产量需求和质量要求,通过调节温室大棚内的光照、温度、湿度、水分等条件让其达到食用菌适宜生长的最佳范围,以此来促进食用菌的生长发育。这是一种通过人为调控影响食用菌生长因素的方式来促进其生长的办法。这种方法既促进了食用菌产量的增加,质量的提高,又给人们增加了收入,提升了人们的生活水平,促进了国民经济的发展。此外,温室栽培食用菌的方式也打破季节的限制,打破了人们对新鲜蔬菜需求的限制,让人们能够在一年四季都能吃到新鲜美味的食用菌,避免了自然因素的影响。 6 结论 食用菌的温室栽培技术有效地改善了自然因素对食用菌栽培的限制,利用温室大棚对食用菌生长发育的环境进行了改造,既满足了人们的食用要求,让人们吃上了高质量、高营养的食用菌;还满足了市场需求,使批量化生产成为可能,增加了人民的收入,带动了当地经济的飞速发展。由此可见,温室食用菌(平菇)的温室栽培技术是值得大家学习的、值得推广的。 食用菌栽培技术论文篇二:《果园间套种食用菌栽培技术》 摘要 总结 了果园间套种食用菌的栽培技术,主要包括木耳、金福菇、姬菇等,以供参考。 关键词 果园套种;木耳;金福菇;姬菇;栽培技术 果园内空气湿度大,光照强度低,富含氧气,正符合食用菌生长,食用菌生长所释放出大量的二氧化碳又能使果树加强光合作用,促进果树的生长,食用菌菌渣成为有机肥施进果园,有效改善果园土壤结构,在干旱季节食用菌管理过程中多余的水又可以使果树再利用,果园里建棚栽培食用菌,可以抑制果园杂草滋生,减少水土流失,提高土地利用率,促进生产发展,增加经济收入。近几年来,贵港市农业科学研究所一直从事果园食用菌间套种栽培技术方面的研究,探索出一种创新的农业 种植 模式,果菌结合,做到了树上长果,树下结菇,取得了较好的经济效益和社会效益。现将具体栽培技术总结如下。 1 食用菌栽培场地的选择与建棚 选择树龄较大、遮荫较好的果园建棚,一般用铁管拱成1个长30~40 m,宽~ m、高~ m的拱形棚,距离地面1 m高的周边(除门外)用60目的防虫网围住,棚顶用薄膜盖好(与防虫网相交接),然后盖上遮光率为90%的遮阳网[1-2]。 2 木耳栽培技术 木耳是一种木腐生型食用菌,其生长发育需要的主要营养为纤维素、半纤维素、木质素,还需要适量的蛋白质、维生素和无机盐。菌丝的最适宜温度为20~28 ℃,子实体生长的最适温度为15~25 ℃,按照贵港地区的气候,出菇季节安排在4―5月出菇,装袋提前50~60 d。 培养基配制 使用的培养基配方为玉米芯20%、桑枝30%、棉籽壳、麦皮5%、石灰2%、石膏1%、防霉剂。 原料处理 按配方所需的已粉碎的玉米芯、桑枝淋湿铺在已淋湿的棉籽壳上,放置1 d让多余的水流走,洒上所需的石灰、石膏,用拌料机将料充分搅拌均匀建堆。 装袋、灭菌与接种 料建堆3~4 d后可进行装袋。先调湿度,把料堆表面的干料淋湿,使料的含水量达料水比为∶(~),加上配方所需的防霉剂、麦皮,用拌料机把料搅拌均匀即可进行装袋,用聚乙烯塑料袋装袋,装袋时要使培养料松紧适宜,上下均匀一致,周围丰满无空隙,装料过实过紧容易使塑料袋破损,料过松菌丝生长纤细无力。一般1袋装湿料重~ kg,装好袋后用绳子扎紧袋口装进铁框,每框9袋。装袋完毕,立即装炉灭菌,灭菌采用常压灭菌,温度到达100 ℃时保压9 h。灭菌结束后,炉温下降至60~70 ℃时进行御炉,把菌包移入已清洁消毒好的接种培养室的培养架上摆好,待菌包温度降至30 ℃以下时进行接种,1个菌包用种为8~10 g,接种完毕,把培养室打扫干净[3-4]。 发菌管理 培养室的湿度为50%~70%即可,春季气温较低,气温低于20 ℃时要注意加温,使培养室的温度为20~25 ℃,温度高于30 ℃时注意通风换气,以利于菌丝生长。 出菇管理 菌包接种后45~60 d,菌包菌丝吃透料,部分菌包出现耳芽时就可以把菌包移入出菇棚出菇。菇包入棚前首先把菇棚周围的杂草清除干净,把树叶清扫干净烧掉,菇棚及周边杀虫杀螨1次,棚内再撒一些石灰粉后即可把菌包移入出菇棚摆包出菇。摆包时,1个棚留1条纵向的人行道以便喷水和采菇,菌包用绳子把袋口扎紧后摆放成行,行距一般为20~24 cm,菌包摆成行后用小刀在每一个菌包上割3~4个长10 cm、深~ cm的竖裂口,裂口一般距菌包顶部4 cm、距菌包底部5 cm。摆包完毕,向地面洒水以增加空气湿度。割包5~7 d后木耳陆续现蕾,此时期注意加强水分的管理工作,随着耳片的增多增大,逐渐加大喷水量和通风量,喷水量要根据天气变化而变化,晴天多喷,雨天少喷,注意菇体的干湿交替,有利于木耳的正常生长。 采收及转潮管理 当耳片充分展开、边缘起皱就可以采收了,采收的原则是摘大留小,不伤小耳,一般采2~3次把一潮的木耳全部采完。采完一潮后,清除菌包上的残留耳根,将耳床清理干净,杀虫杀螨1次,停水2~3 d,以利于菌丝的恢复,4~5 d第2潮木耳现蕾,又像第1潮一样管理。一般木耳可采3~4潮,生物学转化率可达88%~94%。 3 金福菇的栽培技术 金福菇菇体硕大,菌肉肥厚嫩白,营养丰富,味微甜而鲜,耐贮性好,适宜鲜销。菌丝生长温度15~38 ℃,最适温度为27~30 ℃,子实体形成温度范围为18~30 ℃,最适温度为20~28 ℃,金福菇对低温较敏感,昼夜温差大时对出菇不利。一般在4月上旬湿料、装袋、接种,7月上旬覆土,覆土后10~15 d现蕾出菇。 培养基配制 使用的培养基配方为玉米芯、棉籽壳55%、麦皮5%、石灰2%、石膏1%、防霉剂。 原料处理 方法与木耳的原料处理方法一样。 装袋、灭菌、接种 除了灭菌时间保压6 h不同外,其他的与木耳的装袋、接种方法一样。 发菌管理 在菌包的发菌过程中,气温较高时注意通风换气,及时清除感染杂菌的菌包。 出菇管理 菌包菌丝培养60~65 d后,菌丝吃透料就可以把菌包脱袋覆土,覆土的泥土最好选择塘泥土,它透气性好,富含有机质。覆土前先对塘泥进行调湿与消毒,把土粒敲成~ cm大小的颗粒,调成含水量为 20%~30%,边喷5%福尔马林溶液,建堆,用薄膜密封24 h后揭膜让福尔马林的气味挥发掉,2 d后即可以覆土。覆土前把菌包薄膜全部脱掉侧卧摆成畦,菌棒之间留1~2 cm的空隙,然后盖上3~4 cm厚的已消毒的泥土,把畦面弄平,覆土结束。覆土后可大量淋水,使土壤含水量达饱和状态。6~8 d后白色的菌丝爬出土面,12~14 d后菌丝扭结,保持空间含水量达80%~90%,加强通风换气,促进原基的形成。15~17 d形成菇蕾,菇蕾阶段在小气候中生长,一般不喷水,干燥时喷雾化水于空间使空气相对湿度达80%~90%,当菇体长到3 cm高时每天喷水1~2次,喷水时要掌握菇多菇大的地方多喷,菇小菇少的地方少喷或不喷[5-6]。 采收及转潮管理 从菇蕾形成到成熟采收一般需要5~7 d,当菌盖肥厚紧实、菌膜尚未破伞时采收,品质最好;采收过迟,成熟过度,品质下降;过小采收,会影响产量。采收时成丛拔起,把菇体分开,用小刀削去菇体上的泥土。一潮菇采收结束之后,清除料面的残留菌柄、菇脚和死亡的菇蕾,用泥土把外露菌包的畦面填平,停水2~3 d养菌,然后像第1潮一样管理,2周内会形成第2批原基。一般可采2~3潮,生物学转化率达50%~70%。 4 姬菇的栽培技术 姬菇的菌盖为贝壳状或扇状,侧生,嫩滑可口,是百姓餐桌上的佳品,耐储运,投资少,见效快,收益高,市场前景很好。菌丝的生长温度为6~28 ℃,最适温度为20~26 ℃,高于32 ℃菌丝生长不良;出菇温度为4~26 ℃,最适温度为6~20 ℃,夏季炎热的季节不出菇,低于4 ℃时不易形成原基[1]。根据贵港地区的气候与市场销售情况,一般安排9月中下旬至11月上旬做出菇袋,10月中下旬至翌年的3月收菇结束。 培养基配方 使用的培养基配方为棉籽壳、玉米芯、玉米粉5%、石灰3%、防霉剂。 原料处理 方法与木耳的原料处理方法相同。 装袋、灭菌、接种及发菌管理 料建堆2~3 d后可进行装袋。先调湿度,把料堆表面的干料淋湿,使料的含水量达料比水为∶(~),加上配方所需的防霉剂、玉米粉,用拌料机把料搅拌均匀即可进行装袋,用36 cm×13/23 cm的聚乙烯塑料袋装袋,装袋时要使培养料松紧适宜,上下均匀一致,周围丰满无空隙。一般1袋装湿料重~ kg,装好袋后用绳子扎紧袋口装进铁框,每框9袋。装袋完毕,立即装炉灭菌,灭菌采用常压灭菌,温度到达100 ℃时保压6 h。灭菌结束后,炉温下降至60~70 ℃时进行御炉,把菌包移入已消毒的清洁的果园里的出菇棚里,待菌包温度降至30 ℃以下时进行接种,1个菌包用种为8~10 g,套上套环,用胶圈把报纸(已灭菌的)扎紧在套环外封口,然后把菌包单个直立成行摆放培养菌丝,菌包之间留1~2 cm的空隙以便散热。在此期间要注意如果气温过高,可以把菇棚的防虫网掀起以通风降温。 出菇管理 菌包菌丝培养30 d左右,菌丝吃透料,少数菌包现蕾,就可以叠包解报纸出菇,叠包时菇棚中间留1条便于淋水和采菇的人行道,在人行道两侧把菌包垒成4~6个菌包高单排或双排的墙式堆码,把菌包口的报纸解完后立即淋水进入第1潮的出菇管理工作,每天喷水2次,3~4 d现蕾,菇棚的空气湿度保持85%~95%,喷水的次数与多少应根据天气情况、出菇数量和菇体大小而定,宜喷雾状水,子实体珊瑚期不宜直接向菇体喷水[2]。 采收及转潮管理 当一丛菇中大部分子实体菌盖直径达2~3 cm、菌柄长度4~5 cm时,及时采收,用手握住整丛菇的基部,拔下整丛菇体,小心放入框内,避免损伤,然后在距菌盖3~4 cm处剪去菌柄基部,将连接的菇体分为单个,去掉小菇,分级真空包装,每袋 kg。采完一潮后,清理菇脚,停水2~3 d让菌丝休复,5~7 d即可转潮,又像第1潮一样管理。姬菇一般可采5~7潮,生物学转化率可达90%~110%。 5 参考文献 [1] 储利慧,陈生良,俞田华.姬菇栽培技术[J].上海农业科技,2007(6):92-93. [2] 陈建辉.珍稀食用菌真姬菇栽培技术[J].科技致富向导,2004(9):34-35. [3] 刘岩岩,张敏,宋莹.北方林下黑木耳栽培技术[J].现代农业科技,2014(2):130-131. [4] 张怀荣.黑木耳立森261菌株的生物特性及其栽培技术要点[J].食用菌,2014(1):23-24. [5] 沈渊,姚明军,沈新芬.大棚草莓-金福菇栽培技术初探[J].上海农业科技,2014(1):144-145. [6] 赖育斌,郭明,巫世芬,等.金福菇高产栽培技术[J].现代园艺,2013(15):41. 食用菌栽培技术论文篇三:《浅谈食用菌高产栽培技术》 摘要:食用菌不仅富含人类生活所需的各种蛋白质,还能够广泛用于医药等领域。目前我国的食用菌培植技术目前正处于飞速发展阶段,如何科学合理的进行食用菌的栽培成为了发展白色农业的重要课题。 关键词:食用菌;栽培技术 食用菌是人类食用的大型真菌,2000年统计中国的食用菌达938种,人工栽培的50余种,中国广泛栽培的食用菌有蘑菇、香菇、草菇、木耳、银耳、平菇、滑菇等7类,它们分别生长在不同的地区、不同的生态环境中。食用菌产业是一项集经济效益、生态效益和社会效益于一体的农村经济发展项目,食用菌又是一类有机、营养、保健的绿色食品。发展食用菌产业符合人们消费增长和农业可持续发展的需要,是农民快速致富的有效途径。因此,食用菌产业作为一种适应社会市场经济的产业日益发展壮大起来,人们对于食用菌的栽培技术研究也是越来越多,既要达到绿色自然、无公害的目标,又要做到保质保量的要求。 一、培养料的配置 食用菌培养料的配制要注意以下问题,首先将原料的干料按照比例要求进行充分的搅拌混合,需要添加的一些微量元素先要用水化开之后再拌入料中,接着进行反复的搅拌,将存在的团料尽量打散,确保料的干湿程度均匀;其次,影响菌丝生长的另一个重要因素就是培养料的含水量,一般培养料的含水量在55%左右就非常适合食用菌的生长,如果培养料的含水量偏低将会导致出菇产量大幅降低,如果培养料的含水量偏高,则会让处于下层的菌丝缺氧而不能正常吃料,导致原料浪费。因此必须要按照培养料原料的木屑情况灵活的调整含水量,在这个过程中,主要是注意木屑的粗细以及质地的软硬、空气湿度等具体情况对含水量进行配比;最后,培养料配置工作结束后,要尽快进行装袋,一般装袋时间不超过培养料配置 完成的7小时左右,装袋完成后要注意及时灭菌。灭菌时先把装袋完成的培养料放入锅中,用猛火快速加热到100℃,之后利用冷气阀降温到0℃,再重新将温度加热到100℃左右。进行灭菌作业时一定要确保猛火加热、温火保温,定时查看灭菌锅内的温度情况,防止漏气的现象,否则无法达到有效的灭菌效果。经过这些阶段,培养料的配置工作已经算是初步完成,培养料的配置对于提高食用菌的产量,降低生产成本具有重要意义。 二、选择优质的菌种及接种 要挑选优质的菌种来培养,根据要栽培的食用菌的生长特点以及适宜的生长环境来选择选择适宜本地生长的优质、高产、高抗的优良菌株。在挑选菌 种时一定要严格查看菌种,确保其没有杂质污染和虫害,适用于栽培养育。必须按照科学、严谨的接种程序来为所要栽培的食用菌接种,并在接种后及时将装菌种的袋子放入无污染、空气适宜的培养室内进行发菌培养。 三、培育环境的要求 在经过几个月的生长后,菌袋就要搬入出菇棚进行培育,但是受到培育环境等因素的影响,菌袋的出菇时间也不尽相同,只有保持培育环境适合菌袋成长才能让菌袋在一定的时间范围内正常出菇。而将菌袋搬入出菇棚的时间要尽量避免午间气温较高时进行,因为过高的温度容易影响出菇时间;入棚的时间一般选在晴天的早晚进行,要防止人棚过程中菌袋受到雨淋。菌袋人棚后的摆放要按照一定的规范进行操作,菌袋要并列排放整齐,且其间需要留5厘米左右的间隔以保持菌能够正常呼吸,只有创造出一个有利于菌袋出菇的环境才能保证出菇更加优质、高产。 (1)空气湿度。作为影响子实体生长的重要因素,如果培育环境的空气湿度太低,子实体表面的水分蒸发就会加快,其基质中的含水量就会大幅度降低,进而影响食用菌的产量;相反空气湿度如果偏高,子实体表面的水份蒸发作用不明显,菌体内的营养运输受到阻碍,造成子实体无法进行呼吸作用而停止生长。如果栽培环境中的空气湿度长期处于偏高的状态,子实体会因为倒吸空气中的水份而出现腐烂的情况,严重时甚至会造成大范围的细菌传染。 (2)保持通风。食用菌的生长发育需要足够的氧气,和我们人需要呼吸一样,食用菌也会进行呼吸作用,它们吸人空气中的氧气释放出二氧化碳。虽然适量程度的二氧化碳对某些特别种类的食用菌菌丝生长有利,但是很多食用菌如果长期处在二氧化碳过多的环境下,它们很有可能停止生长,而高浓度的二氧化碳环境甚至会让菌丝体死亡。因此,出菇棚必须要保持通风,将二氧化碳的浓度控制在合适的范围之内,确保空气流通。 (3)光照环境。多数食用菌在出菇时需要散射光进行刺激,只有极少数品种要较强的散射光。通常情况下,光照越强时子实体的颜色就越深,光照越弱时子实体的颜色就越浅。栽培人员需要根据食用菌种类的差异对出菇棚的光照进行调节,如可以采用遮阳网、草帘等物品来调节室内光照。 四、使用无污染的肥料对食用菌进行施肥 (1)喷洒酵母膏以及蛋白胨等溶液。用的酵母膏和的蛋白胨喷洒在食用菌的表面,能够使食用菌的身体变厚变肥,促进转潮,在温度为14℃~l6℃时效果最佳。 (2)人粪或人尿的喷洒。在喷洒人粪人尿时应当注意对人粪及人尿的加热,最适合的人粪和人尿应该是煮熟20分钟后的,对其进行对水,比例为1:10或者是1:20进行喷洒,或者也可以用新鲜的牛畜尿液,煮熟与没有泡沫即可,进行对水,比例在l0倍~17倍之间。 (3)米醋的喷洒 在食用菌生长的中后期,可以用300倍的米醋对其进行喷洒,在采摘前的1~3天,每天必须喷洒一次,通常情况下可以使食用菌产量提高6%,而且色泽会呈现出洁面。 (4)豆浆水的喷洒 黄豆一千克,将其磨成豆浆后加入75千克~UI00千克的水,喷洒到食用菌表面,喷洒完成后再用清水喷洒一遍。 五、科学合理的管理方式 在管理栽培养育的食用菌时,要严格按照科学的管理方式进行管理。通过以往的栽培 经验 ,并结合实际的培育现状,研究出最适合、最科学的食用菌栽培管理方式。以无公害、绿色健康为前提,运用无农药危害的病虫害的防治措施,栽培工具和培育工作人员进出时要做好清洁和消毒工作。根据食用菌的实际生长状况及时对周围环境 做出处理,调节培育室内的通风、通气、采光条件,掌控好温度和湿度情7兕,在培育长成后采取时,也需要做好消毒工作,要以正确的方式、适时地采收。 六、结语 食用菌已经成为人们日常生活中不可缺少的食用产品,食用菌产业也是社会市场上不可忽视的市场经济发展项目无公害、高产的食用菌栽培技术是目前社会市场发展的需要,是促进社会市场经济发展的一部分,也是人们高品质的日常生活的需求,必将得到大力的推广和应用。 猜你喜欢: 1. 食品保藏技术论文 2. 农学论文范文 3. 人工栽培桑黄的技术 4. 双孢菇种植的技术 5. 平菇栽培技术论文 6. 平菇的栽培技术论文

关于香菇的探究。1.探究香菇名称、生活史、生活习性。香菇的特点香菇属担子菌,伞菌目,侧耳科,香菇属。香菇又名香菌、香信、椎茸(日本)或者冬菇。野生香菇主要分布于中国、朝鲜、日本、菲律宾、印度尼西亚、新几内亚、新西兰和尼泊尔等,俄罗斯萨哈林地区(库页岛)、泰国和马来西亚也有分布。我国主要生产地是浙江、福建、台湾、安徽、江西、湖南、湖北、广东、广西、四川、云南和贵州等省(区)。香菇从何时开始种植在我国历史上已经无从考证。但是关于栽培的起源,目前多倾向于龙泉说。相传是宋朝浙江省龙泉县龙岩村的农民吴三公发明的,并经菇民不断摸索、改进,至元朝,由农民王祯总结文字。香菇的生育条件影响香菇生长发育的因素包括营养、温度、湿度、光线、空气、酸碱度等。香菇是水腐菌,体内没有叶绿体,依靠分解吸收木材或其他基质内营养为主。香菇属于变温结实醒菌类。菌丝生长温度范围较广,为5度~32度,为25度~27度之间,子实体发有温度在5度~22度之间,以15度左右为最适宜。变温可以促进子实体分化。香菇亦称为好气性菌丝,对二氧化碳虽不如灵芝等敏感,但如若二氧化碳积累过多,就会一直菌丝生长和子实体的形成。香菇是好光性菌类。香菇菌丝虽在黑暗条件下也能生长,但子实体则不能发生,适度的光照下,子实体顺利生长发育,并散出孢子。香菇菌丝生长要求偏酸的环境,菌丝在Ph3~7之间都可生长,以上下最为适宜。2. 香菇的栽培技术。代料栽培代料栽培,就是利用各种农林业副产物为主要原料,添加适量的辅助材料,制成培养基,来代替传统的栽培材料(原木、断木)生产各种食用菌。代料栽培的原料阔叶树木屑、部分针叶树木屑(如:柳、杉、红松)以及刨花、纸屑、棉籽壳、废棉、甜菜渣、稻草、玉米秆、玉米芯、麦草、高粱壳、花生壳、谷壳等。此外,许多松木屑高温堆积发酵或者摊开晾屑的办法,除掉其特有的松脂气味;亦可用来栽培香菇。食用菌人工栽培的过程,实质上就是人为地创造对香菇菌丝和子实体发育有利,而对其他杂菌生长不利的环境条件过程。香菇代料栽培即源于此理。并且代料栽培可以节省木料,充分利用生物资源,变废为宝。扩大栽培区域适用于家庭中小型栽培,也便于工厂大量生产。并且从产品质量以及经济效益,都超过段木生产,是栽培香菇行之有效的途径。一般每1000斤木屑或棉籽壳等代料栽培,可收600~800斤鲜菇,从产品质量及其经济效益看,都超过段木生 产,是栽培香菇行之有效的途径。代料块栽香菇的技术措施香菇体菌种的培育,一般有孢子分离法、组织分离法和蒸水分离法三种。孢子分离法是有性繁殖,菌种生活力强, 但变异率高,一般难掌握,选育新品种时可采用此法。组织分离法及菇木分离法系无性繁殖,种性比较稳定、而且简便易行,生产上应用较多。 3.培育原种和栽培种注意事项 第一,原种及栽培种的接种必须遵照无菌操作要求;第二,当接种后,从第三天开始就要经常检查有无杂菌污染,发现有污染的瓶子要及时取出处理。一般检查要继续到香菇菌丝体覆盖整个培养基表面并深入培养基2厘米时为止;第三,培养好的菌种如暂时不用,要将其移放在凉爽、干净、清洁的室内避光保存,勿使菌种老化。 出菇前的管理:防止高温产生霉,促使菌丝迅速愈合;利用温差、干湿差刺激子实体形成。出菇期管理:加强各期的水分管理是最重要的环节。当出现小菇蕾时,应把覆盖的塑料薄膜提高5~6寸,让其出菇;随菇大小、多少、气温高低,灵活掌握水量,保持空气湿度85%~90%;第一批菇收后,停水几天,以利菌丝恢复,然后连续喷水几天,使它干干湿湿;拉大温差10℃以上,有利于下一批子实体的形成。采收和加工:采收时候要坚持先熟先来的原则才能达到高产优质。并注意干燥,烘干和晒干方可。4.香菇的药用价值,经济价值。香菇的营养很丰富这些大家都知道,因其含有18种氨基酸,人体内必须的八种氨基酸中香菇含有7种,富含各种糖类。并且它常用来治疗脾胃肠一些疾病、四肢倦怠乏力,痔疮出血,子宫功能性出血以及小儿天花麻疹。更重要的是香菇能阻止癌细胞发生,对已诱发的癌细胞,则具有抑制作用。香菇是我国一种著名的药用菌,许多医药学家对香菇所谓药性及功能均有著述,如《本草纲目》认为,香菇“甘,平,无毒”;《医林纂要》认为,香菇“甘、寒”,“可托痘毒”。现在已经在知道,香菇中含有一种抗肿瘤成分----香菇多糖,含有降低血脂的成分----香菇太生,香菇还含有抗病毒成分----干扰素的诱发剂双链核糖核酸。总之,向股市不可多得的保健食品。并且香菇可用于煎汤、炖食、炒菜,味道浓厚、香醇,更因其有“山珍之王”之称。香菇的经济价值十分显著,生产鲜香菇所需成本约为元每公斤,然而市场价格为6~7元每公斤。随着社会经济的发展对于香菇的需求也会日益增加。

  • 索引序列
  • 灰岩矿成因分析论文参考文献
  • 岩石矿物学杂志参考文献
  • 地质成因分析论文
  • 论文参考文献分页符灰色
  • 食用菌成分分析论文参考文献
  • 返回顶部