论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!
1. 圆锥曲线的性质及推广应用
2. 经济问题中的概率统计模型及应用
3. 通过逻辑趣题学推理
4. 直觉思维的训练和培养
5. 用高等数学知识解初等数学题
6. 浅谈数学中的变形技巧
7. 浅谈平均值不等式的应用
8. 浅谈高中立体几何的入门学习
9. 数形结合思想
10. 关于连通性的两个习题
11. 从赌博和概率到抽奖陷阱中的数学
12. 情感在数学教学中的作用
13. 因材施教因性施教
14. 关于抽象函数的若干问题
15. 创新教育背景下的数学教学
16. 实数基本理论的一些探讨
17. 论数学教学中的心理环境
18. 以数学教学为例谈谈课堂提问的设计原则
1. 网络优化
2. 泰勒公式及其应用
3. 浅谈中学数学中的反证法
4. 数学选择题的利和弊
5. 浅谈计算机辅助数学教学
6. 论研究性学习
7. 浅谈发展数学思维的学习方法
8. 关于整系数多项式有理根的几个定理及求解方法
9. 数学教学中课堂提问的误区与对策
10. 中学数学教学中的创造性思维的培养
11. 浅谈数学教学中的“问题情境”
12. 市场经济中的蛛网模型
13. 中学数学教学设计前期分析的研究
14. 数学课堂差异教学
15. 一种函数方程的解法
16. 积分中值定理的再讨论
17. 二阶变系数齐次微分方程的求解问题
18. 毕业设计课题(论文主题等)
19. 浅谈线性变换的对角化问题
1. 浅谈奥数竟赛的利与弊
2. 浅谈中学数学中数形结合的思想
3. 浅谈中学数学中不等式的教学
4. 中数教学研究
5. XXX课程网上教学系统分析与设计
6. 数学CAI课件开发研究
7. 中等职业学校数学教学改革研究与探讨
8. 中等职业学校数学教学设计研究
9. 中等职业学校中外数学教学的比较研究
10. 中等职业学校数学教材研究
11. 关于数学学科案例教学法的探讨
12. 中外著名数学家学术思想探讨
13. 试论数学美
14. 数学中的研究性学习
15. 数字危机
16. 中学数学中的化归方法
17. 高斯分布的启示
有很多从事数学教育工作者都认为关于数学教育方面的论文很难写,实际上是他们没有掌握到数学论文的写作规律。数学论文有两种,1、纯数学论文,2、是数学教学论文。许多数学教育工作者很难有时间去从事纯数学的研究,通过职称聘任的方式是需要公开发表论文,如此一来,大部分人的论文都是这样写的:将工作经验并总结一些数学教学而写成的。数学教学研究论文是研究教学方法,教育思想,教材和教育对象的心理。但无论哪种数学论文,都必须遵循论文格式和写作规则。一、写数学论文应该有原则1、创新性作为发表研究成果论文,应反映作者本人提供的新事实、新方法和新见解。论文题目不新颖,没有有价值的成果,即使有高超的写作技巧,也不可能把论文写好。基础研究最忌讳的就是低水平的重复,例如:处理因素、受试对象、观察指标等结果与前几代人基本没有差异,这样的论文是不值得被发表的。2、科学性科技论文的要点在其科学性。没有科学性的论文是毫无价值的,可能会使他人误入歧途,从而产生有害的结果。论文因该具备以下“四性”:①反映事实的真实性;②选材的客观性;③分析与决策的合理性;④语言表达的准确性。3、规范性论文表述的一个重要特点就是规范性。科学论文形成了相对固定的论文形式,论文标题一般不超过20个字,摘要部分一般是写应用的方法,获得的结果以及含义等内容;然后就是关键字,引言,研究方法,讨论和结果这样部分所组成。这种程序是无数科学家经验总结出来的,优点在于:①符合大众的认知规律; ②简洁明了,篇幅短、信息量大;(3)方便读者阅读。二、撰写数学论文的忌讳1、大题小作论文写作不是出一本书,如果论文的选题太大,那么你的论文就不可能深入去研究。数学教育论文的基本特点是:有数学内容,谈数学教育问题、论文形式、新见解、新想法。作者就可以选择小方面来写论文,这样可以深入研究,写出亮点。2、关门写稿在学术期刊上发表的论文,单独来看自然是独立的、完整的。就杂志的整体体系而言,论文之间会存在一些联系,或者是形成一个小小专题,在撰写论文时我们绝不能捏造事实来夸大我们的结论,我们可以借鉴他人的研究成果,在他人研究基础上做进一步研究,避免做无用功。3、形式思维混乱随着科学的发展,科技论文的基本格式已经在世界范围内统一起来。论文需要标准化和规范化。有些人的论文是东拼西凑出来的,前后自相矛盾,这样的论文很难让人读懂。因此,在写作中要遵循基本的思维逻辑方式。内容来源:papertime官网
数学专业毕业论文选题方向如下:
1、并行组合数学模型方式研究及初步应用。
2、数学规划在非系统风险投资组合中的应用。
3、金融经济学中的组合数学问题。
4、竞赛数学中的组合恒等式。
5、概率方法在组合数学中的应用。
6、组合数学中的代数方法。
7、组合电器局部放电超高频信号数学模型构建和模式识别研究。
8、概率方法在组合数学中的某些应用。
9、组合投资数学模型发展的研究。
10、高炉炉温组合预报和十字测温数学建模。
11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。
12、证券组合投资的灰色优化数学模型的研究。
13、一些算子在组合数学中的应用。
14、概率方法在组合数学及混合超图染色理论中的应用。
15、竞赛数学中的组合恒等式。
毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。
去看看这本(运筹与模糊学 )里的内容吧
在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科。下文是我为大家整理的关于数学与应用数学 毕业 论文的内容,欢迎大家阅读参考!
浅析高校目前的应用数学教学状况与改革策略
在高校设立的学科中数学教学占有的位置不容忽视,加强数学 教育 就能够使学生在解决实际问题时更有把握,并且学生自身还可以构建其数学知识体系。所以,在进行高效实际数学教学改革时,师生都对教学改革的观念加以重视,同时要慢慢的培养学生养成良好的学习习惯。
1 高校应用数学内在的意义
高校应用数学这门学科非常重要,并且不同与以往的教学。其一,是应用领域上的不同,高校应用数学的开始针对性特别的强,以往是数学有着较为传统的应用领域。其二,应用数学主要关注的就是将理论知识联系到实际,可是,以往的数学主要就是对理论加以注重。即使有很大的差异存在这两种数学中,可是这两种学科的内容是不能分离的,他们是一个整体,存在的差异也只是在针对性方面和教学目标方面[1].
2 高校目前的应用数学的教学状况
建立应用数学的有关课堂
学生在深入学习应用数学知识后,可以对数学中的一些基础运算加以掌握,并且学生的思维能力也得到了提高,学生能够深入的分析数学中的所有问题,并在对所有问题应用所学的理论知识加以解决,对学生的数学理论知识的运用与创新能力进行培养,最后达到提升学生数学素养的目标。
大学生的教学课程就包括高等数学课程,并且高校还建立了与改课程有关的专人培养内容,对应用数学的学习有助于学习其他的学科,想要学好其他的课程,应用数学的学习必不可少[2].高校建立应用数学课堂,这样学生就能掌握数学的理论知识,学生的学习数学能力将会得到培养,同时增加学生的学习兴趣,学生的数学素养也会得到提高。
高校数学中出现的问题
(1)在教学内容上有问题存在。高校数学教学的内容上涵盖性较强,很多专业学生对数学的学习知识为基础理论,根本不能联系数学实践,所以,教学的领域根本不符合教学要求,并且,学生在整个学习的过程中对所有理论知识都不能深刻的理解,这都阻碍了学生积极主动的学习数学理论知识的想法。
(2)存在在教学内容上的问题。现在高校的数学教学课堂主要重视的就是学习技巧,同时还注重推理的严谨性,可是却忽视了实际问题中应用数学理论知识去解决,这样培养出的专业人才将不能以专业实现就业,没有做到立足于岗位,对专业素质的培养不加以重视,致使理论知识脱离于实践应用,最后不能有效的培养学生的职业能力[3].
(3)存在在教师队伍方面的问题。现在,在数学教学中应用数学具有非常重要的作用,可是应用数学的教师并没有对这一点科学知识加以掌握,缺乏基本的教学能力,也缺少培养学生教学的 方法 ,在进行应用数学的教学过程中,经常出现的现象较为普遍就是缺乏专业理论知识,这样学生对理论知识就不能熟练掌握,学生也就体会不到结合理论知识和现实时间的基础要素。
3 高校应用数学的改革策略
高校应用数学制定了正确的教学观念
高校对与应用数学教学有关的课程进行制定时一定要对专业的要求加以确定,对学生所学的专业进行分析,适当的调整应用数学的教育理念。同时数学的基本开放原则为适用性,将学生提升自身的素质作为教学目标。同时还要注意数学教学所包含的育人能力,将学生的所有能力进行有效的培养,引导学生在实际生活中应用数学去解决问题,引领学生增强创新能力。
将以往的 教学方法 加以改变培养学生增加应用数学的意识
传统的数学教学方式为灌输式,新的教学方案要应用启发式来实现数学教学,同时要对多种教学方法进行深入的研究,使教学方法更有效,以往教师在进行教学时,教学方法为单一的,学生学习的知识都是被动接受的,学生在这种教学方法的带领下只能逐渐的失去数学学习的兴趣,这样需要教师将教学方法灵活化,为学生创建出一种愉悦的学习环境[4].主要就是要对学生实施因材施教,使学生能够充分发挥自己的学习热情。
高校在进行整个应用数学教学时,首先要培养的就是学生有基本的应用数学观念,同时数学知识的有效运用是教学中必不可少的内容。这就需要高校的数学教师担负起自己的教育责任,首先教师要掌握学生对应用数学的意识深浅,如果有较差的应用意识,要找其原因,同时一定要培养学生学习数学的兴趣,引导学生进行积极主动的学习,让学生能够认识到我们的生活中广泛的应用数学知识。教育者要对其进行深刻的研究,对应用数学加以重视,使应用数学的重要性在教学中得以发挥[5].同时还要将学生应用数学的意识加以提升,并且逐渐提高应用数学的能力。
对应用数学的教学内容加以改变
对数学的教学内容进行改革时,要对不同专业的内在要求加以综合,可以将课堂改变成弹性教学,对应用数学所具有的严谨性不应过多的强调,根据学生的专业内容进行教学课堂的设计,将众多的基础知识提供给学生,在以后能够更好的支持学生的职业技能,使学生的综合能力得到提高[6].
总之想要使学生的自身学习能力能够提高,就要注意到应用数学不同于纯数学,它的实践性较强,所以,想要使学生能够积极主动学习应用数学,就一定要培养学生的学习兴趣。高校要在数学师资投入这一方面加大力度,并且也要深入的去分析和研究这一教学课题,将应用数学的整体教学提升上来,使应用数学教学不断的发展。
参考文献:
[1] 邢潮锋,黄治琴,杨旭,等。 数学建模与高校数学教学改革的实践---以济南大学为例[J].高等函授学报(自然科学版),2010,23(2):20-22.
[2]郭娜,朱奕奕。浅谈高校应用数学教学改革与学生应用数学意识的培养[J].信息化建设,2015(4):61-63.
[3]王艳华,王笑岩。渗透数学建模思想方法的基本途径[J].辽宁师专学报(自然科学版),2012,14(4):5-6.
[4]王君轩。探究高校学生数学建模意识与方法的培养[J].大观周刊,2012(16):214-214.
[5]宋文静。浅谈高校数学教学中如何培养学生应用数学意识[J].东方青年·教师,2012(2):30.
[6]施明华,赵建中,周本达,等。应用型院校高等数学与数学建模融合的探索[J].教育教学论坛,2013(21):270-271.
浅谈小学生应用数学意识提升策略
在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科,这些学科的广泛应用都体现了应用数学的思想。 随着教育体制的改革,教学中也对应用数学教学提出了新的要求,要求应用数学教学要重视与生活的联系性,及与 其它 学科的关联。让小学生能用数学知识,解决实际生活中的一些问题。
1、丰富的生活与应用数学的联系
教师要注重生活素材的积累,并能将这些有用的素材贯穿到教学中,把数学书本中抽象的知识具体化,让小学生更好地进行消化和理解,认识到应用数学与实际生活的联系。 根据学习的内容老师可以有针对性布置一些作业。比如在进行米,厘米的学习时,可以让学生回家里量一下床、门、饭桌等家俱的尺寸,在学习元角分等时,可以让学生自己走超市买矿泉水等进行实践,这样可以加深对学习的数学知识的理解,并起到一定的巩固作用,是一个非常好的教学方法。
2、开启小学生学习应用数学的积极性
小学生的应用数学知识,大多比较简单,在生活中很容易找到切入点和联系性。所以要求老师在教学中,多进行书本与实际的联系,激发学生的学习积极性,多把理论化的数学知识转化成实际的问题。 这样不仅让学生认识起来更清晰,还会使学生真正感受到学习应用数学的价值,积极想办法用应用数学的思想解决问题。 在这个学习的过程中,学生就能够对应用数学产生浓厚的兴趣,有探究下去的意识,这才是教学的目的所在。例如分数部分的讲解,就可以通过分 蛋糕 、分苹果等生活中实际事例来进行讲解,这样学生不仅能很快理解,而且会明白在日常生活中如何去应用分数,所以这样往往教学效果比较理想。
3、不忽视教材的作用,教材融于生活
随着教学方法的推陈出新,很多老师对教材开始忽视。 因为越来越多的教学方式,象分组辅导活动、多媒体教学、课外设计等各种形式教学的开展,老师对教材就不象过去那么重视和依赖了,其实这种想法也是错误的。 任何的教学活动也是要以教材为蓝本的,都是互为补充的关系,教材起到统领性、目标性的作用,任何形式的教学都是围绕教材来进行的,如果脱离了教材就失去了意义,所以老师要充分地利用好手中教材的作用,并与实际生活展开联系。
如:小小采购员、小管家、数字与编码、节约能源、调查利率,计算利息等,这些实践活动内容既符合学生的年龄特征和知识基础,又符合学生的生活背景。因此,我们可充分利用这些资源,遵循教材的要求组织具体、有趣、富有实践性、全员参与的数学活动,培养学生用数学的眼光观察周围事物, 经历应用数学知识分析和解决实际问题的过程,将数学问题与生活 经验 联系起来,使学生认识到数学与日常生活息息相关,获得应用数学的成功体验。
4、生活情境化的练习促进应用数学的学习
对于应用数学的教学,最合适的方法就是放到具体的情境中去讲解,这样更利于学生的思考,并使数学看起来更有趣,更容易激发学生的学习兴趣。在这个方面,就需要教师用心去设计一些生活场景,并根据学生的 兴趣 爱好 ,多设置一些开放性的问题,老师适当进行引导。 这样让学生在回答问题和思考问题的过程中,进行了应用数学知识的学习。
比如,在学生学习加减法时,可以让几个同学进行分组,分别扮演顾客和营业员,拿钱和一些简单的货品进行加减法的运算练习,可以有同学喜欢的糖果,饮料等,也可以有一些平时常见的书包、本子和笔等文具。 这样学生会有参予的积极性,也会对加减法的运算产生浓厚的兴趣, 并且通过分组练习了解了加减法运算在实际生活中的运用,这种情境式教学方法,就是让学生在最熟悉的环境中去感受接触到新知识,在应用数学的教学中受到学生普遍好评。
5、学习应用数学的过程就是培养实际能力的过程
在学习的过程中也不断发现问题,然后再想办法去解决问题。 这整个的过程,都可以让学生不知不觉中去探究知识,增加 逻辑思维 能力与解决问题的能力。 另外,通过学生问问题,其它同学和老师解答,还可以加强学生的沟通交流能力。 在与老师和同学的交流探讨中,还可以让同学懂得集体的力量,懂得克服困难有时需要帮助,从各个角度和层面上,让学生了解感受数学在实际中的应用,应用数学的魅力及学习它的重要意义。
在教学低年级学生学习比多比少,比大比小的知识并能做简单的减法讲讲算算后,可让学生调查家里人的岁数,编成应用题,如奶奶66 岁,爸爸 30 岁,奶奶比爸爸大几岁? 等等,讨论谁的年龄大,谁的年龄小,谁比谁小多少,谁与谁相差多少? 两人相加是多少岁? 谁的年龄是谁的几倍等。 再如教学乘法、除法的含义时,通过摆一摆学具的活动,掌握抽象的概念。 教师要鼓励学生多思考、多观察,从中发现数学问题,并将其分析、探索、组织、锻炼、筛选等活动方式自编应用题,有利于培养学生学数学、用数学的意识,也有利于培养学生从不同角度,全方位分析问题和解决问题的能力。
6、结束语
在我们的日常工作和生活中有着大量的应用数学问题。 只要小学数学教师能够将平时收集和观察到的实践问题的资料, 经过 总结 、概括、处理之后,就能够设计和提炼出相关的应用数学问题,让学生把他们所学到的知识应用于实践生活当中去,从而使学生认识到学习数学的价值,激发学生学习数学的兴趣,开拓学生的数学思维,提高学生灵活运用数学知识的意识和能力。 因此,充分发挥应用数学在小学数学教学中的作用,不仅能够教会学生如何运用学到的数学知识来解决实际应用数学问题,还能激发每个学生的创造潜能,培养学生的创新能力。
参考文献:
[1]季山红.对小学生数学建模思想的培养[J].语数外学习:初中版中旬,2012(09)。
[2]郭霞.在小学阶段进行数学建模的探索[J].中国电力教育,2009(13)。
[3]吴信钰.小学数学教学联系生活策略的研究[D].东北师范大学,2011.
高等数学对物流专业的影响 [摘 要] 随着物流管理专业的迅速发展,高等数学教学对于物流管理专门人才的培养具有极其重要意义。本文结合物流管理专业的特色阐述了高等数学对于物流管理专门人才培养的重要性及在物流方面重要用途。 [关键词] 高等数学物流管理 人才 高校 数学作为一门技术学科,在知识经济时代,越来越受到各行各业的重视。高等院校数学教学正在向以培养学生的数学素质为宗旨的能力教育转变。而物流管理是一门新兴学科,它主要包括理论、技术、设备三大方面,涉及企业管理、市场营销、电子商务、信息技术等多个学科的内容,因此高等数学教学对于物流管理专门人才的培养具有极其重要意义。 一、问题的提出 进入本世纪以来,尤其是我国加入WTO以后,我国经济快速、健康、稳定的发展给物流业带来了新的发展契机,现代物流业的蓬勃发展使得物流人才需求急剧升温,当前物流专业人才已被列为我国12类紧缺人才之一。2000年以来,我国高校物流管理专业急剧增加,全国已有75所高校开设了物流管理专业,其中包括一部分高职院校。物流管理学是在现代技术条件下,现代经济运行理念及世界经济全球化环境下产生的,是一门综合性、系统性较强的学科,是许多观念和方法的系统综合。这些观念原理和方法主要来自市场营销、企业、生产、会计、采购和运输领域的,特别来自应用数学。这些内容按现代物流管理技术要求有机地组合起来,形成了现代物流管理学体系。因此,在开展物流专业的数学的教学过程中,摆脱高等院校传统的数学教学模式,要渗透数学素质的教育和能力的培养,要培养出社会需要的复合型人才。 二、数学在物流方面的应用 物流专业的数学课程不是单一的为专业课打基础,而是教学中要渗透数学素质的教育和能力的培养,要培养出社会需要的复合型人才,同时要明确对于物流专业学生学习数学的目的,不是为了研究数学,而是为了应用数学,运用各种数学知识和方法解决自己所从事专业中遇到各种实际问题。中国现代物流的发展需要依靠一项项物流工程建设,依靠各个层次物流系统的运营来实现。物流工程包括物流基础工程、物流设施工程、物流管理工程、物流技术工程和物流运营工程。而物流运营基础工程是由国家建设的,如铁路线路建设工程、物流基地(中心)建设工程、货运站场建设工程、高速公路建设工程、货运枢纽建设工程、港口码头、货运航空港建设工程等,对物流的运营起到平台支持的作用。在现代物流中,物流基础设施平台决定整个物流系统的水平。一个能够有效共用的、高技术水平的、标准化的平台对提升物流运作水平有着极其重大的意义。而数学在研究投资主体在满足工程项目预定目标条件下如何使工程项目的建设成本达到最小,如何投资和管理物流工程项目中,发挥了重要的方法和工具的作用。 “建”即构造,“模”即模型, 建模教学是一种现代教法。所谓数学模型方法, 就是把所考察的实际问题, 化为数学问题, 构造相应的数学模型通过对模型的研究, 使实际问题得以解决的一种数学方法。其中, 建立起合适的数学模型是上述方法最关键的一步。建立数学模型的基本步骤是: 准备、假设、建立(模型)、求解、分析、检验。分析在问题中哪些是变量, 哪些是常量, 哪些量是已知的, 哪些量是未知的、待求的, 然后分析系统内部性质与关系。 例如:某跨国汽车制造公司在全球有m个生产基地Ai,i=1,2,3…n供应量是ai,i=1,2…m,有n个销地Bj,从Ai到Bj运输单位物资的运价(美元)为Cij,这些数据可归结为产销平衡。若Xij表示从Ai到Bj的运输量,那么在产销平衡条件下要求运费最小的方案有最优解?分析:我们可以先用数学建立模型,使其复杂的问题转化为数学问题,并用数学运筹学的方法解决实际问题。 以上的案例,通过数学建模及论证,运输问题有最优解,从而解决了物流运输的理论问题。 再例如,在物流工程项目中的财务分析中,数学提供了在单利和复利情况下,本金与利息之和的计算公式:单利情况时,公式为FV=PV(1+nr):,其中PV为本金(原投资额),r为利率,n为计息周期数,FV为本金与利息之和;复利情况时,公式为:FV=PV(1+nr)n,其中PV为本金(原投资额),r为利率,n为计息周期数,FV为本金与利息之和。例如,在学习导数概念时,除了举出书本上变化率问题中介绍的变速直线运动的速度外,还可介绍一些与专业有关的变化率问题。在物流专业教学中可介绍产品总运输量对时间的导数就是总运输量的变化率,物流总成本对运输量的导数就是运输产品总成本的变化率(边际成本)。在讲授微分方程时,可结合讲解物流运输模型等实例。我们还可以。数学运筹学解决了利用约束条件,求最优解的问题。这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流、实践与应用等活动利用这些学生熟悉的问题进行教学,可提高学生对数学学习的兴趣,激发他们利用所学知识,主动地去探索研究实际问题。 三、结论 总之,高等院校物流管理专业数学能力的培养是高等院校生存发展的需要,势在必行,合理的定位与体现,以适应高等教育迅速发展的形势和培养21世纪创新人才的需要。 参考文献: [1]钱颂迪:运筹学[M].北京:清华大学出版社,~92 [2]黎诣远:经济数学基础[M].北京:高教出版社, 1998,7 [3]王之泰:现代物流管理.中国工人出版社,2002 [4]宋 华 胡左浩:现代物流与供应链管理[M].北京:经济管理出版社,~56
中文系本科毕业论文,学年论文选题一,中国古代文学《诗经》分类研究(情诗,思妇诗,离别诗等)先秦诸子文研究(《论语》,《老子》,《庄子》,《孟子》,《荀子》,《韩非子》等)屈原与楚辞研究(生平,悲剧成因,作品辨伪,思想与艺术等)《诗经》《楚辞》比较研究《左传》的叙事艺术《战国策》研究先秦寓言研究中国文明的来源和特征中国哲学与中国文学的关系贾谊论《史记》人物传记所体现审美情趣《史记》人物传记中人物形象分析汉乐府诗分析汉魏六朝史传文学研究《世说新语》研究唐诗与唐代社 研究;唐人小说研究简论中唐爱情传奇从李贺诗看其"鬼才"之名简论李商隐的咏史诗李商隐的"无题诗"的艺术特色韩0诗风浅探唐人小说研究;试论白居易的"中隐"观试论白居易的"狂"柳宗元和他的山水游记柳宗元的杂文艺术刘禹锡与柳宗元比较研究亡国之音哀以思――论李煜词李煜词的艺术特色唐诗与宋诗比较研究欧阳修在宋代诗文革新中的作用朱熹诗研究柳永词的雅和俗 天津大学本科生毕业设计开题报告学院名称: 专业名称:计算机信息管理学生姓名 指导教师:(内容:课题的来源及意义,国内外发展状况,本课题的研究目标,研究方法研究手段和进度安排,实验方案的可行性分析和已具备的实验条件以及主要的参考文献)人类已经进入21世纪,随着社会的发展,现代科学技术与管理技术的提高,生产信息的多元化、复杂化,信息量越来越大,社会的组织化和生产社会化的程度越来越高,因此,对信息的处理和管理工作也就边的很重要。可以说,现代管理的核心就是决策,而决策的基础,就是各种各样的信息。要想随时了解企业的经营管理活动中的各种运行情况,并且能及时的作出正确的决策,就必须全面而系统的掌握企业的各种生产管理信息,这就需要有科学的管理信息系统来进行企业信息的统一管理,为企业决策提供科学的依据,在这种情况下,结合了现代管理科学、系统科学、计算机科学等学科,形成了一门新兴的边缘性科学---管理信息系统科学。管理信息系统是管理科学、信息科学、系统科学与计算机科学相融合的一门新兴的边缘性科学,是先进的科学技术与现代化管理相结合的产物建设一计算机为主要手段的管理信息系统,已经成为现代企业、公司、政府部门等各类组织实现组织目标、提高自身素质的战略措施管理信息系统的开发是系统建设中最重要的一个阶段,同时也是一项艰巨而复杂的工作。国内外许多历史事实告诉人们,管理信息系统建设的道路坎坷许多已经建立的系统,远远达不到预期的效益和期望,反而因为在开发当中由于工作安排不当,导致耗用了大量的资金,致使后期系统维护工作困难,在系统使用过程中,出现大量错误,使使用单位的效益受到了严重的影响,也没有实现了所开发系统应达到的目的。管理信息系统是一个由人和计算机等组成的能进行信息收集、传递、加工、保存、维护和使用的系统,他是现代组织有效管理、正确决策和实现现代化管理的重要手段。作为一门新兴的学科,它综合了许多科学的方法和概念,包括如现代管理科学、计算机科学、现代经济学、现代运筹学和统计学、数据库技术等许多学科的概念和技术。 目前,市场经济快速渗透到全社会的各个部门,社会医疗体系也面临市场化转型,医院将不再是过去计划体制下的行政事业单位,而是一种经济服务部门。提高工作效率,改进医疗质量,以提高经济效益,是医院管理的新课题。基于计算机网络的信息系统,将成为医院运营的必要技术支撑环境和基础设施。本论文描述了“邯郸人民医院管理信息系统”的开发过程,通过收集和调查有关资料,利用我所学到的管理信息系统领域的知识,对如何开发一个上述的管理信息系统,进行了初步的研究和设计,主要包括该系统的系统分析,系统设计,系统实施,系统管理以及系统维护。本论文详细描述了在该系统开发过程中所采用的如:面向对象开发技术,数据库技术,计算机通信技术,信息资源管理技术,信息系统开发技术等新兴的系统开发技术。鉴于本人知识和精力有限,本论文侧重于描述住院信息管理。该系统开发主要采用POWER BULDING 完成,网络结构主要采用总线型网状结构,并和INTERNET互联,运行环境为中文WINDOWS98或和WINDOWS XP。
《工业工程专业》毕业设计教学大纲课程编码:1238 名 称:《工业工程》毕业设计 专 业:工业工程周 数:18周一,毕业设计意义和目的工业工程专业(本科)毕业设计是全面培养,综合训练工业工程专业本科学生的重要环节,是知识深化,拓宽教学内容的重要过程,可对学生的综合素质和工程实践能力进行全面检验,是实现本科培养目标的重要阶段.通过毕业设计,着重培养学生综合分析和解决工业工程相关实际问题的能力;培养学生独立工作的能力以及严谨,扎实的工作作风和事业心,责任感;掌握工业工程基本理论,技术,方法,着重解决制造系统中的实际工业工程问题;使学生接受工业工程师的基本训练,为学生将来走上工作岗位,独立,顺利完成所承担的工作任务奠定基础.二,选题的原则及题目难度,深度,广度要求(一)题目要求本专业毕业设计选题主要以工程与设计类(毕业设计)为主,原则上不选择管理与研究类题目.具体要求为:选题要求:毕业设计指导教师所出的题目要符合工业工程专业培养目标和教学基本要求,在学生受到工业工程师基本训练的基础上,做到题目具有先进性和一定的完整性,尽可能反映工业工程的新技术,新理论,新方法,力求结合生产,科研任务进行.题目新颖性要求:题目尽量做到每年更新,对已有题目要求说明新的任务和目标.设计内容要求:设计要做到目标明确,工作量充足,难易程度切实可行;设计内容要求有足够的深度和一定的代表性,使学生切实受到专业基本功的训练;坚持每生一题,对大而难的选题可分解为若干子题,但要有明确分工;对于能力强的学生可适当加深加宽设计内容.题目工作量要求:从查阅文献,调查研究开始,按学生每天工作6~8小时,一共16~20周完成来设定的工作量.(二)选题范围根据西安工业学院工业工程专业本科毕业生的培养目标和目前IE工程师主要从事的工作提出以下选题,以供参考(题目力求解决生产系统,服务系统中的实际问题):工作研究与效率运用方法研究对工厂生产系统的改进与设计;运用方法研究优化工厂物流系统的设计;运用方法研究提高企业生产效率的设计;动作研究的经济效果分析;利用作业测定制定科学的时间定额,作业标准,对企业减员增产的设计.生产率研究生产率测定的研究;影响企业生产率的因素与生产率提高研究;降低能耗的途径与方法研究.人因工程降低作业疲劳提高作业能力的途径与方法;影响工作质量的环境因素研究;人体测量学在人机系统设计中的应用;人机系统分析与评价;事故与可操作性分析.运筹学应用利用网络计划编制大型工程进度计划;运用排队论进行最优设计和最优控制;利用存储论进行库存优化设计;运筹学其它理论的应用实例.系统工程应用系统评价与决策;系统仿真在生产系统(或服务系统)中的应用;信息系统的开发与应用生产作业层的信息化(如CAI,CAQC,PDM等);管理办公层的信息化(如MIS,ERP,MRPII,OA,WFS);战略决策层的信息化(如:DSS,ES).工程经济企业投资风险分析;工程技术经济效益的评价与分析;经济效益的评价方法研究;工程项目的可行性研究;设备更新的技术经济分析.价值工程价值工程在企业中的应用;提高价值的途径及应用;以最低成本实现产品功能的途径及应用.物流工程企业物流系统规划及合理化研究;物料搬运设备的选用与设计;物流搬运系统优化与设计;现代仓储系统的规划与设计;配送中心规划与设计;物流系统优化与仿真.10,生产与库存管理生产的组织,计划与控制;降低在制品的途径与方法;库存控制与分析;降低库存的途径与方法;ERP,MRPII在企业的应用;JIT应用.11,质量管理与可靠性工程提高产品可靠性的途径;全面质量管理在企业中的应用;制造过程中的质量控制应用;质量成本控制在企业中的应用;12,先进制造模式GT在制造系统中的应用及效益分析;MC相关技术,策略及应用;AM或LP在企业中的应用;VM及应用.三,设计内容及要求1.毕业设计论文内容要求工业工程专业毕业设计所提交的论文正文应包含的主要内容如下:选题的论证方案比较与选择原理与理论分析工程设计与计算技术经济分析或规划,控制和决策建模,仿真,数据处理与分析,评价及优化反映计算机应用能力和外文资料阅读,利用能力的内容以上内容可根据具体课题有所侧重,但要求学生毕业设计所提交的论文的设计,论证逻辑过程清晰,有必要的分析,计算,设计依据和过程,能反映学生综合运用IE方法,理论解决实际问题的能力.2.论文格式和工作量要求本专业学生毕业设计论文格式严格按照《西安工业学院毕业设计论文规范》的要求执行,论文工作量具体要求为:毕业设计论文正文字数18000字以上.补充说明:a,管理或研究类毕业论文正文字数25000字以上,要求有创新;b,信息系统设计及仿真类题目正文字数12000字以上.英文资料翻译不少于1000单词,内容为与设计相关的英文资料.参考文献不少于15篇,其中包括5篇以上期刊文献,3篇以上英文文献(其中1篇英文文献翻译成汉语),要求正文标注参考文献.
我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网
大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文 范文 篇一:《数学学科德育 教育 渗透思考》 摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。 关键词:数学学科;渗透;德育教育 我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主 渠道 作用。数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的 方法 和能力。这些数学能力包括:空间想象能力、 逻辑思维 能力、基础运算能力和数学建模能力等。第三,数学课作为职业学校 文化 基础课之一,所用资源少,易开展教学活动。结合数学学科的特点,笔者认为可以从以下几点进行德育教育。 1根据中职学校数学学科的特点和数学课的现状,教师的人格 品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。德育要讲究艺术性,要充分发挥情感的感染作用。作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。教师动之以情,才能激发学子之情,使之乐其所学。学生感受到教师对他们的关心,从心底上认可这个教师,从而真正建立起新型的科学的师生关系。 2结合数学教材内容,向学生进行爱祖国和爱科学的教育 在用到正负数及运算法则时,教师给学生说明或是让学生自己上网查找相关内容,可以知道在世界闻名的数学典籍《九章算术》中,就已经提出了相关概念,使得代数学早于西方于公元前2000年就已经产生了;著名的勾股定理、“杨辉三角”、圆周率的计算以及著名数学家陈景润的“陈氏定理”、华罗庚发起和推广的优选法等,我国科学的成就令世界各地的每个炎黄子孙自豪,可以激发起学生强烈的爱科学、爱国情和民族自豪感,同时激励学生学习的进取向上精神。 3培养正确的学习动机和目的,提高学生学习数学兴趣,增强社会责任感 我们学习数学的最终目的是能用数学,因而不管是教师还是学生都应该知道数学在我们生活中或是我们所学专业课上的应用。例如我们在学习圆柱时,就可以和汽车专业所学的发动机上的气缸联系起来讲解表面积和体积相关知识;我们在学习分段函数时,就可以和与我们生活相关的水费、电费、出租车收费联系起来等。 4结合数学学科的特点,培养学生理智的思考、按客观规律办事的良好的人格特征 数学是一门自然科学,科学的问题来不得半点虚假,数学语言的精确性使得数学中的结论不会模棱两可。伽利略:世界的奥秘是本巨大的书,而这本书是用数学语言写成的。越来越多的人认为数学语言是各种科学的通用语言,可见数学语言的精确性。在数学的观点下,一加一只能等于2不可能是其他结果,但在其他的学科就不一定了。不管是数学语言还是通过数学推理得到的结果都不允许有任何弄虚作假的行为存在。我们在日常教学中,应该结合数学的思考方式与 学习方法 ,培养学生事实求是,有根有据,勇于改正错误的科学态度和自觉按客观规律办事习惯。 5结合数学学科的特点,对学生进行辩证唯物主义世界观的教育 数学本身的发生和发展过程中就充满着唯物辩证法。恩格斯曾把数学作为“辩证的辅助工具和表现方式”。数学从实践中发现了问题,然后分析已知存在的问题,找出它们间的关系,利用数学知识, 总结 出来的规律,然后回到实践中检验和运用,这正是体现了辩证唯物主义中从感性—理性—实践的认识论观点。 6挖掘数学教材中的美育素材,通过美学教育,培养学生高尚情操和思想道德修养 我国著名数学家华罗庚说:“数学本身也有无穷的美妙。”数学中的符号、图形、数字排列等都蕴藏着丰富的美育因素。可以告诉学生,圆就代表我们的班集体或者是我们的国家,每个同学就像圆上一个个离散的点,集体的形象与荣誉与我们每个人都是息息相关的。在学习集合的交、并、补的运算时,除了说明符号的简洁、和谐美的同时也可灌输团体意识。在学习直角坐标系时,就可以给学生灌输我们做人也应该方方正正坚持自己的原则。学习点的时候,每个点都是由一对有序的实数组成的,可以把坐标看成是在社会中影响我们自身发展的先天因素和后天因素,而后天因素主要决定了我们未来的发展,从而鼓励每个学生从现在开始努力学习、认真做人、锻炼各种能力,一定会有美好的将来。在教学过程中引导学生发现美、欣赏美、讨论美,逐步培养学生的审美意识审美情趣,培养学生高尚情操和思想道德修养,有助于学生全面发展。 综上所述,结合数学学科的特点对学生进行德育教育是可行的。在数学学科教学中,虽然不能像语文、政治那样直接、系统地对学生进行德育教育,但只要我们善于挖掘教材中的德育因素,在教学过程中实事求是,联系实际,善于引导,就能行之有效地进行德育渗透,使学生学习知识的同时各方面的素质不断提高。 参考文献: [1]中等数学教学中的德育新论,网络. [2]高等数学教学中的德育渗透[J].吉林省经济管理干部学院学报. 大一数学论文范文篇二:《浅谈数学教学德育教育的渗透》 摘要:德育在学校教育中占有举足轻重的地位,是方向、是灵魂,位居各育之首。数学作为基础教育的一门重要学科,在培养学生德育方面,应发挥重要的作用。因此,教师应在数学教学中努力寻找德育点,有机渗透德育,把教书与育人紧密地结合在一起。 关键词:小学数学;数学教学;德育教育; 一、引言 有句话说“百年教育、德育为先”,可见学校教育将德育教育放在相当重要的位置。如今,随着社会的快速进步和科学技术的迅猛发展,小学数学德育教育如何从传统的教育模式中挣脱出来,注入完善的、科学性的内涵,形成一套行之有效的新教育模式。数学虽作为一门理性学科,却蕴含着丰富德育内容。可以根据这门学科的特点,进行德育渗透的教育,使得小学生不仅学到书本的知识,还懂得做人的道理! 二、将德育教育渗透到数学学科教材中 根据数学这门学科的特点,以及小学生的接受能力,注入德育教育的、形象生动的图画和有说服力的内容。做到有机结合,自然渗透的效果。众所周知,小学阶段是 儿童 、青少年身心发展的关键时期,对于刚刚步入学校的低年级学生来说,是认知社会和接受新鲜事物的萌芽期,所以小学数学德育教育工作从此刻开始,进行渗透德育教育。小学数学德育教育如细雨,润物无声,数学学科是沙土。在数学教学过程中,教师无时无处不渗透着细雨之水。而小学生犹如长在沙土里的嫩草,吸吮着沙土中的水分。因此,小学数学中德育渗透,就是将德育本身的因素与数学学科所具有的因素有机地结合起来,使德育内容在潜移默化中逐步形成学生个体内在的思想品德。而数学教材是教学工作主要使用的教学工具,也是授课的依据,更是小学生获取知识与理解做人的来源,由此,编制科学有效的数学教材为课堂授课提供有益的方式。在人们以往的观念中,德育教育应该只是和语文、思想品德等学科有关,以目前的教育内涵来看,这种观念是落后的,也是十足错误的。教育学家赫尔巴特曾有教育 名言 :“教学如果没有进行道德教育,只是一种没有目的的手段,道德教育如果没有教学,就是一种失去了手段的目的”。由此可见,将德育教育渗透到数学教学课堂中来是最为重要的,也是最具有原则性的教育。 三、将德育教育渗透到数学教学课堂中 教师在课堂上教学时,充分挖掘数学教材中的德育因素与知识,渗透德育教育。诸如小学数学教材中的例题、习题、注释、解析中,融入不少进行德育的、形象生动的图画,以及由说服力的数学数据或知识点。将德育因素融合数学知识进行传授、能力培养和思想品德教育为一体的综合性教学模式。把显性的教学问题和隐性的德育教育有机地结合起来,从而实现数学的育人功能。无论是在备课中,还是在课堂上,教师要善于找准在数学教学中德育渗透的切入点,以提高课堂教学实效。可以结合教学内容进行德育渗透中华民族悠久灿烂的数学史源远流长,博大精深。也可以运用现代信息技术、多媒体教学手段,将要授课的内容加入生动的德育元素。重要的是在小学数学教学中,要充分联系教材,联系小学生生活实际,善于将渗透德育教育延申到课堂内外。 四、课堂内外相结合,通过数学活动进行渗透德育教育 在小学数学教学的过程中,德育渗透不能只局限在课堂上,还应该与课外学习有机结合,教师可以开展一些课外数学活动渗透德育。要增强数学课堂的趣味性与实践性,营造一种轻松愉快的情境,注重数学知识与现实生活的联系,使学生意识到数学并不是枯燥无味的,数学离不开生活,生活中处处有数学,从而让学生乐此不疲地致力于学习内容。引导学生学会学以致用将知识回归生活,做到学以致用是数学学习的本质归宿,学生要有将数学知识运用到生活中的意识。如在学习乘法估算后,让学生回家后调查每个人一天的用水量,回学校后估算全班60人一天的用水量,再估算全校三千多人的用水量。在巩固新知的同时让学生体会到了水资源的宝贵,珍惜水资源、节约水资源的思想就会在小学生们小小的心灵扎根。又如,在学生学过统计后,让学生回家后调查自己家庭每天使用垃圾袋的数量,然后通过计算一个班的家庭,一个星期,一个月,一年使用垃圾袋的数量,结合我校附近的垃圾场影响环境的现象,最终总结出垃圾袋对环境造成的影响,这样让学生既可以掌握有关数学知识,又对他们进行了环保教育。再比如,培养小学生动手动脑的能力时,督促小学生手、口、脑、眼、耳多种感官并用,这样做,不但能扩大小学生的信息源,创设良好的思维情境。也能满足小学生好动、好奇的特性。例如:教学“长方体认识”,可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒等),通过感知实物,学生对什么样的物体是长方体获得了初步的感性认识,从而感受美、享受美。 五、结合数学学科特点,通过德育渗透,培养良好习惯 数学是一门严谨的学科,科学性与逻辑性很强,但可以让小学生在学好数学的同时从中养成严格、认真的好习惯。显而易见,小学生计算粗心,错误率高。而提高计算能力就一定要养成仔细计算的习惯。在平时的教学训练中,教师要时时提醒学生不要抄错数,看清是什么运算,加减时注意进位和退位等等,在这里就不一一举例了。简而言之,只要教师善于挖掘、善于捕捉,时时注意、注重在数学课堂中对学生的德育渗透,数学学科的的德育教育一定会取得很好的成效,最终达到德育、智育的双重教育目的。 参考文献: [1]齐建华.数学教育学[M].郑州大学出版社. [2]管建福.小学数学教学艺术[M]2000 大一数学论文范文篇三:《浅谈大学数学素质拓展课程的教学实践》 0 引言 数学不仅是一种科学的语言和工具,是众多科学与技术必备的基础,而且是一门博大精深的科学,更是一种先进的文化,在人类认识世界和改造世界的过程中一直发挥着重要的作用与影响。建设创新型国家的战略构想,需要大批拔尖创新人才,作为大学中重要基础课的大学数学课程,对此负有重要的责任。数学中许多新概念、新方法的引入和发展,众多数学问题和相关实际问题的解决,十分有利于大学生创新精神、 创新思维 和创新能力的培养[1]。 在大学数学课程学习的过程中,培养学生应用数学的意识和兴趣,逐步提高学生的应用能力是大学数学课程教学改革的重要方向。当前大学数学课的教学,大多仍是以教材为中心,以课堂为中心,实践教学较少,课外科技活动的配合注意不够。这些也都是影响学生数学应用意识和应用能力培养的重要因素,应当有所改革。多年来的教学改革实践表明:开设数学拓展课程与数学选修课程,是激发学生学习数学积极性,培养学生数学应用能力和创新能力的一条行之有效的重要途径。 1 开设数学选修课程的必要性 数学的教学不能仅仅是看出知识的传授,而应该使学生在学习知识、培养能力和提高素质诸方面都得到教益,兼顾数学文化和教学素养方面的要求。 大学非数学专业数学课程分为必修和选修课程,一般工科的本科学生高等数学,线性代数,概率论与数理统计为必修课程。而选修课程则由学生依据自身发展需求和学习时间规划,自主选择。选修型课程以拓展知识结构。数学类选修课的目的是引导学生广泛涉猎不同学科领域[2],拓宽知识面,学习不同学科的思想和方法,进一步打通专业,拓宽知识结构,强化素质,自觉养成主动学习、独立思考的习惯,不断提高自我建构知识、能力和素质的本领,培养探索和创新精神。全面提升素养。促进学生个性的发展和学校办学特色的形成,是一种体现不同基础要求、具有一定开放性的课程。 大学数学教育应以培养学生数学能力和提高学生的数学素养为目标。当前,数学课程教学内容与社会的发展不适应问题主要表现在课程教学内容未能及时反映数学发展的最新成果,依然固守形式演绎体系而忽略了非常重要但非演绎的、非严格的重要内容;局限于于课本,只讲课本中呈现的内容而忽略了课程内容的来源与出处的讲解[3]。在教学上,大学数学教学方式单一,越来越形式化,过于注重概念、定理的推导和证明、计算以及解题的技巧,使得数学远离我们周围的世界,远离我们的日常生活。过分强调数学的逻辑性和严密性,导致学生觉得数学过于抽象无法理解[4]。在教学过程中采用传统陈旧的教育理念:重理论轻计算、重技巧轻思想、重推理轻应用。 在具体教学过程中,多数教师仍局限于传授知识本身,特别是局限于解题方法与技巧的训练,而对于如何在知识载体上培养学生的数学思想、 理性思维 和审美情操,提高他们的数学素养,却重视不够。应积极引导教师运用自己的科研能力去深入钻研教学内容,改进 教学方法 ,在传授数学知识的过程中落实数学在培养学生能力和素质方面的作用。应全面落实“知识传授,能力培养,素质提高”三位一体的教育理念[5]。 数学上的不少概念、方法或理论,有些本身就来自其在现实生产和生活中的原型,并且和人文、管理、工程技术有着密不可分的联系,发现并指出这些的联系,对激发学生学习数学的兴趣,增强他们对数学的理解,是大有益处的。当然这也要求教师广泛的涉猎不同的学科领域,对大学数学教师无疑是一个新的挑战。 2 已开设的拓展课程及模块建设 在上述思想指引下,同时为了适应社会的更高要求和不同层次学生的自身需求,结合我校的实际情况,学校出台相应课程改革 措施 ,主要开展了两个方面的建设工作: 拓展课程的模块建设:在现有的工科数学必修课《高等数学》、《线性代数》、《概率论与数理统计》等课程的基础上,开设了《数学建模》、《工程数学中的理论与方法》、《数学文化》、《投资理财常识》等课程,建立并完善了各门课程的课程简介、教学大纲、教学进度及推荐参考书目等,并结合多媒体的教学手段,搭建并完成了《数学建模》课程的网络教学平台,已对全校师生开放。现正在进行《数学文化》、《工程数学中的理论与方法》两门课程的网络平台建设工作。所开设的《工程数学中的理论与方法》,拟开设的《工程问题中的数学计算-MATLAB》主要针对我校的理、工、农、医专业的学生;《投资理财常识》及拟开设的《运筹学》主要针对我校管经类、质量工程类的学生。 拓展实践的模块建设:以素质拓展作为目标的课程设置,旨在提高学生应用数学知识解决实际问题的动手能力和创新能力,我们主要加强了以下几个方面的工作: ①以项目管理的方式鼓励学生积极参加各类科技活动:提倡学生积极申报项目,如大创项目等,鼓励学生积极参与教师的各类研究项目中,以科研小组或科技小组的形式,发表小论文、小发明、小制作、小专利等; ②以培养学生创新意识为导向的各类学科竞赛活动:为进一步培养学生利用理论知识来解决实际问题的分析能力和应用能力,积极鼓励学生参加各类学科竞赛,如:大学生数学建模比赛、大学生统计建模比赛、大学生创业设计大赛等; ③以学习的态度鼓励学生参加 社会实践 和社会调查活动。社会是一个丰富的大舞台,只有融入社会这个大舞台,才能不断积累社会 经验 ,不断增长社会实践的活动能力,从而提高自身的社会管理和适应能力,将来能更快和更好的为社会服务。 3 取得的成绩和存在的不足 数学建模课程是以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力,提高他们学习数学的兴趣和应用数学的意识与能力。 工程中的数学理论与方法主要在我校特定的环境下,在学习完工程类数学必修课的基础上,针对高年级学生,加深和延拓数学的理论知识和计算方法,为数学知识要求高的专业(如工程力学专业、通信工程专业等)及准备报 考研 究生的同学提供数学帮助。 数学文化课程在探讨数学文化的起源、收集了众多的数学 故事 和数学家的故事基础上,结合数学思想、数学方法的形成和发展,阐述了数学发展和数学教育中的人文成分,揭示了数学与社会、数学与其他文化的关系。通过该门课程的学习,让学生更进一步了解生活中的数学、数学中的美,学会欣赏数学文化及弘扬数学文化,推动数学教学的进程。 投资理财常识主要向学生介绍股票基金,期货彩票等的基础知识和交易技巧,教学中用到一些基础性的数学知识如差分方程,大数定理等,更多的则是经济、管理人文知识的熏陶,通过学习该课程,学生感觉数学的应用领域广泛,从而进一步激发学生学习数学的积极性。 通过对我校教学情况的初步了解,尤其是针对昆明理工大学数学类拓展课程开设情况的深入调查,发现大多数的学生对课程满意或非常满意。学生感觉最大的收获在于拓展了知识层面,开拓了视野,感觉数学比以前教材中的内容要丰富和有趣的多。但在《数学文化》这类知识性比较强的课程上,学生输入的多,输出的少,不利于学生知识水平的提高。另外,学生对所开设的选修课程知识了解甚少。这表明,学生进行学习所依托的课程知识基础薄弱。通过统计《数学建模》课程学生对课程、教师和自己的期望中了解到,大多数的学生期望通过老师的讲授,能够在课堂上全面了解所学课程知识。只有半数学生希望老师给学生提供自己动手的机会,更多的学生还是习惯于在课堂上扮演倾听的角色,缺乏用数学解决实际问题的意识和能力。最后,担任选修课程的大学数学教师自身的课程水平和教学能力也有待进一步提高。开设大学数学选修课程对广大数学教师也是一个很大的挑战。尤其是在开设的初期,教师除了要改变自己的教学理念和教学方法,还要努力扩大自己的知识面,制定教学大纲,完善教材和教学内容。 4 结束语 大学数学教学是高等教育的一个有机的组成部分,大学数学选修课程是以数学知识与应用技能、学习策略和跨学科运用为主要内容。如何建立和完善行之有效的大学数学提高阶段的课程体系,以满足新时期学生对数学学习的需求以及国家和社会对人才培养的需要,成为当今高校大学数学教学管理部门越来越关注的问题。大学数学选修课程的开设,适应了社会的更高需求,同时也满足了更高层次学生的自身需要。但是,要真正实现课程开设的目的,仍需更多的努力,不断的完善。 首先,急需向各高校教学管理部门、教师,尤其是学生传达课程改革的必要性,提供良好的改革环境和条件。 其次,要用科学的教学理念改革数学选修课程教学实践,完善教学内容,改善教学方法,实施科学的课程评估方式。如“投资理财常识”之类的课程,已不是单纯的数学基础课程,除用到一些基础性的数学知识外,更多的则是经济、管理人文知识,能否将这类课程纳入人文类选修课程,使学社学习知识的同时,获得相应的学分,这是教学管理部门需要解决的问题。 第三,时刻以学生为中心,所开设课程要能够满足学生的需要,能够激发学生的学习兴趣。 第四,教师要进一步提高和完善自己,适应学生的个性要求,改善教学方法,开发学生的主动性和创造性,全面提高学生的综合素质。 最后,针对课程教学中出现的问题,和课程教学效果要能够做到及时调查,不断对课程及教学做出相应调整和改善。大学数学选修课程的开设顺应了时代的要求和学生的需要,只要对之进行不断的完善,必然能够为较高层次的学生开拓出一片新的天地,为他们将来更好地适应社会的需求做好储备。 猜你喜欢: 1. 学习大学数学的心得 2. 数学文化论文3000字 3. 数学大学本科生毕业论文 4. 大学数学科技论文范文 5. 大学数学教育论文范文
现在和将来的角度,结合你所学 我可以写,比较多
去看看这本(运筹与模糊学 )里的内容吧
分类: 社会民生 >> 其他社会话题 问题描述: 请大家帮帮忙 解析: 何谓“运筹学”?它的英文名称是Operations Research,直译为“作业研究”,就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。汉语是世界上最丰富的语言,中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。这就极为恰当地概括了这门学科的精髓。 在人类历史的长河中,运筹谋划的思想俯拾皆是,精典的运筹谋划案例也不鲜见。像“孙子兵法”就是我国古代战争谋略之集大成者;像诸葛亮更是家喻户晓的一代军事运筹大师。然而,把“运筹学”真正当成一门科学来研究,则还只是近几十年来的事。第二次世界大战中,英美等国抽调各方面的专家参与各种战略战术的优化研究工作,获得了显著的成功,大大推进了胜利的进程。战后,从事这些活动的许多专家转到了民用部门,使运筹学很快推广到了工业企业和 *** 工作的各个方面,从而促进了运筹学有关理论和方法的研究和实践,使得运筹学迅速发展并逐步成熟起来。 运筹学发展到现在,虽然只有五十多年的历史,但其内容已相当丰富,所涉及的领域也十分广泛。以《运筹学国际文摘》收集的各国运筹学论文的内容为例,按技术分类就有50多种。现在这门新兴学科的应用已深入到国民经济的各个领域,成为促进国民经济多快好省,健康协调发展的有效方法。 我国运筹学的应用是在1957年始于建筑业和纺织业。1958年开始在交通运输、工业、农业、水利建设、邮电等方面都有应用,尤其是运输方面,提出了“图上作业法”并从理论上证明了其科学性。在解决邮递员合理投递路线问题时,管梅谷教授提出了国外称之为“中国邮路问题”解法。从60年代起,运筹学在我国的钢铁和石油部门得到了全面和深入的应用。1965年起统筹法的应用在建筑业、大型设备维修计划等方面取得了可喜进展。从70年代起,在全国大部分省市推广优选法。70年代中期最优化方法在工程设计界得到广泛的重视。在光学设计、船舶设计、飞机设计、变压器设计、电子线路设计、建筑结构设计和化工过程设计等方面都有成果。70年代中期的排队论开始应用于研究港口、矿山、电讯和计算机设计等方面。图论曾被用于线路布置和计算机设计、化学物品的存放等。存贮论在我国应用较晚,70年代末在汽车工业和物资部门取得成功,近年来运筹学的应用已趋于研究规模大和复杂的问题,如部门计划、区域经济规划等,并已与系统工程难于分解。 关于运筹学将往哪个方向发展,从70年代起就在西方运筹学界引起过争论,至今还没有一个统一的结论,这里提出某些运筹学界的观点,供大家进一步学习和研究时参考。 美国前运筹学会主席邦德()认为,运筹学应在三个领域发展:运筹学应用、运筹科学、运筹数学,并强调在协调发展的同时重点发展前两者。这是由于运筹数学在70年代已形成一个强有力的分支,对问题的数学描述已相当完善,却忘掉了运筹学的原有特色,忽视了对多学科的横向交叉联系和解决实际问题的研究。现在,运筹学工作者面临的大量新问题是:经济、技术、社会、生态和政治因素交叉在一体的复杂系统,所以从70年代末80年代初,不少运筹学家提出“要注意研究大系统”,“要从运筹学到系统分析”。由于研究大系统的时间范围有可能很长,还必须与未来学紧密结合起来;面临的问题大多是涉及技术、经济、社会、心理等综合因素,在运筹学中除了常用的数学方法,还引入了一些非数学的方法和理论。如美国运筹学家沙旦()于70年代末期提出的层次分析法(AHP),可以看作是解决非结构问题的一个尝试。针对这种状况,切克兰特()从方法论上对此进行了划分。他把传统的运筹学方法称为硬系统思考,认为它适合解决那种结构明确的系统的战术及技术问题,而对于结构不明确的、有人参与活动的系统就要采用软系统思考的方法。借助电子计算机,研究软系统的概念和运用方法应是今后运筹学发展的一个方向。
管理运筹学”是一门应用极其广泛的基础理论学科,也是许多工科和管理类专业的重要技术基础课。长期以来,兰州交通大学一直把《管理运筹学》作为交通运输大类专业(包括交通运输、交通工程、物流管理等)的必修课,该课程在我校的筹建、充实、完善、发展已经历了30年的时间,主要历史沿革大致可以分为三个阶段。第一阶段,早在上世纪70年代中期,我国铁道运输专业的奠基者与创始人之一、著名运输专家、我校运输系主任林达美教授敏锐地发现,运用传统的数学方法难以解决许多铁路运输问题,在他的积极倡导下,由我校滕传琳教授牵头、组织翻译了美国普林斯顿大学Hartley教授编著的“OperationsResearch”一书。1979年,滕传琳教授开始给我校77级运输专业本科生开设《运筹学》,随后又开始给运输专业的研究生讲授。考虑到运输专业的管理背景,经过反复修改完善,特别是大量增加了运筹学的建模和应用部分,滕传琳教授于1986年编写出版了《管理运筹学》,作为当时铁道部高校中运输和经济管理类专业中唯一的运筹学教材,在相关院校产生了很大的影响,1988年该教材获得铁道部优秀教材一等奖。在开设《管理运筹学》课程的同时,我校积极引导本科生以“运筹学方法解决铁路运输问题”为选题完成毕业设计,此外还积极拓展传统运筹学的研究领域,将计算机模拟理论补充到了研究生教学内容,许多研究生以此完成了硕士学位论文,如滕传琳教授指导的83级研究生邓西平、84级研究生李引珍(本课程负责人)和徐瑞华(同济大学交通学院导)均选择运用计算机模拟方法,研究铁路编组站作业组织、枢纽小运转列车优化、区段能力的计算等运输问题。
表上作业法:第一步:0 5 3 05 0 0 31 0 3 0#第二步:0 5 3 06 0 0 20 0 3 1