首页 > 学术论文知识库 > 热工控制系统的仿真毕业论文

热工控制系统的仿真毕业论文

发布时间:

热工控制系统的仿真毕业论文

可以写锅炉或者汽机的经济分析或者安全管理等方面内容!

基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉温度的控制.仿真结果表明,该系统具有更小的超调量,并且更快地到达需要的控制温 度. 关键词:BP神经网络;PID控制;温度控制 温度是锅炉生产蒸汽质量的重要指标之一,也是保证锅炉设备安全的重要参数.同时,温度是影响锅 炉传热过程和设备效率的主要因素.例如,在利用烟化炉对锌、铝冶炼过程中,如果温度过低,则还原速度 和挥发速度都会降低;但温度也不宜过高,否则在温度超过1 250℃时,可能形成Zn-Fe合金,有害于烟 化炉的作业,因此温度的精确测量和控制是十分必要的.作为工业控制系统中的基本方式,PID控制对于 动态反应较缓慢的工业过程是非常好的控制规律[1].但是,当工业过程复杂,负荷变化很多,对象的纯滞 后又较大时常规PID控制达不到要求,为了解决上述问题系统采用PLC作为下位机,PC作为上位机,利 用labVIEW构造人机交互界面,应用神经网络PID对系统进行控制,设计锅炉温度的监制电路. 1 系统总体设计 系统通过热电偶传感器检测出锅炉的温度,采集的信号经过A/D电路转换后传给PLC控制器.PLC 根据数据做出判断,当锅炉处在升温阶段时对锅炉进行加热,当锅炉处于保温段时调用PID算法控制温 度满足输出要求.同时PLC把数据传给PC机,PC机做出显示和报警.具体电路如图1所示. 1·1 主控芯片 S7-300PLC是西门子生产的模块式中小型PLC,提供了大量可以选择的模块,包括:PS 电源模块、CPU模块、IM接口模块、SM信号模块、FM功能模块和CP通信模块.其中FM模块可实现高 速级数、定位控制、闭环控制功能;CP模块是组态网使用的接口模块常用的网络有PROFIBUS,工业以太 网及点对点连接网络.这些模块可以通过U形总线紧密地固定在轨道上,一条导轨共有11个槽号:1号槽 至3号槽分别放置电源、CPU、IM模块4号槽至11号槽 可以随意放置其他模块. 1·2 通信网络 一般的自动化系统都是以单元生产设备 为中心进行检测和控制,不同单元的生产设备间缺乏信息 交流,难以满足生产过程的统一管理.西门子全集成自动 化解决方案顺应了当今自动化的需求,TIA从统一的组态 和编程、统一的数据管理及统一的通信三方面集成在一 起,从现场级到管理级,可以使用如工业以太网、PROFIB- BUS,MPI,EIB等通信网络.根据设计的需要可以自由选择通信网络的配置[2]. 1·3 温度传感器 热电偶是将2种不同的导体焊接起来组成闭合回路,当两端节点有温度差时,两端点 之间产生电动势,回路中会产生电流,这种现象称为热电效应.热电偶温度传感器就是利用这一效应来工 作的.在工业生产过程中被测点与基准节点之间的距离常常过远,为了节省热电偶材料,降低成本,通常采 用补偿导线的方式进行补偿[3]. 1·4 显示界面 LabVIEW是美国NI公司推出的图形化工业控制测控开发平台,是目前应用最广、发展 最快、功能最强的图形软件集成开发环境.LabVIEW具有界面友好、开发周期短等优点,广泛应用于仪器 控制、数据采集、数据分析和数据显示等领域.所以,我们可以在计算机上采用它来实现对设备运行状态的 监控,同时也可以对各种数据进行采集显示.系统的温度显示界面如图2所示. 2 系统控制算法设计 PID控制是工业过程控制中最常用的一种控制方法, 但常规的PID控制在被控对象具有复杂的非线性时,如锅 炉的温度控制,不仅具有较大的纯延迟,而且模型也不确 定时,对于这种对象往往难以达到满意的控制效果.BP神 经网络PID控制具有逼近任意非线性函数的能力,通过神 经网络自身的学习,找到最佳组合的PID控制参数,以满 足控制系统的要求.具体的神经网络PID控制系统框图如 图3所示. 设PID神经元网络是一个3层BP网络,包括2个输入节点,3个隐含层节点,1个输出接点.输入节 点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量等,必要时要进行归一化处理.输出节 点分别对应PID控制的3个可调参数KP,KI,KD.输入层的2个神经元在构成控制系统可分别输入系统 被调量的给定值和实际值.由文献[4]和[5]中的前向算法可得到输出层的权系数计算公式为: 3结论 PID控制算法是一种易于实现而且经济实用的方法,具有很强的灵活性,但在被控制对象具有复杂的 非线性时,难以满足控制要求,而神经网络PID控制具有逼近任意非线性函数的能力,神经网络PID与 LabVIEW结合实现对锅炉温度的数据采集、控制和显示,提高了锅炉监控系统的效率. 参考文献: [1] 邓洪伟.供暖锅炉温度和压力的PLC控制[J].动力与电力工程,2008(18):93-94. [2] 张运刚.西门子S7-300/400PLC技术与应用[M].北京:人民邮电出版社,2007. [3] 何希才.传感器及其应用实例[M].北京:机械工业出版社,2004. [4] 何离庆.过程控制系统与装置[M].北京:重庆大学出版社,2003. [5] 舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006.

锅炉温度控制策略的应用研究 摘要:针对锅炉汽温控制的特点,设计了过热汽温串级模糊控制系统,介绍了系统的构成、原理 及该系统的优越性,并利用MATLAB仿真软件进行了仿真分析。 关键词:汽温;串级模糊控制;系统仿真 0 引言 过热蒸汽温度是衡量锅炉能否正常运行的重要 指标。假如过热蒸汽温度过高,若超过了设备部件 (如过热器管、蒸气管道、阀门、汽轮机的喷嘴、叶片 等)的允许工作温度,将使钢材加速蠕变,从而降低 使用寿命。严重的超温甚至会使管子过热而爆破。 可能造成过热器、蒸汽管道和汽轮机的高压部分损 坏。过热蒸汽温度过低,会引起热耗上升,引起汽轮 机末级蒸汽湿度增加,从而降低汽轮机的内效率,加 剧对叶片的侵蚀。因此在锅炉运行中,必须保持过 热汽温稳定在规定值附近。通常允许变化范围为额 定值±5℃。目前对锅炉过热汽温调节大都采用导 前汽温的微分作为补充信号的系统。其系统原理如 图1所示。 系统针对过热汽温调节对象调节通道惯性延迟 大、被调量反馈慢的特点,从对象调节通道找出一个 比被调量反应快的中间信号θ1作为调节器的补充 信号,以改善对象调节通道的动态特性。动态时调 节器根据θ1的微分和θ2这两个信号而动作。但在 静态时(调节过程结束后)θ1不再变化,则dθ1/dt= 0,这时过热器汽温必然恢复到给定值。实际使用 中,中间信号θ1的引入在一定程度上确实改善了控 制系统的动态特性,但是,影响蒸汽温度的因素很 多,除减温水流量的扰动外,负荷的变化,工况的不 稳定,过剩空气系数等都会导致蒸汽θ2温度发生波 动。这些波动是无法预知的,无法用精确的数学模 型来描述。由于模糊控制不依赖被控对象的精确数 学模型,它主要是根据人的思维方式,总结人的操作 经验,完成控制作用,特别适合于大滞后、时变、非线 性场合,因此该文提出一种锅炉过热气温的串级模 糊控制系统。 1 控制方案的研究设计 串级调节系统是改善大惯性、纯滞后系统调节 质量的最有效方法之一,所以设计的控制方案采用 串级模糊控制,其控制系统如图2所示。 图2中F为减温水流量调节阀。P为副调节 器,采用比例调节;FC为主调节器,采用混合模糊控 制器,即一个二维模糊控制器和常规PI调节器并联 而成,除能够尽快消除副环外的扰动之外还可以校 正汽温偏差,保证汽温控制的精度。 汽温调节对象由减温器和过热器组成,减温水 流量Wj为对象调节通道的输入信号,过热器出口汽 温θ2为输出信号。为了改善调节品质,系统中采用 减温器出口处汽温θ1作为辅助调节信号(称为导前 汽温信号)。当调节机构动作(喷水量变化)后,导 前汽温信号θ1的反应显然要比被调量信号θ2早很 多。由于从调节对象中引出了θ1信号,对象调节通 道的动态特性可以看成由两部分构成:①以减温水 流量Wj作为输入信号,减温器出口处温度θ1作为 输出信号的通道,这部分调节通道称为导前区,传递 函数为G01(s);②以减温器出口处汽温θ1作为输入 信号,过热器出口汽温θ2为输出信号的通道,这部 分调节通道称为惰性区,传递函数为G02(s),显然 导前区G01(s)的延迟和惯性要比惰性区G02(s)小 很多。系统结构如图3所示。 图3中有两个闭合的调节回路:①由对象调节 通道的惰性区G02(s)、副控制器Gc2(s)、副检测变送 器Gm2(s)组成的副调节回路;②由对象调节的导前 区G01(s)、主控制器(PI+混合模糊控制器)、主检 测变送器Gm1(s)以及副调节回路组成的主回路。 引入θ1负反馈而构成的副回路起到了稳定θ1的作 用,从而使过热汽温保持基本不变,因此可以认为副 回路起着粗调过热汽温θ2的作用。而过热汽温的 给定值,主要由主控制器(PI+混合模糊控制器)来 严格保持。只要θ2不等于给定值,主控制器就会不 断改变其输出信号σ2,并通过副调节器去不断改变 减温水流量,直到θ2恢复到等于给定值为止。可 见,主调节器的输出信号σ2相当于副调节器的可变 给定值。稳态时,过热汽温等于给定值,而导前汽温 θ1则不一定等于主调节器输出值σ2。 当扰动发生在副回路内,例如当减温水流量发 生自发性波动(可能是减温水压力或蒸汽压力改 变),由于有副回路的存在,而且导前区的惯性又很 小,副调节器将能及时动作,快速消除其自发性波 动,从而使过热汽温基本不变。当扰动发生在副回 路以外,引起过热汽温偏离给定值时,串级系统首先 由主调节器(PI+混合模糊控制器)迅速改变其输 出校正信号σ2,通过副调节回路去改变减温水流 量,使过热汽温恢复到给定值。由于主调节器(PI+ 混合模糊控制器)的惯性迟延小,故反应迅速。 因此在串级模糊蒸汽温度控制系统中,副回路 的任务是尽快消除减温水流量的自发性扰动和其他 进入副回路的各种扰动,对过热汽温的稳定起粗调 作用。主调节器的任务是保持过热汽温等于给定 值。系统在主控制器的设计上将模糊控制与常规的 PI调节器相结合,使控制系统既具有模糊控制响应 快、适应性强的优点,又具有PI控制精度高的特点。 2 模糊控制器的设计 模糊控制是一种基于规则的控制,在设计中不 需要建立被控对象的精确的数学模型。 模糊控制器的结构设计 该系统以过热蒸汽的实际温度T与设定值Td 之间的误差E=Td-T和误差变化DE作为输入语 言变量,系统控制值U为输出语言变量,构成一个 二维模糊控制器。其结构如图4所示。 Ku为模糊控制器比例因子,Ke,Kec为量化因子。 Ke:在输入量化等级确定之后,算法中改变误差 输入论域大小即改变了Ke的值,Ke增大,相当于缩 小误差的基本论域,起增大误差变量的控制作用。 若Ke选择较大,则上升时间变短,但会使系统产生 较大超调,从而过渡过程变长;Ke很小,则系统上升 较慢,快速性差。同时它还直接影响模糊控制系统 的稳态品质。 Kec:Kec选择较大时,超调量减小,但系统的响应 速度变慢,Kec对超调的抑制作用十分明显。但在 Ke,Kec和Ku中,系统对Kec的变化最不敏感,一般Kec 可调整范围较宽,其鲁棒性较好,给实际调试带来很 大方便。 Ku:比例因子Ku实质上是模糊控制器总的增益, 它的大小对系统输出的影响较大。Ku增大,系统超 调量随之增大,动态过程加快;反之,Ku减小,系统超 调量减小,动态过程变慢;Ku选择过大将会导致系统 震荡。由于Ku的敏感性,故可调范围较小。 模糊控制器可调参数Ke,Kec和Ku对系统性能 的影响各不相同,改变这3个参数可使控制器适用 于不同系统的性能要求。 模糊概念的确定及模糊化过程 对输入变量E进行模糊化,选择语言集为{负 大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择如下 [-n,-n-1,…,-1,0,1,…, n-1, n],E的实际 变化范围为[-x,x],则量化因子为Ke=n /x。对偏 差变化率DE进行模糊化,选择合适的模糊论域和 偏差变化率范围,同理可以计算出相应的模糊量化 因子Kec,在这里为了方便起见,选择偏差e、偏差变 化率DE具有相同模糊论域。 对于输出量U,调节范围为[-R,R],语言集为 {负大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择为[- m,-m-1,…,-1,0,1,…,m-1,m ],输出比例 因子为Ku=R /m。 在设计过程中,选取各变量的模糊论域,E= {-3,-2,-1,0,1,2,3};DE={-3,-2,-1,0,1, 2,3};U={-3,-2,-1,0,1,2,3},输入量E,DE 及输出量U模糊集的隶属函数选择为三角形,如图 5所示。 模糊规则的确定 模糊决策一般都采用“选择从属度大”的规则, 在过热蒸汽温度调节过程中,当系统的偏差较大时, 系统的快速性为主要矛盾,系统的稳定性控制精度 却是次要的,这时应使系统快速减小偏差;而当系统 偏差较小时,则要求以保证系统的稳定性及控制精 度为主。因而模糊控制规律应遵循:过热汽温上升 速度快,汽温偏高,则汽温的控制量应向下浮动;过 热汽温下降速度快,汽温偏低,则汽温的控制量应向 上浮动。因此采用的模糊控制器的模糊控制规则具 有以下的形式: if {E=AiandDE=Bi}thenU=Ci, i=1, 2,...,n 其中Ai, Bi以及Ci分别为E, EC、和U的模糊子 集。控制规则的多少可视输入输出物理量数目及所 需的控制精度而定。由于模糊控制器采用两个输入 E, EC,每个输入分为7级共有49条规则。 按模糊数学推理法则选则表1所示控制规则。 逆模糊化过程 文中采用的模糊推理方式是常用的Mamdani 的Min-Max-COA法,即前项取小,多规则取大合 成结论,然后取重心得出非模糊化结论的算法。在 上述规则中,Ai,Bi, Ci分别为论域E,DE,U的模糊 子集,根据上述规则可推出模糊关系Ri=ExDE,这 里采用的最小运算规则,在按最大—最小合成(max -min composition)推理算法求得控制器输出的模糊 子集为U=(ExDE)·Ri,其中“·”为合成运算,非 模糊化后的结论即为输出U的修正值。逆模糊化 方法采用重心平均法(centroid of area)。 3 系统仿真 为了说明串级模糊控制系统在锅炉过热蒸汽温 度的控制上有更好的调节效果,分别搭建具有导前 微分信号控制系统和串级模糊控制系统的仿真框 图。在保持相同输入信号条件下设置两系统被控对 象为相同的参数,以利于比较。 考虑到在实际应用中,各种随机扰动的影响及 过程的复杂性,被控对象有着大惯性、纯滞后的特 性,设系统的主副被控对象的数学模型分别为: 两系统仿真方框图搭建分别如图6、图7所示; 过热汽温响应曲线分别如图8、图9所示。 从仿真曲线可以很清楚的看到:串级模糊控制 系统应用在锅炉过热蒸汽温度控制上能够获得比具 有导前微分信号控制系统更好的调节效果。具有导 前微分信号的控制系统仿真曲线有振荡,有超调,动 态过渡时间长,误差大。而串级模糊控制系统仿真 曲线基本无振荡,无超调,动态过渡时间短,误差小, 有较好的控制品质。 根据现场锅炉运行情况,为了能 更好地说明问题,在保持两个系统中 各调节器、控制器参数不变的情况下, 同时改变两个系统的被控对象的参 数。 W02=e-5s12s+1 观察仿真曲线,如图10、图11所 示。 由于被控对象在电厂中各种设备复杂的运行环 境下,一直处于波动状态,改变主被控对象参数后而 其他参数保持不变时,具有导前微分信号的控制系

几个字就可以了。可以取消热能装置。用磁动力输出动力驱动。

系统仿真学报和控制工程哪个好中

几乎没有好投中的

《 电子技术应用》 《 电力电子技术》 应该稍微好点 《 电力电子技术》的影响因子高 计算机仿真计算机辅助工程计算机辅助设计与图形学学报计算机工程计算机工程与科学计算机工程与设计计算机工程与应用计算机集成制造系统计算机技术与发展计算机科学计算机科学与探索计算机时代计算机系统应用计算机学报计算机研究与发展计算机应用计算机应用研究计算机应用与软件计算机与数字工程计算机与网络计算机与现代化计算机与应用化学计算技术与自动化计算机光盘软件与应用金卡工程控制工程控制与决策模式识别与人工智能软件工程师软件学报上海信息化数值计算与计算机应用条码与信息系统网络安全技术与应用网络与信息微处理机微电子学与计算机微计算机信息微计算机应用微型电脑应用微型机与应用物探化探计算技术系统仿真技术系统仿真学报现代计算机(专业版)小型微型计算机系统信息系统工程信息与电脑信息与控制制造业自动化中国金融电脑中国图象图形学报A中文信息学报自动化博览自动化技术与应用自动化学报自动化与信息工程自动化与仪器仪表

《 电力电子技术》是EI核心期刊,需要实验验证,比较难中。《电气传动》是中文核心期刊,比较好中。《 电子技术应用》最垃圾,投了浪费钱。

你看看应用光学吧。

精馏塔温度控制系统仿真毕业论文

【1】学士学位论文:基于相关系数辨识法的PID自整定算法及其应用指导教师:孙德敏、吴刚、吴福明,获中国科学技术大学自动控制专业工学学士学位【2】硕士学位论文:基于多元逐步回归分析的丙烯腈反应器在线优化控制指导教师:孙德敏教授,获中国科学技术大学自动控制理论及应用专业工学硕士学位【3】博士学位论文:典型工业过程的先进控制与优化指导教师:孙德敏教授,获中国科学技术大学控制科学与工程专业工学博士学位教学工作:【1】计算机控制(专业基础课,课程编号:01018601)教材:李嗣福编著,计算机控制基础(第2版),合肥:中国科学技术大学出版社,【2】最优化方法(本硕贯通课程,课程编号:本01060701,硕CN04132)教材:孙德敏编著,工程最优化方法及应用(修订版),合肥:中国科学技术大学出版社,学术论文:【1001】薛美盛,白东进,张毅,何丹玉. 基于相关分析法的PID控制回路的模型验证. 控制工程,已录取.【1002】陈根杰,魏衡华,薛美盛. 带Smith预估器的预测PID控制器的设计. 电子技术,已录取.【1003】薛美盛,白东进,王川. 基于Pade近似一般形式的IMC-PID控制器设计. 控制工程,已录取.【1004】樊弟,薛美盛,魏衡华. 多变量系统的广义预测控制解耦设计. 控制工程,已录取.【1005】王川,薛美盛,白东进. 基于子空间辨识的多变量预测控制器设计. 控制理论与应用,已投稿.【1006】薛美盛,苏阳,祁飞,张毅. 一种评估PI控制回路的LQG基准. 控制理论与应用,已投稿.【0901】胡志宏,郝卫东,薛美盛. 运行优化降低燃煤锅炉NOx排放的试验研究. 电站系统工程,2009,25(1):41-43.【0902】李自强,薛美盛. 用于闭环PID参数自动整定的性能指标仿真研究. 自动化与仪表,2009,24(2):30-33.【0903】白东进,祁飞,薛美盛. 基于动态矩阵控制的比值控制新算法. 化工自动化及仪表,2009,36(2):23-28.【0904】崔宇,薛美盛. 基于局部学习方法的火电锅炉飞灰含碳量LSSVM软测量. 仪表技术,2009(5):62-64.【0905】李祖奎,Marianthi Ierapetritou,薛美盛. 过程工业不确定条件下的计划与调度优化. 化工进展,2009,28(7):1122-1128+1133.【0906】薛美盛,祁飞,张毅,王川,白东进. 控制回路性能评估综述. 控制工程,2009,16(5):507-512.【0907】薛美盛,陶呈纲,郑涛. pH控制策略研究. 化工自动化及仪表,化工自动化及仪表,2009,36(5):7-12+17【0801】张毅,薛美盛,王伟. 带前馈的PID控制回路的控制器性能评估. 化工自动化及仪表,2008,35(1):20-23.【0802】王伟,薛美盛,张毅,刘云松. 丙烯腈流化床反应器先进控制. 化工自动化及仪表,2008,35(3):58-61+66.【0803】鲍茂潭,赵春江,薛美盛,王成. 用于农产品信息管理的RFID读写器设计. 电子技术应用,2008,34(3):68-71.【0804】李晋,秦琳琳,岳大志,吴刚,薛美盛等. 试验温室温度系统建模与仿真. 系统仿真学报,2008,20(7):1869-1875.(EI20081811232440)【0805】吕旭涛,薛美盛. 正交试验优化在算法效率评价中的应用. 电子技术,2008,45(7):53-55.【0806】何德峰,俞立,薛美盛. 丙烯聚合装置牌号切换的在线操作指导. 2008年中国过程控制年会(CPCC2008)论文集,,北京:339-342.【0807】李祖奎,Marianthi Ierapetritou,薛美盛. 过程工业不确定条件下的计划与调度优化. 2008年过程系统工程年会(PSE2008)论文集,,上海:313-320.【0808】陈多刚,周广,张毅,相天成,薛美盛. 基于相关分析法的PID控制回路性能评估. 2008年工业自动化与仪表装置应用学术交流会论文集,,青岛:140-148.【0809】何德峰,薛美盛,季海波. 约束非线性系统构造性模型预测控制. 控制与决策,2008,23(11):1301-1304+1310.(EI20085111797520)【0701】陈薇,秦琳琳,吴刚,薛美盛,王俊. 硝酸根离子选择电极建模. 传感技术学报,2007,20(1):14-17.【0702】张庆武,吴刚,薛美盛,王嵩,何德峰,祁飞. 聚乙烯装置模块多变量在线操作指导. 信息与控制,2007,36(1):79-85+92.【0703】张庆武,吴刚,薛美盛,沈之宇,孙德敏. 氨合成塔温度先进控制. 信息与控制,2007,36(1):108-114.【0704】秦琳琳,吴刚,薛美盛等. 网纹甜瓜营养液深液流栽培管理与环境调控. 中国科学技术大学学报,2007,37(2):195-201.【0705】王俊,成荣,薛美盛,吴刚,秦琳琳,胡振华. 温室环境测控系统的设计与运行. 控制工程,2007,14(2):195-197.【0706】陈祥,薛美盛,王俊,吴刚,秦琳琳,成荣. 基于Zigbee协议的温室环境无线测控系统. 自动化与仪表,2007,22(3):39-41+50.【0707】陈杰,何晓红,薛美盛. 基于MA的智能建筑实时远程监控系统. 合肥工业大学学报(自然科学版),2007,30(4):436-439.【0708】沈之宇,阎镜予,薛美盛,孙德敏. 中小型氮肥合成氨生产系统操作条件优化. 化工学报,2007,58(4):963-969.(EI20072110613706)【0601】薛美盛,祁飞,张庆武等. 一种全新的精馏塔回流罐液位控制系统. 化工自动化及仪表,2006,33(2):57-60.(EI2006229913058)【0602】薛美盛,祁飞,吴刚,孙德敏. 丁烯-1精馏装置在线节能优化的研究. 化工自动化及仪表,2006,33(3):17-21.(EI2006279980837)【0603】刘长远,薛美盛,孙德敏,王磊. 阶梯式广义预测控制在浮法玻璃窑中的应用. 自动化博览,2006,23(3):62-63.【0604】阎镜予,沈之宇,薛美盛等. 用于过程优化的改进模式识别方法及其应用. 模式识别与人工智能,2006,19(3):342-348.(EI20063310069117)【0605】薛美盛,李祖奎,吴刚,孙德敏. 油品调合调度优化问题的分步求解策略. 中国科学技术大学学报,2006,36(8):834-839.【0606】张庆武,吴刚,凌青,金辉宇,罗国娟,沈之宇,薛美盛. 并列电站锅炉主蒸汽温度先进控制. 中国科学技术大学学报,2006,36(8):840-844.【0607】薛美盛,霍敏端,吴刚,石春. DVD光驱聚焦伺服系统中的重复控制器. 计算机仿真,2006,23(4):294-297.【0608】薛美盛,胡振华,秦琳琳等. 基于CAN总线的温室可控环境综合测控系统软件设计. 测控技术,2006,25(10):61-64.【0609】陈杰,孙德敏,薛美盛. 基于Fibonacci数列的变步长相关分析辨识算法. 合肥工业大学学报(自然科学版),2006,29(5):517-520.【0610】陈祥,薛美盛,王俊,成荣,吴刚. 无线测控技术在现代农业中的应用与展望. 农业工程技术,2006(19):14-15.【0611】薛美盛,祁飞,吴刚,孙德敏. 精馏塔控制与节能优化研究综述. 化工自动化及仪表,2006,33(6):1-6.(EI2007041038942)【0501】薛美盛,李祖奎,吴刚,孙德敏. 汽油调合优化软件的开发. 化工自动化及仪表,2005,32(1):34-36.(EI2005279198109)【0502】沈之宇,张庆武,阎镜予,薛美盛等. 氨合成生产系统的两步逐级正交优化. 中国科学技术大学学报,2005,35(2):277-283.【0503】祁睿,秦琳琳,薛美盛,吴刚,孙德敏. 基于CAN总线的温室监控系统设计与应用. 工业仪表与自动化装置,2005(3):32-35.【0504】薛美盛,李祖奎,吴刚,孙德敏. 成品油调合调度优化模型及其应用. 石油炼制与化工,2005,36(3):64-68.【0505】薛美盛,李祖奎,吴刚,孙德敏. 油品管道调合质量控制研究. 化工自动化及仪表,2005,32(5):14-17.(EI2005479497670)【0506】薛美盛,祁 飞,吴 刚,孙德敏. 先进控制与优化应用中的若干问题研究. 自动化博览,2005(6):14-17.【0401】Qing Tao, Xin Liu, Meisheng Xue. A Dynamic genetic algorithm based on continuous neural networks for a kind of non-convex optimization problems. Applied Mathematics and Computation, 2004, 150(3):811-820.(SCI802YO,EI2004098043233)【0402】薛美盛,杨再跃,吴刚,孙德敏. 基于遗传算法的动态矩阵控制器参数设计. 工业仪表与自动化装置,2004(3):6-9.【0403】李敏,薛美盛,杨再跃,王占成,吴刚. 自适应内模PID控制器在梭式窑温度控制中的应用. 自动化与仪表,2004(4):46-49.【0404】王嵩,吴刚,薛美盛,张培仁,孙德敏. 辊道窑现场总线计算机控制系统. 自动化仪表,2004,25(1):55-58.【0301】孙德敏,吴刚,薛美盛,王永,李俊. 工业过程先进控制及优化软件产业. 自动化博览,2003(2):5-13.【0302】罗国娟,吴刚,薛美盛等. 基于阶梯式动态矩阵控制的电烤箱温度控制系统. 东南大学学报(自然科学版),2003,33(增刊):150-154.【0303】薛美盛,孙德敏,吴刚. 丙烯腈流化床反应器进料系统的PID自动整定. 化工自动化及仪表,2003,30(5):19-21.(EI2004328307475)科研课题:【11】带宽受限网络化控制系统中的丢包问题研究(国家自然科学基金项目,60904012),,国家自然科学基金委员会,任技术负责人;【10】合成氨清洁生产监控网络系统(国家水体污染控制与治理科技重大专项课题,2008ZX07010-003),,环保部,任课题负责人;【09】硫酸生产系统先进控制工程,,铜陵有色金属集团公司铜冠冶化分公司,任课题负责人;【08】循环流化床锅炉先进控制与优化,,临泉化工股份有限公司,任课题负责人;【07】火电锅炉节能降耗减排集成优化控制(863计划目标导向型课题,2007AA04Z195),,科学技术部,任课题负责人;【06】温室无线测控网络系统关键技术研究与集成(863计划探索导向型课题,2006AA10Z253),,科学技术部,任技术负责人;【05】中石油兰州石化公司丙烯腈反应器在线操作优化,,中石油兰州石化公司,任课题负责人;【04】车载信息处理系统的开发研究,,广东惠州天缘电子有限公司,任课题负责人;【03】可控环境农业数据采集与自动控制系统研究(863计划课题,2004AA247020),,科学技术部,任技术负责人;【02】现场辊道窑计算机控制系统,,佛山东鹏陶瓷公司,任课题负责人;【01】油品调合算法研究及调合软件开发,,北京汉盟科技公司,任课题负责人。鉴定获奖:【10】课题“统计机器学习和神经网络若干问题研究”,获2008年安徽省科学技术奖三等奖(,),安徽省人民政府,排名3/5;【09】课题“中石油兰州石化公司丙烯腈反应器在线操作优化”,中石油兰州石化公司会议验收(),排名1/6;【08】获得中国科学技术大学“2007年度考核优秀教职工”称号(校人字【2008】26号);【07】获得中国科学技术大学2006年度优秀招生组二等奖,排名2/4;【06】获得“2005年度中国科学技术大学优秀青年教职工津贴”;【05】课题“可控环境农业数据采集与自动控制系统研究”(863计划课题,2004AA247020),科技部2005年10月会议验收,排名3/14;【04】课题“可控环境农业数据采集与自动控制系统研究”(863计划课题,2001AA247021),科技部2003年12月会议验收,排名5/21;【03】论文《火电厂锅炉主蒸汽压力的阶梯式广义预测控制》,获安徽省第四届自然科学优秀学术论文奖三等奖,省科协,,排名1/3;【02】论文《模块多变量预测控制及其在羰基合成反应其中的应用》,获安徽省第四届自然科学优秀学术论文奖三等奖,省科协,,排名2/4;【01】论文《聚类分析在丙烯腈反应器操作优化中的应用》,获安徽省第四届自然科学优秀学术论文奖三等奖,省科协,,排名3/4。软件专利:【12】基于Zigbee协议的温室环境无线控制节点装置,(实用新型专利,授权),国家知识产权局,排名4/6;【11】基于MSP430的温室环境信息无线采集节点装置,(实用新型专利,授权),国家知识产权局,排名4/6;【10】丙烯腈生产装置及其控制反应器温度的方法,(发明专利,公告),国家知识产权局,排名1/5;【09】丙烯腈流化床反应器在线操作优化软件(简称:ANOPT),2008SR16720(授权),国家版权局,排名1/4;【08】AtLoop PID自动整定软件(简称:AtLoop),2008SR16719(授权),国家版权局,排名1/4;【07】丙烯腈流化床反应器温度预测控制软件(简称:ANGPC),2008SR16718(授权),国家版权局,排名1/4;【06】温室无线测控网络传感节点系统软件(简称:温室无线传感节点软件),2008SR06696(授权),国家版权局,排名3/5;【05】温室无线测控网络控制节点系统软件(简称:无线控制节点软件),2008SR06695(授权),国家版权局,排名3/5;【04】营养液自动检测装置,(实用新型专利,授权),国家知识产权局,排名3/5;【03】营养液自动循环装置,(实用新型专利,授权),国家知识产权局,排名2/5;【02】基于现场总线的温室环境控制系统软件,2005SR09137(授权),国家版权局,排名1/5;【01】灯箱式动态模拟屏及其控制方法,(发明专利,授权),国家知识产权局,排名2/5。兼职工作:【5】2009年5月起,担任教育部学位与研究生教育发展中心评估专家;【4】2008年12月起,担任合肥市招投标评审(咨询)专家;【3】2007年11月起,担任中国石化核心科技期刊《石油化工自动化》第八届编辑委员会委员(任期:);【2】2007年4月,受聘成为国家高技术研究发展计划(863计划)同行评议专家;【1】2006年8月起,担任中文核心期刊《化工自动化及仪表》第九届编辑委员会委员(任期:)。

这个你要计算的,你可以在百度里面找个模板,文库里有,我是学化工的,上个月设计的,是填料塔,算估计要花两天吧,画图三四天就够了,豆丁文库也有

论文开题报告基本要素

各部分撰写内容

论文标题应该简洁,且能让读者对论文所研究的主题一目了然。

摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:

目录应该列出所有带有页码的标题和副标题, 副标题应缩进。

这部分应该从宏观的角度来解释研究背景,缩小研究问题的范围,适当列出相关的参考文献。

这一部分不只是你已经阅读过的相关文献的总结摘要,而是必须对其进行批判性评论,并能够将这些文献与你提出的研究联系起来。

这部分应该告诉读者你想在研究中发现什么。在这部分明确地陈述你的研究问题和假设。在大多数情况下,主要研究问题应该足够广泛,而次要研究问题和假设则更具体,每个问题都应该侧重于研究的某个方面。

水位模糊控制系统仿真研究论文

. 兰亭序 <周杰伦> 2. 魔杰座 <周杰伦> 3. 天亮了 <>4. 小酒窝 <林俊杰> 5. 好人卡 <黄晓明 赵薇> 6. 稻香 <周杰伦> 7. 摇滚怎么了 <王力宏>8. 乔克叔叔 <周杰伦> 9. 童年的时光机 <周杰伦> 10. 窗外 <周迅> 11. 沿海公路的出口 <> 12. 故事 <许巍> 13. 校花 <庞龙> 14. 安静了 15. 右手边 <光良> 16. 画心 <张靓颖> 17. 走火入魔 <丁当阿信> 18. 路一直都在 <陈奕迅> 19. 和梦一起飞 <刘德华 韩红> 20. 天域 <杨海涛> 21. apromise <张靓颖> 22. 听得见的青春 <卫诗> 23. 人类真奇怪 <阿雅> 24. 早安您好 <> 25. One World One Dream <王力宏> 26. 满满的都是爱 <梁静茹> 27. 彩虹弯弯 <何润东> 28. 不胜依依 <黄圣依> 29. 我和你 <刘欢 莎拉布莱曼> 30. 歌唱祖国 <林妙可> 31. 如果你是我 <范玮琪 周华健> 32. 单人房 <韩晶> 33. 势不可挡 <王宝强> 34. 记念 <蔡健雅> 35. 超级喜欢 <阿牛> 36. 理智与感情 <杨丞琳> 37. 我们的彩虹 <古巨基> 38. 天下 <张杰> 39. 暂停恋爱 <萧亚轩> 40. 一起拥有爱 <李小璐> 41. 我会很爱你 <言承旭> 42. 最爱 <梁汉文> 43. 我们唱的歌 44. new life <阿沁(FIR)> 45. 不是因为寂寞才想你 46. 猪骨汤面 <邓健泓> 47. 让爱靠近 <罗中旭> 48. 桂冠英雄 <陶喆> 49. 苍天 <李玖哲> 50. 夏日疯 <潘玮柏> 51 传说 薛之谦 52 给我一首歌的时间、稻香 周杰伦53 愚爱 欢子 54 画心 张靓颖 55 小酒窝 林俊杰 蔡卓妍56 爱 许巍 新专辑57 天亮了 58 醉赤壁 林俊杰 59 我还想她 林俊杰 60 笑忘歌 五月天

变频器在恒压供水方面的应用一、变频调速的特点及分析 用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。 恒压供水系统对于某些工业或特殊用户是非常重要的。例如在某些生产过程中,若自来水供水因故压力不足或短时断水,可能影响产品质量,严重时使产品报废和设备损坏。又如发生火灾时,若供水压力不足或或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。 随着电力技术的发展,变频调速技术的日臻完善,以变频调速为核心的智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。二、恒压供水的变频应用方式 通常在同一路供水系统中,设置多台常用泵,供水量大时多台泵全开,供水量小时开一台或两台。在采用变频调速进行恒压供水时,就用两种方式,其一是所有水泵配用一台变频器;其二是每台水泵配用一台变频器。后种方法根据压力反馈信号,通过PID运算自动调整变频器输出频率,改变电动机转速,最终达到管网恒压的目的,就一个闭环回路,较简单,但成本高。前种方法成本低,性能不比后种差,但控制程序较复杂,是未来的发展方向,我公司开发NKL-A系列恒压供水控制系统就可实现一变频器控制任意数马达的功能。下面讲到的原理都是一变频器拖动多马达的系统。三、PID控制原理 根据反馈原理:要想维持一个物理量不变或基本不变,就应该引这个物理量与恒值比较,形成闭环系统。我们要想保持水压的恒定,因此就必须引入水压反馈值与给定值比较,从而形成闭环系统。但被控制的系统特点是非线性、大惯性的系统,现在控制和PID相结合的方法,在压力波动较大时使用模糊控制,以加快响应速度;在压力范围较小时采用PID来保持静态精度。这通过PLC加智能仪表可时现该算法,同时对PLC的编程来时现泵的工频与变频之间的切换。实践证明,使用这种方法是可行的,而且造价也不高。 要想维持供水网的压力不变,根据反馈定理在管网系统的管理上安装了压力变送器作为反馈元件,由于供水系统管道长、管径大,管网的充压都较慢,故系统是一个大滞后系统,不易直接采用PID调节器进行控制,而采用PLC参与控制的方式来实现对控制系统调节作用。四、变频控制原理 用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比,节能效果十分显著(可根据具体情况计算出来)。其优点是: 1、 起动平衡,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击; 2、 由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命; 3、 可以消除起动和停机时的水锤效应; 一般地说,当由一台变频器控制一台电动机时,只需使变频器的配用电动机容量与实际电动机容量相符即可。当一台变频器同时控制两台电动机时,原则上变频器的配用电动机容量应等于两台电动机的容量之和。但如在高峰负载时的用水量比两台水泵全速供水量相差很多时,可考虑适当减小变频器的容量,但应注意留有足够的容量。 虽然水泵在低速运行时,电动机的工作电流较小。但是,当用户的用水量变化频繁时,电动机将处于频繁的升、降速状态,而升、降速的电流可略超过电动机的额定电流,导致电动机过热。因此,电动机的热保护是必需的。对于这种由于频繁地升、降速而积累起来的温升,变频器内的电子热保护功能是难以起到保护作用的,所以应采用热继电器来进行电动机的热保护。 在主要功能预置方面,最高频率应以电动机的额定频率为变频器的最高工作频率。升、降速时间在采用PID调节器的情况下,升、降速时间应尽量设定得短一些,以免影响由PID调节器决定的动态响应过程。如变频器本身具有PID调节功能时,只要在预置时设定PID功能有效,则所设定的升速和降速时间将自动失效。五、恒压供水系统特点 1、 节电:优化的节能控制软件,使水泵实现最大限度地节能运行; 2、 节水:根据实际用水情况设定管网压力,自动控制水泵出水量,减少了水的跑、漏现象; 3、 运行可靠:由变频器实现泵的软起动,使水泵实现由工频到变频的无冲击切换,防止管网冲击、避免管网压力超限,管道破裂。 4、 联网功能:采用全中文工控组态软件,实时监控各个站点,如电机的电压、电流、工作频率、管网压力及流量等。并且能够累积每个站点的用电量,累积每台泵的出水量,同时提供各种形式的打印报表,以便分析统计。 5、 控制灵活:分段供水,定时供水,手动选择工作方式。 6、 自我保护功能完善:如某台泵出现故障,主动向上位机发出报警信息,同时启动备用泵,以维持供水平衡。万一自控系统出现故障,用户可以直接操作手动系统,以保护供水。六、系统应用范围 1、 自来水厂、加压泵房 2、 居民生活区、宾馆及其它建筑 3、 企业生产用水 4、 锅炉循环水系统 5、 农田灌溉系统

智能水位控制系统毕业设计一、水位智能检测系统设计原理�实验证明,纯净水几乎是不导电的,但自然界存在的以及人们日常使用的水都会含有一定的Mg2+、Ca2+等离子,它们的存在使水导电。本控制装置就是利用水的导电性完成的。�如图1所示,虚线表示允许水位变化的上下限。在正常情况下,应保持水位在虚线范围之内。为此,在水塔的不同高度安装了3根金属棒,以感知水位变化情况。图1 水位检测原理图其中B棒处于下限水位,C棒处于上限水位,A棒接+5V电源,B棒、C棒各通过一个电阻与地相连。�水塔由电机带动水泵供水,单片机控制电机转动以达到对水位控制之目的。供水时,水位上升。当达到上限时,由于水的导电作用,B、C棒连通+5V。因此,b、c两端均为1状态,这时应停止电机和水泵工作,不再给水塔供水。当水位降到下限时,B、C棒都不能与A棒导电,因此,b、c两端均为0状态。这时应启动电机,带动水泵工作,给水塔供水。当水位处于上下限之间时,B棒与A棒导通,b端为1状态。C端为0状态。这时,无论是电机已在带动水泵给水塔加水,水位在不断上升;或者是电机没有工作,用水使水位在不断下降。都应继续维持原有的工作状态。�二、基于单片机控制的水塔水位控制系统�1�单片机控制电路�水塔水位控制的电路如图2所示。�2�前向通道设计图2 水塔水位控制电路由于所采用的信号是频率随水位变化而变的脉冲信号(开关量),因此电路设计中省去了A/D�转换部分,这不仅降低了硬件电路的成本,而且由于采用数字脉冲信号通信,提高了系统的抗干扰能力、稳定性和精度。�输入的可变脉冲信号送到8031的P10和P11脚电平,当接收到信号时,输入脉冲使其输出高电平,而无信号输入时,无触发脉冲,此时翻转为低电平。程序控制8031周期性地对P11和P10脚电平进行采样,达到控制的目的。�3.微机控制数据处理部分�在电路设计中,充分利用8031已有端口的作用,同时也考虑扩展,做到尽可能节省元件,不仅可降低成本,而且提高可靠性。(1)使用8031单片机。水塔水位控制的电路如图3—1。接受电路得到的是频率随水位变化的调频脉冲,它反映了贮水池水位的高度,对其进行信号处理,便能实现对水位的控制及故障报警等功能。要完成此一工作,最佳的选择是采用微机控制,实验中是以MCS—51系列弹片机8031作CPU。对接受的信号进行数据处理,完成相应的水位控制、故障报警等功能。8031芯片的内部结构框图见图3所示。�由图3可大致看到:它含运算器、控制器、片内存储器、4个I/O接口、串行接口定时器/计数器、中断系统、振荡器等功能部件。图中SP是堆栈指针寄存器,栈区占用了片内RAM的部分单元;未见通用寄存器(工作寄存器),因单片机片内有存储器,与访问工作寄存器一样方便,所以就把一定数量的片内RAM字节划作工作寄存器区;PSW是程序状态字寄存器,简称程序状态字,相当于其他计算机的标志寄存器;DPTR是数据指针寄存器,在访问片外ROM、片外RAM、甚至扩展I/O接口时特别有用;B寄存器又称乘法寄存器,它与累加器A协同工作,可进行乘法操作和除法操作。实验中8031时钟频率为6MHz。由于8031没有内部ROM,因此需外扩展程序存储器。本系统采用2732EPROM扩展4K程序存储器,对应地址空间为0000H~0FFFH。(2)74LS373作为地址锁存器。74LS373片内是8个输出带三态门的D锁存器,其结构示意图见图4所示。当使能端G呈高点平时锁存器中的内容可更新,而在返回低电平瞬间实现锁存。如此时芯片的输出控制端为低,也即输出三态门打开,锁存器中的地址信息便可经由三态门输出。除74LS373外,84LS273、8282、8212等芯片也可用作地址锁存器,但使用时接法稍有不同,由于接线稍繁、多用硬件和价格稍贵,故不如74LS373用的普遍。 图3 8031芯片内部结构框图(3)两个水位信号由P10和P11输入,这两个信号共有四种组合状态。如表3—1所示。其中第三种组合(b=1、c=0)正常情况下是不能发生的,但在设计中还是应该考虑到,并作为一种故障状态。�表3-1 水位信号状态表C(P11) B(P10) 操作 0 0 电机运转 0 1 维持原状 1 0 故障报警 1 1 电机停转 (4)控制信号由P12端输出,去控制电机。为了提高控制的可靠性,使用了光电耦合。4.报警电路�本系统采用发光二极管,当控制电路出现故障状态时,P13置零,发光二极管导通,发光报警。�5.软件设计�一个应用系统,要完成各项功能,首先必须有较完善的硬件作保证。同时还必须得到相应设计合理的软件的支持,尤其是微机应用高速发展的今天,许多由硬件完成的工作,都可通过软件编程而代替。甚至有些必须采用很复杂的硬件电路才能完成的工作,用软件编程有时会变得很简单,如数字滤波,信号处理等。因此充分利用其内部丰富的硬件资源和软件资源,采用MCS—51汇编语言和结构化程序设计方法进行软件编程。这个系统程序由主控程序、延时子程序组成。其中主控程序是核心。由它控制着整个系统程序的运行和跳转。流程图如图5所示。包括系统初始化,数据处理,故障报警等。�电路具体工作情况如下:�① 当水位低于B时,由于极棒A和C、A和B之间被空气绝缘,P10和P11得到低电平,全置0,单片机控制电路使P12置零,继电器吸合,启动水泵向水塔灌水;�② 当水位高于B低于C时,P10置1,P11置0,继电器常开触电自保,因此升到B以上时,继电器并不立即释放,电极仍然供水;③ 当水位达到C时,P10 、P11均置1,单片机控制电路使P12置1,继电器释放,水泵停止工作;�④ 用水过程中,水位降到C以下,P11置0,P10置1,维持原状,电机不工作,直到降到B以下,如此循环往复。�系统出现故障时,由P13置零,输出报警信号,驱动一支发光二极管进行光报警。三、结束语�现代传感技术、电子技术、计算机技术、自动控制技术、信息处理技术和新工艺、新材料的发展为智能检测系统的发展带来了前所未有的奇迹。在工业、国防、科研等许多应用领域,智能检测系统正发挥着越来越大的作用。检测设备就像神经和感官,源源不断地向人类提供宏观与微观世界的种种信息,成为人们认识自然、改造自然的有力工具。现代的广义智能检测系统应包括一切以计算机(单片机、PC机、工控机、系统机)为信息处理核心的检测设备。因此,智能检测系统包括了信息获取、信息传送、信息处理和信息输出等多个硬、软件环节。从某种程度上来说,智能检测系统的发展水平表现了一个国家的科技和设计水平。�本课题研究的内容是“智能水位控制系统”。水位控制在日常生活及工业领域中应用相当广泛,比如水塔、地下水、水电站等情况下的水位控制。而以往水位的检测是由人工完成的,值班人员全天候地对水位的变化进行监测,用有线电话及时把水位变化情况报知主控室。然后主控室再开动电机进行给排水。很显然上述重复性的工作无论从人员、时间和资金上都将造成很大的浪费。同时也容易出差错。因此急需一种能自动检测水位,并根据水位变化的情况自动调节的自动控制系统,我所研究的就是这方面的课题。�水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。本实验采用两种方法(单片机和时基集成电路)进行主控制,在水池上安装一个自动测水位装置。利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台应用单片微机或时基集成电路对接收到的信号进行数据处理,完成相应的水位显示、控制及故障报警等功能。�参考文献�1.丁元杰 单片微机原理及应用 机械工业出版社 2000�2.腾召胜 罗隆福 智能检测系统与数据融合 机械工业出版社 20003.孙虎章 自动控制原理 中央广播电视大学出版社 1999

系统仿真论文

船舶航向自动舵控制系统仿真论文任务书用思维的观点去写。本课程设计利用Matlab环境中的Simulink仿真工具箱和友好的GUI界面,设计了船舶航向实验系统所需的航向控制器。本课程设计在设计仿真控制平台中涉及到航向控制器的设计,航向控制器是仿真平台的基础,在航向控制器的基础之上实现仿真平台上的相关功能。

不难的,仿真可以搬忙做。弄清论文和文学作品的结构特点及表现形式。掌握以下划分段落的方式:(1)以时空变化划分(2)以作者思想感情的变化来划分(3)按记叙内容的变化来划分(4)按描述角度的变化、事情发展的阶段来划分

  • 索引序列
  • 热工控制系统的仿真毕业论文
  • 系统仿真学报和控制工程哪个好中
  • 精馏塔温度控制系统仿真毕业论文
  • 水位模糊控制系统仿真研究论文
  • 系统仿真论文
  • 返回顶部