首页 > 学术论文知识库 > 航空铝合金成型工艺研究论文

航空铝合金成型工艺研究论文

发布时间:

航空铝合金成型工艺研究论文

合金是由金属与其它一种以上的金属或非金属所组成的具有金属通性的物质。我国是世界上最早研究和生产合金的国家之一,在商朝(距今3000多年前)青铜(铜锡合金)工艺就已非常发达;公元前6世纪左右(春秋晚期)已锻打(还进行过热处理)出锋利的剑(钢制品)。铝是分布较广的元素,在地壳中含量仅次于氧和硅,是金属中含量最高的。纯铝密度较低,为 g/cm3,有良好的导热、导电性(仅次于Au、Ag、Cu),延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在空气中迅速氧化形成一层致密、牢固的氧化膜,因而具有良好的耐蚀性。但纯铝的强度低,只有通过合金化才能得到可作结构材料使用者选用根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种.。铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。 各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金价格便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 的F-15高性能战斗机仅使用%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。 航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合

金家族之一:铝合金航空用铝合金密度低、耐腐蚀性能好,且具有较高的比强度、比刚度,容易加工成型,有足够的使用经验,这些优点使其成为飞机结构的理想材料。从诞生以来,铝合金随着飞机设计的要求而不断发展,其性能也日益强大。例如,1954年,英国的3架“彗星”飞机先后坠毁,事故分析表明,坠机的主要原因是材料疲劳以及部分 7075-T6铝合金构件被严重腐蚀。经过探索,研究人员突破了过时效热处理问题,研制出第二代耐腐蚀铝合金,有效提升了飞机的安全水平。如今,航空铝合金的发展已经进入第六阶段。2005年 4月 27日,世界上最大的宽体客机空客A380在图卢兹机场成功首飞。A380能够取得成功,先进材料的应用立下了汗马功劳。其中,加拿大铝业公司和美国铝业公司就为 A380开发了新型铝合金材料。根据 A380各部件的特点,加拿大铝业公司开发出了7040-T7651、7449、2027-T3511等一系列铝合金。每种合金都具有不同的性能和特点。在A380项目中,用7085锻件制造的应急舱门,零件数量从 147个减至 40个,紧固件由 1400个减至 450个,重量减轻了 20%,成本降低了 20%〜25%,承载能力和疲劳寿命也得到了显著提高。合金家族之二:钛合金钛及钛合金材料密度低、比强度高(目前金属材料中最高)、耐腐蚀、耐高温、无磁、组织性能和稳定性好,可以与复合材料结构直接连接,而且两者之间的热膨胀系数相近,不易产生电化学腐蚀,具有优良的综合性能。因此,钛合金在航空领域得到越来越广泛的应用。洛克希德公司的“黑鸟”高空高速战略侦察机 SR-71,飞行速度超过 3马赫,在高速飞行时,机体表面温度将超过常规铝合金蒙皮的极限,如果用钢制造,飞机重量会大大增加,影响飞行速度和升限等性能。因此,SR-71的机身大量采用了钛合金,总重达 30多吨,占飞机结构重量的 93%。随着人们对飞机性能要求的不断提高,民用飞机的钛合金用量也在逐渐增加。早期波音 707上的钛合金部件用量仅占结构总重量的 ,到最新的波音 787,占比高达 15%。此外,钛合金也是制造航空发动机的主要材料。早期美国 F-4战斗机使用的 J79发动机,钛合金的用量只有50千克,不到总重量的2%。而现在大多数航空发动机的钛用量已经达到发动机总重量的25%〜30%。如波音 747、767的发动机 JT9D,其用钛量为总重量的 25%;空客A320的V2500发动机,其用钛量为总重量的 31%。钛合金的另一大用途是作为螺栓、铆钉等紧固件材料。这些紧固件虽小,但用量却很大,使用钛合金紧固件可以大大减轻重量。据估算,C-5大型运输机有 70%的紧固件为钛合金紧固件,飞机因此而减重 1吨左右。现在钛合金 3D打印技术已用于飞机制造。钛合金3D打印技术由于摆脱了传统的模具制造这一显著延长研发时间的环节,可以制造高精度、高性能、高柔性和快速制造结构十分复杂的金属零件,因而为先进飞机结构的快速研发提供了有力的技术手段。合金家族之三:超高强度钢超高强度钢在强度、刚性、韧性以及价格等方面具有很多优势,且拥有在承受极高载荷条件下保持高寿命和高可靠性的特点,在航空领域得到广泛使用。例如,飞机的起落架要承受冲击等复杂载荷,而且载荷巨大,同时还要求起落架舱容积尽可能小,超高强度钢绝对强度大、稳定性好,因此成为起落架的首选材料。20世纪 60年代,美国成功开发了 300M超高强度钢。300M钢的抗拉强度高,达到 1860MPa以上。它的横向塑性高,断裂韧性好,与同强度低合金超高强度钢相比,300M钢的抗疲劳性能更好,在介质中的裂纹扩展速率低。这些特点使得 300M钢成为大型飞机起落架的主要材料。1992年,美国又开发了 AreMet100。AreMet100与 300M的强度级别相同,但耐腐蚀性能和耐应力腐蚀性能较 300M钢有较大提高,是目前综合性能最好的超高强度钢。F-22、F/A-18E/F就使用了AreMet100作为飞机起落架的主要材料。

铝合金压铸工艺研究论文

铝合金压铸类产品主要用于电子、汽车、电机、家电和一些通讯行业等,一些高性能、高精度、高韧性的优质铝合金产品也被用于大型飞机、船舶等要求比较高的行业中。主要的用途还是在一些器械的零件上。压铸的发展史众说纷纭,根据有关文章的记载,最初出现的是压铸铅。在1822年,威廉姆·乔奇(Willam Church)就制造了一台日产万的铅字的铸造机。而在二十几年后, 斯图吉斯()设计并造成了第一台手动活塞式 热室压铸机,并在美国获得了专利。1885年,默根瑟勒研究了以前的专利,发明了印字 压铸机。到19世纪60年代用于 锌合金压铸零件生产。 压铸广泛的用于工业生产还只是上世纪初。1905年多勒(H.H.Doehler)研制成功用于工业生产的压铸机、压铸锌、锡、 铜合金 铸件。随后 瓦格纳(Wagner)设计了鹅颈式气压压铸机,用于生产铝合金 压铸件。

1、铝材磷化,通过采用SEM, XRD、电位一时间曲线、膜重变化等方法详细研究了促进剂、 氟化物、Mn2+、 Ni2+、 Zn2+、PO4和Fe2+等对铝材 磷化过程的影响。研究表明: 硝酸胍具有水溶性好、用量低、快速成膜的特点,是铝材磷化的有效促进剂。氟化物可促进成膜,增加膜重,细化 晶粒;Mn2+、Ni2+能明显细化晶粒,使 磷化膜均匀、致密并可以改善磷化膜外观;Zn2+浓度较低时,不能成膜或成膜差,随着Zn2+浓度增加,膜重增加;PO4含量对磷化膜重影响较大,提高PO4。含量使磷化膜重增加。

2、铝的碱性电解抛光工艺,进行了碱性抛光溶液体系的研究,比较了缓蚀剂、粘度剂等对抛光效果的影响,成功获得了抛光效果很好的碱性溶液体系,并首次得到了能降低操作温度、延长溶液使用寿命、同时还能改善抛光效果的添加剂。实验结果表明:在 NaOH溶液中加入适当添加剂能产生好的抛光效果。 探索性实验还发现:用葡萄糖的NaOH溶液在某些条件下进行直流恒压 电解抛光后,铝材表面 反射率可以达到90%,但由于实验还存在不稳定因素,有待进一步研究。探索了采用直流脉冲电解抛光法在碱性条件下抛光铝材的可行性,结果表明:采用脉冲电解抛光法可以达到直流恒压电解抛光的整平效果,但其整平速度较慢。

3、铝及铝合金环保型化学抛光,确定开发以磷酸一硫酸为基液的环保型化学抛光新技术,该技术要实现NOx的零排放且克服以往类似技术存在的质量缺陷。新技术的关键是在基液中添加一些具有特殊作用的化合物来替代硝酸。为此首先需要对铝的三酸化学抛光过程进行分析,尤其要重点研究硝酸的作用。硝酸在铝化学抛光中的主要作用是抑制点腐蚀,提高抛光亮度。结合在单纯磷酸一硫酸中的化学抛光试验,认为在磷酸一硫酸中添加的特殊物质应能够抑制 点腐蚀、减缓 全面腐蚀,同时必须具有较好的整平和光亮效果

4、铝及其合金的电化学表面强化处理,铝及其合金在中性体系中 阳极氧化沉积形成类陶瓷 非晶态复合转 化膜的工艺、性能、形貌、成分和结构,初步探讨了膜层的成膜过程和机理。工艺研究结果表明,在Na_2WO_4 中性混合体系中,控制成膜促进剂浓度为~, 络合成膜剂浓度为~,Na_2WO_4浓度为~,峰值 电流密度为6~12A/dm~2,弱搅拌,可以获得完整均匀、光泽性好的灰色系列无机非金属膜层。该膜层厚度为 5~10μm, 显微硬度为300~540HV,耐蚀性优异。该中性体系对铝合金有较好的适应性, 防锈铝、锻铝等多种系列铝合金上都能较好地成膜。

铝和金压铸工艺可以被应用在铝压铸汽车配件、铝压铸汽车发动机管件、铝压铸发动机气缸、铝压铸汽油机气缸缸盖、铝压铸气门摇臂、铝压铸气门支座、铝压铸电力配件、铝压铸电机端盖、铝压铸壳体、铝压铸泵壳体、铝压铸建筑配件、铝压铸装饰配件、铝压铸护栏配件、铝压铸铝轮等等零件的制作过程中。 工艺流程,压铸铝行业的四种底子工艺分别是退火、正火、淬火和回火,这四种工艺被称为压铸中的“四把火”,其在压铸过程中,淬火与回火的关系非常密切,两者缺一不可。 据了解,退火是给工件加温,当加热到恰当温度时,根据所选用的材料的不同,对压铸件进行缓慢冷却,已达到金属内部组织靠近平衡情况。正火是将工件加热到合适的温度后在空气中冷却,主要用于改善材料的切削功用,也可用于对一些需要不高的零部件作为结束压铸。淬火是将工件加热保温后,在水、或者由以及其他无机盐溶液等淬冷介质中快速冷却,经过此道工序,生产出来的钢件将会变硬,同时也使钢件变脆。为了使钢件脆性降低,可将淬火后的钢件放置于650摄氏度以下高于常温的某一温度进行长时间的保温,然后进行冷却,这被称为回火。

镁是最轻的结构金属。几种常用结构金属的密度(g·cm-3)(20o)如下: AL Mg Ti Fe Cu 可见镁的密度约分为Al,Ti,Fe,Cu的64%,39%,22%,19%。由于镁的密度小,它的合金也以质轻著称。一般镁合金的密度在·cm-3以下,镁,锂合金的密度低于镁 ·cm-3.某些超轻型镁.锂合金密度甚至低于1,比水还轻.镁得镁和金的低密度使其比性能提高.例如,20o时的弹性模量为45Gpa,比铝(70Gpa)和Ti(120Gpa)的低,但三者的比弹性模量相同(~26Gpa).镁和镁合金质量小的特点,使其在交通运输、航空工业和航天工业上具有巨大的应用前景.镁的熔点为 651℃,沸点为1107℃.镁的蒸气压很高,627℃时为℃时为,因此镁铍极易挥发.镁原子最外层的两个电子很易失去,是很活泼的金属.常温下镁能与F、CL、BR、I等元素作用生成相应化合物.加热时镁能与硫、氮作用生成MgS和Mg3N2。在空气中镁会慢慢氧化,失去银白光泽而变黑.若温度提高至400℃以上,镁的氧化速度增快,超过500℃以后氧化速度更快,会着火燃烧,此时会生成氧化镁和少量氮化镁.镁燃烧时会发出非常强烈的光亮.镁的这一特点,颇受人们的青睐.早期就被利用于摄影照明,给人们留下美好的形象和记忆.战争时期,被用来制造照明 弹,把战场和目标照明得如同白昼.又被用于制造燃烧 弹,点燃战区的物资装备,杀伤对方有生力量.人们还利用镁的这一特点,将镁粉、铝粉和其它原料制成烟花.每当节庆的夜晚,随着阵阵悦耳响声,人们可以看到”嫦娥奔月””天女散花”……各种形色的烟花在夜空飞舞,多彩多姿,给人们带来极大的欢乐.顺便提一下,镁的这种”牺牲自我””乐于助人”精神处处可见.例如它仗着活泼的电化学性质做了牺牲自我的阳极,保护着其它的金属和设备.它又作为原电池阳极,耗尽了自己,照亮了他人.由于化学活泼性高,金属镁是耐腐蚀性能最差的金属之一.在酸性、中性和弱碱性溶液中它都会受到腐蚀而变成Mg2+离子.各种类型大气均会对镁产生程度不同的腐蚀作用.在干燥的空气中,它的表面上形成一层暗淡的的疏松多孔氧化膜,在潮湿大气中,生成的产物组成大致为Mgco3·3H2O+Mgso4·7H2o+Mg(OH)2.大气湿度增加,工为地区和海洋环境的大气中所含的二氧化硫和氯化物等物质,能加重镁的腐蚀.镁中氯化物杂质及铁杂质也会加速镁的腐蚀.因此,工业生产的镁锭必须镀膜钝化,涂油及以蜡纸包覆. 镁是地壳中分布最广的元素之一,占地壳重量的,为第四个最丰富的金属元素(位于Al、Fe、Ca)之后.在自然界中镁只能以化合物的形态存在.在已知的1500多种矿物中,含镁矿物的有200多种,主要为碳酸盐、硅酸盐、硫酸盐、氧化物.海洋及盐湖中的镁比陆地上更多,是镁的主要来源.海水中含有10多种元素,镁的含量排第三,位居Na、K之后.海水中含镁每立方千米海水中有130万t镁,相当于世界镁年消耗量的4倍(见表)盐湖水的镁浓度比海水更高.以东以色列、约旦之间的”死海”(实为另一内陆湖),受到千万干旱气候的造化,湖水极浓,含镁竟高达4%.仅此一处的镁,就能满足全世界万年的需要. 纯镁不适合做结构材料.作为结构材料应用的镁主要是镁合金和铝-镁合金.全世界约有千种铝合金牌号,若按化学成份归类的话,约为300多种.这300多种铝合金几乎都含有镁,其中以镁作为主要添加剂的铝-镁合金(镁含量最高为)约为40种.全世界各国镁合金品牌共有200多种,这些品牌按化学成份可归为30多种.共中变形镁合金黄色10多种,铸造镁合金20多种,铸造镁合金主要有以下3个体系. 1) 镁-铝合金.这种合金自第一次世界大战被德国使用以来,成了最广泛使用的铸造镁合金的基础.大部份含有8%~9%的铝及少量的锌(使拉伸性能有某些提高)和锰(改善抗蚀性)2) 镁-铝-锌合金.镁-铝合金中加锌会产生一定的强化作用,其中高含锌量的合金具有很吸引人的压铸特性.如Mg-8AL-8ZN,具有足够大的流动性.,可用于压铸件,而且流动性和抗蚀性超过传统铝-锌合金.3) 含锆镁合金.锆能细化晶粒,改善镁合金的拉伸性能,提高镁合金蠕变能力,以满足航空和航天工业的需要.属于这一系列的合金有镁-锌-锆合金,镁-稀土-锌-锆合金,以及镁-钍系为基和镁-银系为基的含ZR合金.这种含稀土金属和或含钍的合金都可焊.钍也能改善铸造性能.银可以进一步提高拉伸性能.一些铸造镁合金的性能示于表.镁是立方晶格的金属,可以承受的形变量有限(特别是在低温下).其变形材料主要在300~500℃温度范围内通过挤压、;轧制和压力锻造进行生产.变形合金可以按照它们是否含锆而分成两类.按照变形产品种类可分为三类:1薄板和厚板轧制金.如AZ31(Mg-Al-Z系),ZM21(Mg-Zn-Mn系)和ZE10(Mg-Zn-RE系),这三种合金都可焊,后两种强度较低.LA141A(Mg-Li-Al)等也属这一类,前面已作详细介绍.属于这一类的还有含钍的HK31(Mg-Th-Zr系)以及随后研制的HM21(Mg-Th-Mn等),它们的高温强度更高.2挤压合金.这类合金含铝量大多在1%~8%之间.镁合金都具有密度小的特点,特别是某些镁-锂合金(见前),密度甚至低于1。美英俄等国正在研制含钇镁合金。一种合金,其密度小于·cm-3 ,抗拉强密度420Mpa, 屈服强度360Mpa,比现有任何一种变形镁合金的都高,同高强度铝合金强度相当。 镁铝合金又名铝镁合金,分子式:Mg4Al3分子量:颜色为灰褐色,比重约为,熔点463℃,燃烧时产生的温度达2000℃-3000℃。在烟花生产过程中起着非常重要的还原剂作用,也可作为白光剂和照明剂。镁铝合金是用镁锭和铝锭在保护气体中高温熔融而成。长期以来关于镁铝合金的结构有两种说法。一种说法是镁铝合金是简单物理混合;另一种说法是镁铝合金内部改变了晶体结构,不是简单的物理混合。镁锭和铝锭在高于1150K时,部分铝与空气中的氧气反应,生成a-Al2O3,氧化铝的此种晶体化学性质呈惰性,起着屏障、隔离作用。低于1150K时,生在B-Al2O3而这种晶体与酸反应,保护不了内部的镁铝合金。标准的镁铝合金中镁、铝的含量各约为50%。活性铝含量的多少对烟花的安全生产和产品的质量有很大的影响。但是现在生产镁铝合金的企业多为私营企业,近几年来铝锭比镁锭贵,受利益的驱动,大多未按国标生产。现在镁铝合金粉中铝的含量普遍低于50%,有的铝含量低到了40%。镁含量的增加使得镁铝合金的性质接近镁粉的性质,使得烟火 药的撞击感度、摩擦感度增加,烟火剂更加敏感,从而增加隐患。我们可能以用下面的化学机理来检验镁铝合金中铝的含量。1、盐酸与镁铝合金的反应Mg+2HCl=MgCl2+H2↑2Al+6HCl=2AlCl3+3H2↑2、混合溶液与氢氧化钠溶液反应(混合溶液中滴几滴石蕊或酚酞试剂作指示剂,以避免氢氧化钠过量)MgCl2+2NaOH=2NaCl+Mg(OH)2↓AlCl3+3NaOH=3NaCl+Al(OH)3↓3、过滤、烘干、称重,重量为G1克4、氢氧化铝与过量的氢氧化钠反应Al(OH)3+NaOH=NaAlO2+2H2O5、未反应的为氢氧化镁。过滤、烘干、称重,重量为G2克镁铝合金的中铝的含量 Al%=(G1-G2)/G×规定了镁铝合金中铝的含量的范围为47-53%,铝含量低于这个范围镁铝合金容易引起质量事故和安全事故,应慎用。镁锭在镁铝合金中的应用:镁铝合金由镁锭和铝锭在保护气体中高温熔融而成,其组成有:简单的物理混合与已改变晶体结构的物理混合两种说法。

压铸模具制作工艺流程:审图—备料—加工—模架加工—模芯加工—电极加工—模具零件加工—检验—装配—飞模—试模—生产。模架加工:打编号, A/B板加工,面板加工,顶针固定板加工,底板加工。模芯加工:飞边,粗磨,铣床加工,钳工加工,CNC粗加工,热处理,精磨,CNC精加工,电火花加工,省模。模具零件加工:滑块加工,压紧块加工,分流锥浇口套加工,镶件加工。模架加工细节,打编号要统一,模芯也要打上编号,应与模架上编号一致并且方向一致,装配时对准即可不易出错。A/B板加工(即动定模框加工),A/B板加工应保证模框的平行度和垂直度为,b :铣床加工:螺丝孔,运水孔,顶针孔,机咀孔,倒角c:钳工加工:攻牙,修毛边。面板加工:铣床加工镗机咀孔或加工料嘴孔。顶针固定板加工:铣床加工:顶针板与B板用回针连结,B板面向上,由上而下钻顶针孔,顶针沉头需把顶针板反过来底部向上,校正,先用钻头粗加工,再用铣刀精加工到位,倒角。底板加工 :铣床加工:划线,校正,镗孔,倒角。

铝合金压铸工艺研究论文初稿

1.前言

6082铝合金属于Al - Mg - Si系热处理可强化的铝合金,具有中等强度和良好的焊接性能和耐腐蚀性,主要被用于交通运输和结构工程上,如桥梁、起重机、屋顶构架、交通车和运输船等。

本文对6082铝合金应用于挤压型材生产进行了试验研究,以确定合适的熔铸和挤压工艺制度。

2.熔铸工艺

化学成分

GB/T3190 -1996中6082铝合金化学成分见表1。

6082铝合金成分具有两个主要特点:第一,含有适量的Mn和Cr;第二,Mg、Si含量相对较高。其中,Mn、Cr等合金元素可阻碍挤压时和挤压后发生再结晶或再结晶晶粒长大,细化晶粒。但(Mn + Cr) 总量过高可能形成分别含Mn、Cr的粗大第二相,削弱Mg 2 Si相的沉淀强化效果,抵消其阻碍再结晶和细化晶粒的作用。同时,Mn、Cr元素会增大6082铝合金的淬火敏感性。且易在α(Al)相中产生严重的晶内偏析,造成挤压制品粗晶组织,降低型材氧化着色效果。对于Mg、Si成分,6082铝合金在Mg 2 Si强化的同时,通过增加适量过剩Si来促进强化。

因此,重点对Mn的含量进行试验确定:以Mn含量为 ~及 ~进行对比。发现Mn含量偏上限时,制品尾部粗晶组织较多,且力学性能偏低,所以对比确定Mn含量的优化范围为0. 6% ~。Cr的含量宜控制在以下,(Mn + Cr)总量控制在 ~范围内。Mg 2 Si含量宜控制在 ~ ,过剩Si含量控制在左右。

6082铝合金的实际成分控制范围见表2。

工艺控制

由于6082铝合金最大的特点是含难熔金属Mn,Mn的适量存在易引起晶内偏析及固液区塑性降低,导致抗裂能力不足,故熔铸工艺主要需注意三点:第一,熔炼应注意控制温度在740 760℃间并搅拌均匀,保证金属完全熔化、温度准确、成分均匀。第二,铸造应考虑金属Mn增大了合金的粘度,使其流动性下降,影响了合金铸造性能。铸造速度要适当降低,控制在80 100mm/min范围内。第三,加大冷却强度,加快冷却速度,以利于消除晶内偏析现象。控制一次冷却强度,加大二次冷却强度以减少铸造时产生的应力集中,避免产生铸锭裂纹缺陷。冷却水压应控制在0. 1 ~范围内。

3.均匀化退火

6082铝合金变形抗力大,力学性能指标偏高。通过均匀化处理工艺改善合金组织,达到三个主要效果:充分固溶解Mg 2 Si相;消除晶内偏析;β(Al 9 Fe 2 Si 2 )相向α(Al 12 Fe 3 Si 2 )相转变,并细化含铁相粒子。

由于合金中Mn的存在可降低转变温度、缩短转变时间,且为保持合金挤压性能和挤压效应,采用中温均化工艺,即均匀化温度555 ~565℃;保温时间6h;冷却速度≥200℃/h。

4.挤压工艺

铸锭加热方式

铸锭加热采用工频感应加热,这种加热方式的特点是加热时间短,在3min内即可达到500℃左右;温度控制准确,误差不超过±3℃。如果用电阻炉缓慢加热,将会导致Mg 2 Si相析出,影响强化效果。

挤压

综合考虑6082铝合金的主要特点,结合实践生产制订挤压工艺如下:

(1)、6082合金变形抗力大,所以铸锭加热温度应偏上限(480 ~500℃)。

(2)、模具温度取460℃为宜,挤压筒温度为440 ~500℃。

(3)、挤压速度控制在7~11m/min的范围内;

(4)、要使合金主要强化相Mg 2 Si完全固溶,须保证淬火温度在500℃以上,因此型材挤压出口温度应控制在500 ~530℃范围内;

(5)、6082合金淬火敏感性高,要求淬火冷却强度大、冷却速度快,制品出前梁后必须立即进行在线淬火。对于壁厚以下的型材可考虑用强风冷却淬火;壁厚以上的型材必须用水雾淬火处理,须使温度迅速降到50℃以下。

(6)、6082铝合金型材拉伸矫直,应将拉伸率控制在 ~范围内。挤压工艺参数见表3。

5.时效制度

时效是型材达到规定力学性能的最后一个环节,合理的时效制度既要保证产品的性能,又要考虑生产效率及生产成本。结合试验研究,6082型材最佳时效制度定为:时效温度170 ~ 180℃,保温时间8h,时效前型材的停放时间不超过8h。

6.结论

根据6082铝合金型材的特点和性能要求,上述工艺是比较合理的。在熔铸工艺中,6082铝合金成分控制重点在于Mn和Cr含量范围。Mn含量优化控制范围为. 65%,Cr的含量宜控制在0. 15% 以下,(Mn + Cr)总量控制在 ~ 范围内。Mg 2 Si含量宜控制在 ~ ,过剩 Si含量控制在左右。在挤压工艺中,挤压出口温度和淬火效果控制则是保证产品性能的关键,应保证淬火温度在500℃以上,型材挤压出口温度应控制在500 ~530℃,淬火力求强度大、速度快。

如今,随着全球经济的发展,新能源 汽车 、通讯设备以及3C 产品与家用电器等众多领域对精密压铸件的需求正在持续提升。而随着压铸设备和工艺技术的日益提升,铝合金压铸工艺正在替代原先的黑色金属铸件工艺,推动新能源 汽车 的轻量化发展需求。

成熟与高效的铝合金压铸工艺满足新能源 汽车 轻量化需求

所谓新能源 汽车 轻量化,就是以满足新能源 汽车 的强度与安全性能为基础,最大限度地降低新能源 汽车 的整备质量,以提高能源 汽车 的动力性,同时尽可能地减少燃料消耗和降低排气污染。对于新能源 汽车 的整车轻量化而言,车身结构的不同零部件都有着不同程度的贡献。而在不同的轻量化材料中,铝合金材料轻质易成型且易于回收,在密度、性能、成本以及可加工性等方面具有更为显著的综合优势,相较于多种金属合金和碳纤维,能够减轻车重和发动机负荷,提高 汽车 行驶性能与稳定性,因而更具舒适性和安全性,越来越成为更具性价比和工艺技术更成熟的新能源 汽车 轻量化材料。尤其是当前新能源 汽车 面临着技术迭代与产能持续提升,铝合金压铸方案更显其突出的综合优势。

随着国内一些企业在新型铝合金材料以及大型压铸设备研发方面的研发与攻关不断实现新突破与新发展,一些车企和压铸企业早已布局大吨位的铝合金压铸机,一体化铝合金压铸技术也越来越成熟,以更加复杂而精密的铝合金 汽车 结构件,为新能源 汽车 的轻量化设计与生产提供更安全可靠的工艺技术与设备保障。随着人们对 汽车 节能环保的日趋重视,以及在新能源 汽车 方面的购买需求持续提升,铝合金压铸件在 汽车 轻量化方面的显著优势更有利于新能源 汽车 产业的发展,当然新能源 汽车 的持续高增长也更推动着铝合金压铸件产业的发展。

铝合金压铸引领我国制造业发展

就我国而言,随着整体工业化水平的提高以及下游制造业在我国日益聚集,使得我国压铸产业随之得到长足发展,且逐步成长为压铸大国。当前新能源 汽车 、通讯设备以及装备制造、轻工等产业的快速发展,更是推动我国的压铸行业迈向快速增长与稳定发展的新常态。我国作为制造大国,机器制造业也日益朝着强度化、轻量化和高寿命发展,铝合金压铸工艺能够满足特殊领域的特殊需求,达到节约原材料、降低能耗、减少污染和保护环境的目的。正因为如此,铝合金压铸技术才能在新能源 汽车 、仪表制造、家电行业越来越拥有广阔的应用前景。

铝合金模板新工艺论文

改变合金成分,性能会改变。 比如碳含量,含碳量的高低影响合金的强度和韧性。 合金的性能是由成分决定的。合金比它的成分金属具有许多优良的物理、化学或机械加工性能。如硬铝(含—%Cu、—%Mg、—、少量的硅,其余是铝),有良好的机械性能、强度大又便于加工,而且密度小,可作轻型结构材料。目前世界各国生产的铝约有60%以上用于制造合金。铝的合金主要是在铝中加入铜、镁、锌、锰、硅等元素,有时还加入铬、钛、铍等元素。许多合金的熔点比它的成分金属的熔点要低。如铝硅合金(除铝外还含有—13%的硅,—%的镁,—8%的铜,—%的锰)的熔点比各成分金属的熔点都低。又如锡的熔点为℃,铅的熔点为℃,锡和铅按2∶1组成的合金熔点为180℃,比锡或铅的熔点都低,这种合金就是通常用的焊锡。又比如做保险丝材料的“伍德合金”,是锡、铋、镉、铅按1∶4∶1∶2质量比组成的合金,熔点仅67℃,比水的沸点还低。因此,当电路上电流过大、电线发热到70℃左右,保险丝即可熔化,自动切断电路,保证用电安全。现在使用相当广泛的高压锅易熔片,也是一种低熔点合金。当高压锅压力阀通路被堵,锅内压力增加,温度升高到熔片的熔点时,易熔片熔化通路打开,于是锅内减压、降温、从而保证了使用安全。但是组成上述低熔点合金的成分金属的熔点都在二、三百度以上。合金的硬度一般比组成合金的成分金属的硬度大。由铝或镁制成的轻合金往往比铝或镁的硬度要大得多。有时制成合金后,其硬度增大的程度是惊人的,例如在铜里加入1%的铍制成的铜合金,其硬度要比纯铜大7倍!铝合金的特点和用途 铝和铝合金的最大特点,首先是其容重约为钢的1/3,而比强度(强度极限与比重的比值)则可达到或超过结构钢。其次,铝和铝合金易于加工成各种形状,能适应各种连接工艺,从而为建筑结构采用最经济合理的断面形式提供有利条件。所以,采用铝合金不仅可以大大减轻建筑物的重量,节省材料,而且还可减少构件的运输、安装工作量,加快施工进度。这对于地震区及交通不便的山区和边远地区,其经济效果更为显著。铝和铝合金色泽美观,耐腐蚀性好,对光和热的反射率高,吸声性能好,通过化学及电化学的方法可获得各种不同的颜色。所以铝材广泛用于工业与民用建筑的屋面、墙面、门窗、骨架、内外装饰板、天花板、吊顶、栏杆扶手、室内家具、商店货柜以及施工用的模板等。 建筑业是铝材的三大主要市场之一,世界上铝总产量的20%左右用于建筑业,一些工业发达国家的建筑业,其用铝量已占其总产量的30%以上。近年来,建筑铝材的产品不断更新,彩色铝板、复合铝板、复合门窗框、铝合金模板等新颖建筑制品的应用也在逐年增加。中国已在工业与民用建筑中应用铝合金制作屋面、墙面、门窗等,并逐渐扩及内外装饰、施工用模板等,已取得良好效果。 自行车上所运用的金属材料 车架一般采用普通碳素铜管经过焊接、组合而成。为了减轻管重量,提高强度,较高档的自行车采用低合金钢管制造为了减少快速行驶的阻力,有的自行车还采用流线型的钢管。车架: 山地车的重要组成部分,根据结构有硬架身、软架身(后避震架身)之分,材料一般为钛合金、碳素纤维、烙锰钢、铝合金、镁合金等。由于结构与材料的不同组合使每种车架都有不同的优缺点,以硬架身车架来说,钛合金质地较轻、柔软度好,但是后架身爬坡时偏软而且价格偏高;碳素纤维的车架质地坚硬,极利于爬坡,但正因如此,如遇猛烈冲击,架身会出现裂痕甚至于折掉。烙锰钢各项表现都很出色,就是有点沉;铝合金重量轻、造价低,但其缺点是下颠簸的坡时后架身崩人、使用寿命短。通过这次调查,我发现只要我们细心观察善于发现,在日常生活中隐含着许多知识,比如自行车章所运用的知识,建筑业上所运用的知识等。我们要在生活中去学习去发现去探索,以此来巩固课堂上所学知识,是学习充满乐趣

摘 要:电阻点焊的组织决定焊接接头熔核的性能,熔核的性能决定焊接的质量。通过模拟 点焊接头的组织,可预测在不同点焊参数下接头的组织形态和力学性能等,从而实现通过寻 求最佳焊接工艺来改善焊件性能的目的。研究铝合金点焊相变组织的分布规律,对优化点焊 设计和工艺参数有重要的指导作用,本文通过应用有限元模拟软件进行数值模拟,对6082 铝合金电阻点焊过程中的组织转变进行模拟与研究,并通过实验进行验证,从而得出电阻点 焊对6082铝合金的组织转变的影响。试验验证表明,数值模拟与试验结果吻合良好,为铝合 金点焊基础理论研究提供了一种有效的分析手段。 关键词:数值模拟;金相组织 ;铝合金;电阻点焊 Abstract Te microstructure of resistance spot welding decide performance of nuclear fusion in welded joint, the performance of nuclear fusion decide welding quality. By simulation, we can predict microstructure and mechanical properties of spot welding in different parameters, so as to achieve the best welding performance by seeking to improve the welding processes. Research on the distribution of microstructure in aluminum spot welding, have an important role in on the design and optimization of process parameters of spot welding. The paper through the application of finite element simulation software to simulate and research the resistance spot welding of aluminum alloy of 6082, and verify it through experiments, so as to know affection resistance spot welding to aluminum alloy of 6082. Experiments show that numerical simulation and experimental results are consistent, providing an effective analysis for spot welding on aluminum alloy. Key words: Numerical simulation; Microstructure; Aluminum alloy; Resistance spot welding 1、铝合金在航空航天、船舶制造、机车和汽车制造业等领域获得了广泛的应用。轿车采用 铝合金制造车身较采用钢板制造车身可减轻车体重量6O%左右,能显著降低燃料消耗和减少 环境污染。但是,铝合金点焊所存在的问题限制了点焊在铝合金汽车生产中的应用,铝合金 点焊的熔核形状不规则,尺寸大小不一,熔核在凝固时极易形成缩孔、缩松和气孔,由于冷 却速度较快,熔核的结晶组织主要是从熔合线向内生长的柱状晶。在这方面,吉林工业大学 的赵熹华等人通过采用熔核的孕育处理技术做了详细的研究,将柱状晶组织变为等轴晶组 织,取得了良好的效果[1]。但是,该技术如何工程化的问题还正在研究之中。如果能对点焊 的相变组织进行有限元模拟计算,得到铝合金点焊过程温度场和相变组织的分布规律,从微 观上改变焊接质量,对提高和稳定点焊质量具有重要意义。 铝合金点焊是一个高度非线性的力、热、电相耦合的复杂过程,随着焊接研究的深入, 温度,相变和热应力之间的耦合效应越来越受到人们的重视。 等人曾提出温度,相 变,热应力之间的耦合关系式, 等人利用该耦合模型对焊接接头进行了有限元计算。 Ronda 等[2]用统一的方法推导了相变规律和相变塑性,建立了相容的 TMM 模型,并形成了系 统理论。Yang 等[3]在热冶金耦合方面也作了深入的研究。他们在模拟温度场、速度场、热循 环以及熔池形状时,采用瞬时、3 维、湍流条件下的热传输和流体流动模型。 本文基于有限元专业焊接模拟软件动态模拟焊接的全过程,进行数值模拟时,考虑了材 料热物理性能与温度的非线性关系,以及相变潜热对温度场的影响,实现温度场和应力应变 场的耦合计算,揭示了铝合金点焊过程温度场和相变组织的分布规律,其结果有助于更好地 了解焊接过程中熔体的运动状态、凝固组织细化和产生缺陷的原因,为正确选择点焊工艺参 数等提供理论指导。 2 点焊相变原理熔核、塑性环及其周围母材金属的一部分构成了点焊接头。在良好的点焊焊接循环条件 下,接头的形成过程是预压、通电加热和冷却结晶三个连续阶段所组成。 (1)预压阶段:在电极压力的作用下清除一部分接触表面的不平和氧化膜,形成物理触点,为焊接电 流的顺利通过及表面原子的键合作准备。(2)通电加热阶段:在热与机械力作用下形成塑性环、熔核,并 随着通电加热的进行而长大,直到获得需要的熔核尺寸。通电刚开始,由于边缘效应,使焊件接触面边缘 处温度首先升高,接着由于金属加热膨胀,接触面和电流场均扩展并伴有绕流现象,而靠近电极的焊接区 金属散热较有利,从而在焊接区内形成了回转双曲面的加热区,其周围产生了较大的塑性变形。随着通电 加热的持续,电极与工件接触表面增加,表面金属的冷却增强,而焊接区中心部位由于散热困难温度继续 升高,形成被塑性环包围的回转四方形液态熔核。继续延长通电时间,塑性环和熔核不断长大。当焊接温 度场进入准稳态时,最终获得椭圆形液态熔核,周围是将熔核紧紧包围的塑性环。(3)冷却结晶阶段:使 液态熔核在压力作用下冷却结晶。由于材质和焊接规范特征不同,熔核的凝固组织可有三种:柱状组织、 等轴组织、“柱状+等轴”组织。 由于点焊加热集中、温度分布陡、加热与冷却速度极快,若焊接参数选用不当,在结晶过程中会出现 裂纹、胡须、缩孔、结合线伸入等缺陷,可通过减慢冷却速度和段压力等措施来防止缺陷产生。 3 点焊熔核有限元仿真点焊是一个多因素及多重非线性的复杂问题。在进行数值模拟时,考虑其可作为轴对称问题,对等厚 板的焊接取l/4平面进行分析。为简化计算,本文假定电极压力恒定。 本文采用简化的轴对称2D模型建立6082铝板点焊的简化模型。出于简化模型的目的,假设上下两块铝 板在与电极端面直径对应的中心部分以及电极端面是粘连的,假设电极-工件间及工件间的接触行为属于无 滑动接触。焊接电流为恒流,材料的热物理性能随温度变化,忽略电流的趋表效应、接触面的热电效应和 接触热阻[4,5]。模型的网格采取自由划分,共含1996个固体单元,2120个节点。被连接材料为6082铝合金, 板厚 mm,采用Cu~Cr合金电极,端部直径6 mm,端部曲面半径40 mm。 材料属性 材料的热物理性能参数是温度的函数,在模拟中,材料的热物理性能除了密度和潜热外,其他如比热、 导热系数、电阻率等均随温度变化。材料在相变和熔化时存在潜热,模拟中将潜热在相变温度区间均匀折 算为比热容,以模拟其产热效果。 6082铝合金是Al-Mg-Si系铝合金,该合金的组织比较简单,主要合金元素为Mg、Si ,另外还有少量的Fe 、Zn 、Cu 、Mn,主要组织组成物为Mg2Si,Mg/Si比为,大部分合金不是含过量镁就是含过量的硅。当镁过量时,合金的抗蚀性好,但强度与成形性能低;当硅过量时,合金的强度高,但成形性能及焊 接性能较低,抗晶间腐蚀倾向稍好。 工艺参数 采用直流焊接电源,焊接电流为14 KA,电极压力为 KN,焊接时间为15个周波(相应频率50 Hz)。 具体方案见表1: 焊接温度场的模拟 焊接温度场的准确计算是焊接冶金分析、残余应力与变形计算以及焊接质量控制的前提,焊件在快速 加热和冷却过程中温度场的正确描述是进行组织转变和焊后接头力学性能分析的前提条件。焊接温度场的 准确计算必须建立起准确的热传递数学模型和符合焊接生产实际的物理模型,并应用有限元 软件的校正工 具,根据具体的焊接工艺和条件对热源进行校正;考虑了材料热物理性能参数与温度的非线性关系,建立 了焊接过程的数学模型和物理模型[6,7]。 在焊接过程中,由热源传给焊件的热量,主要是以辐射和对流为主,而母材和焊接材料获得热能后, 热的传播则是以热传导为主。焊接传热过程中所研究的内容主要是焊件上的温度分布及其随时间的温度变 化问题[8]。因此研究焊接温度场,是以热传导为主,适当地考虑辐射和对流作用。 焊件上某点瞬时的温度分布称为温度场,可以表示为: T  T ( X , Y , Z , t ) 式中 T 为焊件上某点的瞬时温度,(x , y , z)是某点的坐标,t是时间。 因此非线性瞬态热传导问题的控制方程可以表示为: 式中 c、ρ为材料的比热容、密度,T为温度场的分布函数,t为时间,kx , ky , kz分别为x , y , z方向 上的导热系数; Q是内热源。 温度场计算时, 将模型的对称面定义为绝热边 界条件, 即 其他周围表面定义为换热边界条件, 即 式中  是材料的热导率,n是边界表面外法线方向,α是表面换热系数,Ta是周围介质温度,Ts是物体表面 温度。 点焊相变组织的模拟 相变潜热 焊接过程中伴随着相的转变,在有限元计算中其产生的相变潜热以焓的形式表示[9],即 式中  (T )c(T ) 分别为材料的密度和比热,均为温度的函数。 在某一温度增量区间,所产生的总的相变潜热表示为各相值的叠加,即 式中:Aj为第j 相的相变潜热,V j 为第j 相的转变体积比,且 å V j = 1 ;n是材料中相的个数。相的转变体积比,且 ;n是材料中相的个数。 相变模拟原理 对于铝合金的相变模拟,主要通过铝合金的回复与再结晶原理,如图1。如果材料有经过温度循环,当 最高温度高于重结晶温度时,重结晶开始发生并产生影响。材料重结晶的比例不仅取决于最高温度,也取 决于热循环过程。可以用如下公式来计算: 等温反应动力学: 非等温反应动力学附加规律: 模拟计算结果 温度场的模拟结果 如图 2 为焊接时间 250ms 时 l/4 平面所成的温度分布,再通过 sysweld 有限元软件,分别在熔核区 中心,熔合线,热影响区,母材组织上取四个固体单元,形成如图 3 所示的温度曲线。由图 2,3 可以看出 在焊接过程中,熔核中心的最高温度可达 720℃,且长时间温度维持在 700℃左右;熔合线附近可达 600℃, 也长时间维持在这个温度;热影响区最高温度可达 500℃左右;而母材最高温度只达到 300℃左右。 相变组织的模拟结果 通过有限元模拟可得到如图4所示结果,6082铝合金点焊结果会出现明显不同的三相分布分别为:母 材、热影响区和熔核区组织。 4 结果分析和讨论由模拟分析结果可以看出, 6082 铝合金点焊会出现比较明显的三种组织的分布,再根据模拟所用的 焊接参数进行试验验证,然后进行金相组织观察(试样用凯勒试剂浸蚀)。可以得到图 5-图 9 的微观组织 图。 由图 5 可见,6082 铝合金点焊组织有着明显的三个组织相分布,中间的小圆为熔核部分,外圆为热影 响区,外边即为母材,与模拟的相变结果(图 4 所示)完全相同。 铝合金的主要热处理方式是固溶处理和时效处理,通过第二相的沉淀硬化来提高强度、硬度等性能。 6082 铝合金为 T4 状态(固溶处理+自然时效)是经固溶、时效后的合金,其主要强化相是 Mg2Si。在焊 接热循环的影响下,铝合金基体中的这些沉淀相粒子将发生再次固溶、析出和长大过程,对焊接前的基体 产生或多或少的破坏。它们的熔点为 595℃,焊接加热温度超过这一熔点时,部分强化相就会熔解[10]。 图 6 为母材组织,其铝合金基体上分布着粗大且呈长条形的析出相;图 7 为熔核中心组织,其内组织 主要为细小的等轴晶粒;图 8 为处于塑性环熔合线周围的组织,靠近熔合线的熔核区主要是柱状晶粒和部 分等轴晶粒,靠近熔合线的热影响区为粗大的晶粒;图 9 为热影响区中心组织,其铝合金基体上的析出相 细小且呈圆粒状。 从图 4 可以得知,在塑性环内的熔核区中心最高温度远远高于 595℃,可达 720℃左右,且比较长时间 的维持在 700℃,这个温度使熔核区中心的晶粒完全的熔化,在铝合金基体上的第二相重新熔化和固溶, 化合物因固溶而进一步减少。在铝合金基体上分布着弥散的,细小的第二相对晶界移动起着重要的阻碍作 用,第二相质点越细小,数量越多,则阻碍晶粒长大的能力越强,所形成的晶粒也就越细小,且在熔核区 内合金元素溶入的比较多,在很大程度上阻碍了晶界的移动,焊接为快速加热,金属内存在的晶格畸变现 象来不及回复,自扩散系数增加,使合金再结晶晶核增多,造成晶粒细小,所以在熔核中心冷却后形成的 组织为细小的等轴晶粒;由于点焊冷却速度较快,靠近熔合线的熔核区的结晶组织主要是从熔合线向内生 长的柱状晶。运用图 1 描述的铝合金重结晶现象可以发现,靠近塑性环的热影响区的晶粒处于长大阶段, 晶粒生长方向与热流方向一致,有着明显的粗大晶粒且在晶界上分布一些析出相,应为晶粒长大区;6082 合金母材组织为板材组织,其析出相方向与板材成形方向一致,也有少量析出相呈三角形,在晶界上析出, 由于其含有 Cu,Mg,Al,Si,Mn 等合金元素,析出相比较复杂,主要为 Mg2Si。图 6 中的母材组织为退 火组织,所以其部分析出相变的相对细小和一定的圆形状。对于热影响区,其析出相明显比母材组织细小, 且没有方向性,但已经开始出现圆粒状,分布也比母材组织均匀,但还是有一部分为粗大的析出相,且呈 长条形,没有完成再结晶,由图 1 铝合金重结晶原理可知其组织应为回复区和回复再结晶区,晶界基5 结 论1、本文采用数值仿真手段预测熔核的组织,运用sysweld的相变模拟原理,完成对6082铝合金点焊组织的 模拟和预测。 2、采用本文提出的有限元点焊模型,运用相变模拟软件,可以模拟出与实际焊接结果十分吻台的结果,因 此可作为选择和优化点焊参数的一个有效工具。 3、6082铝合金熔核区晶粒细小,组织分布均匀而且弥散,热影响区有着比较明显的回复区,回复与再结晶 区和晶粒长大区,母材组织为板材组织,晶粒方向为轧制方向,且铝基体上分布大量粗大的第二相质点。 4、点焊接头相变组织的模拟是一项新技术,它尚处于起步阶段,在理论上还存在着尚未澄清问题,另外在 计算方法上也有改进余地,其应用更接近空白,因此,有必要从理论和计算方法上进行系统而有深入的 探索,以使新兴方法尽快用于工程实践。 参考文献:赵熹华,姜以宏,薄件点焊熔核凝固组织分析,焊接学报,1994(2):89~93. Ronda J,O liver G J. Consistent Thermo-Mechano-Metallurgical Model of Welded Steel with Unified Approach to Derivation of Phase Evolution Laws and Transformation - Induced Plasticity. Computer Methods in Applied Mechanics and Engineering。2000, 189 (2) : 361~ 417. Yang Z, Elmer J W , Wong J. Evolution of Titanium Arc Weldment Macro and Microstructures- Modeling and Real Time Mapping of Phases。 Welding Journal, 1997, 76 (4) : 172~ 181. Matteo Palmonella, Michael I, Friswell, et al. Finite element models of spot welds in structural dynamics: review and updating[J]. Computers & Structures. 2005,3 (83): 648-661 . Deng X, Chen W, Shi G, et al. Three-dimensional finite element analysis of the mechanical behavior of spot welds[J]. Finite Elements in Analysis and Design. 2007,185( 1): p 160-165. Feulvarch E, Bergheau , Robin V, et al. Resistance spot welding simulation: a general finite element formulation of electrothermal contact conditions Source[J]. The VLSI Journal. 2004, 38(1): 436-441. 唐新新,单平,罗震等.点焊熔核尺寸及焊接电流逆过程设计[J].焊接学报,2007,11:45~48. 潘韧坚等. 基于 ANSYS 的有限元方法在焊接热效应分析中的应用[J]. 焊接技术,2004(1):6~8 刘哲,李午申,陈翠欣等,.热-冶金相互作用下焊接温度场的三维动态有限元模拟 [J ] .机械科学与技术, 2005,12 : 1396 -1399 邹永恒,陶虹,徐国明,等. 6082 铝合金热处理工艺参数的研究[J ]. 金属热处理,2007, 32(10) : 71 - 76. Simulation and Research for the Microstructure of Aluminum Spot给你部分参考

合金是由金属与其它一种以上的金属或非金属所组成的具有金属通性的物质。我国是世界上最早研究和生产合金的国家之一,在商朝(距今3000多年前)青铜(铜锡合金)工艺就已非常发达;公元前6世纪左右(春秋晚期)已锻打(还进行过热处理)出锋利的剑(钢制品)。铝是分布较广的元素,在地壳中含量仅次于氧和硅,是金属中含量最高的。纯铝密度较低,为 g/cm3,有良好的导热、导电性(仅次于Au、Ag、Cu),延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在空气中迅速氧化形成一层致密、牢固的氧化膜,因而具有良好的耐蚀性。但纯铝的强度低,只有通过合金化才能得到可作结构材料使用者选用根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种.。铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。 各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金价格便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 的F-15高性能战斗机仅使用%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。 航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合

航空航天钛合金研究实验论文

飞行器及其动力装置、附件、仪表所用的各类材料,是航空航天工程技术发展的决定性因素之一。航空航天材料科学是材料科学中富有开拓性的一个分支。飞行器的设计不断地向材料科学提出新的课题,推动航空航天材料科学向前发展;各种新材料的出现也给飞行器的设计提供新的可能性,极大地促进了航空航天技术的发展。 航空航天材料的进展取决于下列3个因素:①材料科学理论的新发现:例如,铝合金的时效强化理论导致硬铝合金的发展;高分子材料刚性分子链的定向排列理论导致高强度、高模量芳纶有机纤维的发展。②材料加工工艺的进展:例如,古老的铸、锻技术已发展成为定向凝固技术、精密锻压技术,从而使高性能的叶片材料得到实际应用;复合材料增强纤维铺层设计和工艺技术的发展,使它在不同的受力方向上具有最优特性,从而使复合材料具有“可设计性”,并为它的应用开拓了广阔的前景;热等静压技术、超细粉末制造技术等新型工艺技术的成就创造出具有崭新性能的一代新型航空航天材料和制件,如热等静压的粉末冶金涡轮盘、高效能陶瓷制件等。③材料性能测试与无损检测技术的进步:现代电子光学仪器已经可以观察到材料的分子结构;材料机械性能的测试装置已经可以模拟飞行器的载荷谱,而且无损检测技术也有了飞速的进步。材料性能测试与无损检测技术正在提供越来越多的、更为精细的信息,为飞行器的设计提供更接近于实际使用条件的材料性能数据,为生产提供保证产品质量的检测手段。一种新型航空航天材料只有在这三个方面都已经发展到成熟阶段,才有可能应用于飞行器上。因此,世界各国都把航空航天材料放在优先发展的地位。中国在50年代就创建了北京航空材料研究所和北京航天材料工艺研究所,从事航空航天材料的应用研究。 简况18世纪60年代发生的欧洲工业革命使纺织工业、冶金工业、机器制造工业得到很大的发展,从而结束了人类只能利用自然材料向天空挑战的时代。1903年美国莱特兄弟制造出第一架装有活塞式航空发动机的飞机,当时使用的材料有木材(占47%),钢(占35%)和布(占18%),飞机的飞行速度只有16公里/时。1906年德国冶金学家发明了可以时效强化的硬铝,使制造全金属结构的飞机成为可能。40年代出现的全金属结构飞机的承载能力已大大增加,飞行速度超过了600公里/时。在合金强化理论的基础上发展起来的一系列高温合金使得喷气式发动机的性能得以不断提高。50年代钛合金的研制成功和应用对克服机翼蒙皮的“热障”问题起了重大作用,飞机的性能大幅度提高,最大飞行速度达到了3倍音速。40年代初期出现的德国 V-2火箭只使用了一般的航空材料。50年代以后,材料烧蚀防热理论的出现以及烧蚀材料的研制成功,解决了弹道导弹弹头的再入防热问题。60年代以来,航空航天材料性能的不断提高,一些飞行器部件使用了更先进的复合材料,如碳纤维或硼纤维增强的环氧树脂基复合材料、金属基复合材料等,以减轻结构重量。返回型航天器和航天飞机在再入大气层时会遇到比弹道导弹弹头再入时间长得多的空气动力加热过程,但加热速度较慢,热流较小。采用抗氧化性能更好的碳-碳复合材料陶瓷隔热瓦等特殊材料可以解决防热问题。 分类飞行器发展到80年代已成为机械加电子的高度一体化的产品。它要求使用品种繁多的、具有先进性能的结构材料和具有电、光、热和磁等多种性能的功能材料。航空航天材料按材料的使用对象不同可分为飞机材料、航空发动机材料、火箭和导弹材料和航天器材料等;按材料的化学成分不同可分为金属与合金材料、有机非金属材料、无机非金属材料和复合材料。 材料应具备的条件用航空航天材料制造的许多零件往往需要在超高温、超低温、高真空、高应力、强腐蚀等极端条件下工作,有的则受到重量和容纳空间的限制,需要以最小的体积和质量发挥在通常情况下等效的功能,有的需要在大气层中或外层空间长期运行,不可能停机检查或更换零件,因而要有极高的可靠性和质量保证。不同的工作环境要求航空航天材料具有不同的特性。 高的比强度和比刚度对飞行器材料的基本要求是:材质轻、强度高、刚度好。减轻飞行器本身的结构重量就意味着增加运载能力,提高机动性能,加大飞行距离或射程,减少燃油或推进剂的消耗。比强度和比刚度是衡量航空航天材料力学性能优劣的重要参数: 比强度=/ 比刚度=/式中[kg2][kg2]为材料的强度,为材料的弹性模量,为材料的比重。 飞行器除了受静载荷的作用外还要经受由于起飞和降落、发动机振动、转动件的高速旋转、机动飞行和突风等因素产生的交变载荷,因此材料的疲劳性能也受到人们极大的重视。 优良的耐高低温性能飞行器所经受的高温环境是空气动力加热、发动机燃气以及太空中太阳的辐照造成的。航空器要长时间在空气中飞行,有的飞行速度高达3倍音速,所使用的高温材料要具有良好的高温持久强度、蠕变强度、热疲劳强度,在空气和腐蚀介质中要有高的抗氧化性能和抗热腐蚀性能,并应具有在高温下长期工作的组织结构稳定性。火箭发动机燃气温度可达3000[2oc]以上,喷射速度可达十余个马赫数,而且固体火箭燃气中还夹杂有固体粒子,弹道导弹头部在再入大气层时速度高达20个马赫数以上,温度高达上万摄氏度,有时还会受到粒子云的侵蚀,因此在航天技术领域中所涉及的高温环境往往同时包括高温高速气流和粒子的冲刷。在这种条件下需要利用材料所具有的熔解热、蒸发热、升华热、分解热、化合热以及高温粘性等物理性能来设计高温耐烧蚀材料和发冷却材料以满足高温环境的要求。太阳辐照会造成在外层空间运行的卫星和飞船表面温度的交变,一般采用温控涂层和隔热材料来解决。低温环境的形成来自大自然和低温推进剂。飞机在同温层以亚音速飞行时表面温度会降到-50[2oc]左右,极圈以内各地域的严冬会使机场环境温度下降到-40[2oc]以下。 在这种环境下要求金属构件或橡胶轮胎不产生脆化现象。液体火箭使用液氧(沸点为-183[2oc])和液氢(沸点为-253[2oc])作推进剂,这为材料提出了更严峻的环境条件。部分金属材料和绝大多数高分子材料在这种条件下都会变脆。通过发展或选择合适的材料,如纯铝和铝合金、钛合金、低温钢、聚四氟乙烯、聚酰亚胺和全氟聚醚等,才能解决超低温下结构承受载荷的能力和密封等问题。 耐老化和耐腐蚀各种介质和大气环境对材料的作用表现为腐蚀和老化。航空航天材料接触的介质是飞机用燃料(如汽油、煤油)、火箭用推进剂(如浓硝酸、四氧化二氮、肼类)和各种润滑剂、液压油等。其中多数对金属和非金属材料都有强烈的腐蚀作用或溶胀作用。在大气中受太阳的辐照、风雨的侵蚀、地下潮湿环境中长期贮存时产生的霉菌会加速高分子材料的老化过程。耐腐蚀性能、抗老化性能、抗霉菌性能是航空航天材料应该具备的良好特性。 适应空间环境空间环境对材料的作用主要表现为高真空(×10[55-1]帕)和宇宙射线辐照的影响。金属材料在高真空下互相接触时,由于表面被高真空环境所净化而加速了分子扩散过程,出现“冷焊”现象;非金属材料在高真空和宇宙射线辐照下会加速挥发和老化,有时这种现象会使光学镜头因挥发物沉积而被污染,密封结构因老化而失效。航天材料一般是通过地面模拟试验来选择和发展的,以求适应于空间环境。 寿命和安全为了减轻飞行器的结构重量,选取尽可能小的安全余量而达到绝对可靠的安全寿命,被认为是飞行器设计的奋斗目标。对于导弹或运载火箭等短时间一次使用的飞行器,人们力求把材料性能发挥到极限程度。为了充分利用材料强度并保证安全,对于金属材料已经使用“损伤容限设计原则”。这就要求材料不但具有高的比强度,而且还要有高的断裂韧性。在模拟使用的条件下测定出材料的裂纹起始寿命和裂纹的扩展速率等数据,并计算出允许的裂纹长度和相应的寿命,以此作为设计、生产和使用的重要依据。对于有机非金属材料则要求进行自然老化和人工加速老化试验,确定其寿命的保险期。复合材料的破损模式、寿命和安全也是一项重要的研究课题。

颜鸣皋开创中国钛合金研究,组建中国第一个钛合金实验室,系统开展航空钛合金研究,建立中国航空用钛合金系列,领导参与高温合金、钛合金和一些新材料的应用基础研究,在微观结构分析、合金强化机理、金属超塑性理论等方面取得一系列创造性成果。在Ti3Al合金、Al-Li合金和Ni3Al合金研究中均取得突破性进展。主持航空材料的疲劳与断裂研究,在新的裂纹扩展物理模型、疲劳裂纹扩展机制、疲劳门槛值预测、三维裂纹应力分析、材料的超载效应以及变幅载荷下的寿命估算等方面取得系统性、独创性的成果,为飞机安全设计、合理选材提供了大量的试验数据和理论依据。 中国金属织构理论的先行者颜鸣皋长期致力于物理金属学和材料科学研究。早在1944年他在中央工业试验所就担负了筹建材料试验室的工作,并进行过结构钢试验及楠竹材料的力学性能研究。1947年,颜鸣皋在美国耶鲁大学研究生毕业时,提交的一篇题为 “ 金属加工织构研究 ” (Astudy of deformation textures in metals)的论文,发表在美国矿冶工程师学会的学报上。在这篇论文里,他提出了富有创见性的见解,采取理论分析方法,第一次同时对3种常用晶系的滑移系与加工织构作了推算,受到了不少国家冶金界学者的重视,并被英、美、德等国学者在织构专著中列为较完整和成功的织构形成理论之一,对金属加工织构的研究产生了一定的影响。1948年,颜鸣皋所进行的铝单晶横断弯曲试验研究工作取得新的进展,对晶体不均匀变形有了新的发现和认识,提出晶体塑性变形的显微弯曲新假说。 在美国切斯铜加工厂研究部进行纯铜加工与再结晶织构的研究时,颜鸣皋把X光掠射法应用于织构的测定,研究了微量杂质磷在固溶和化合物状态对再结晶织构的影响,提出了独到的见解,并应用于指导生产实践。 中国航空钛合金研究的创始人1949年,颜鸣皋获得工学博士学位后,接受美国纽约大学工学院邀请,负责钛合金实验室的筹建工作,在留学生钱定华的协助下,建成一台可熔炼钮扣锭的小型真空非自耗电弧炉,并根据美国国防部门的委托,开展过钛—碳、钛—氮平衡图和钛合金加工织构的研究。在研究报告中,他首次提出了关于钛合金的拉伸、压缩与轧制织构的晶格位向结果。在这方面的研究工作,当时国际上还没有开展,颜鸣皋进行的开拓性的研究结果被一些钛合金权威性著作引用。 1956年,第二机械工业部航空工业局建立航空材料研究所。考虑到钛合金是一种新型的、重要的航空材料,列为该所重点专业,由颜鸣皋率领一批青年技术人员,自行设计、制造设备,建立了非自耗电极真空电弧炉和公斤自耗电极真空电弧炉,成功地炼出了中国第一个重3公斤的钛合金锭。同时,在实践中培养出中国第一批技术素质较高的钛合金研究人员,成为该所钛合金研究的骨干力量。颜鸣皋是中国钛合金研究工作的开拓者。 中国航空高温合金应用基础研究的奠基者1962年,为加强应用基础理论研究,颜鸣皋出任金属物理研究室主任,指导与参加一些高温合金的应用基础研究。他与陈学印共同在《金属学报》上发表了“镍基合金的强化”的综合评述,并根据镍和其他元素的原子半径差、晶体结构和电子层构造,分析了各种合金元素在镍基合金中的存在状态及强化序列,评述了高温合金强化机理,对中国正在开展的高温合金研究工作起了促进作用。 在颜鸣皋指导下,航空材料研究所先后完成了材料在生产使用中的故障分析、材料产品定寿与延寿工作,如航空发动机火焰筒板材分层、发动机叶片榫槽裂纹与延寿、压气机盘断裂、歼-6飞机起落架修补、加力喷嘴折断等重大失效分析工作,逐一得出了准确的科学结论,提出了相应的措施,积累了对飞机、发动机零部件失效分析和延长使用寿命的经验,培养了人才,提高了故障分析水平。为此,中国机械学会失效分析委员会授予他优秀工作者光荣称号和金质奖章。 在航空工业由仿制走向自行设计的转变过程中,为解决航空材料为新机种设计和原有机种定寿、延寿服务的问题,颜鸣皋早在1978年就提出要实行两个“三结合”,即“设计、材料、使用”和“材料、工艺、测试”相结合。随后又根据多年来航空材料研究与发展中的正反两方面的经验,总结出设计、材料、工艺、测试、使用相互间的辩证关系,即设计是主导,材料是基础,工艺是手段,测试是保证,使用是检验。他还应邀在国家科学技术委员会召开的新材料会议上作了关于开展材料应用研究的报告。 中国航空金属材料疲劳与断裂研究的创立者20世纪70年代以来,由于断裂力学和新型检测技术的发展和应用,航空产品结构与部件的设计已由传统的强度设计、疲劳设计发展到断裂设计和损伤容限设计。为了保证新机种设计的需要,颜鸣皋组织和领导固体力学和材料物理两支队伍,采取宏观力学与微观分析相结合,开展金属材料疲劳与断裂方面的应用基础研究和应用研究,取得了一些重大研究成果。其中,他对第一、第二阶段裂纹扩展的物理模型,首次归纳为双滑移、裂尖钝化和再生核机制,得出了疲劳裂纹扩展的一般表达式,并阐明了组织结构、应力比、表面状态和环境介质等因素的影响规律,撰写了《金属疲劳断裂微观机制》一文。 颜鸣皋是国务院批准的首批博士生导师之一和第一、二届学位委员会冶金评议组成员。多次参加国际学术会议,先后担任10余次学术会议的国际委员或执行委员。1987年由他主持召开了第五届国际材料力学行为会议(ICM),并当选该会理事会主席。1988年,被推选为远东断裂力学组(FEFG)执行委员和国际断裂力学会议(ICF)联络委员会委员等。1991年为纪念中国航空工业创建40周年,航空航天工业部将该部最高荣誉 —— 航空金奖授予颜鸣皋,以表彰他对中国航空航天事业的卓越贡献。 颜鸣皋曾主编和翻译出版过《航空材料学》《镍基高温合金的强化》《金属的疲劳与断裂》《疲劳裂纹扩展速率手册》《材料的塑性变形与断裂》等专著和译著,先后发表各种科学论文200余篇。他还曾任《材料科学与测试技术》丛书副主编,主持编撰《中国航空材料手册(第一版、第二版)》《第五届国际材料力学行为会议论文集》等专业图书和多种力学性能手册,为生产、科研、教学等提供了有价值的数据、资料,为传播新技术、新材料作出了出色成绩。 基本情况如下:中文1、颜鸣皋.金属加工织构的研究.北京工业学院学报,1956,2(1):1-152、颜鸣皋.金属织构的X射线衍射的测定.第一届全国x射线与电子显微技术的进展会议论文集.(上海),1963:163-1993、颜鸣皋,陈学印.镍基合金的强化,金属学报,1964,7(3):307-3214、颜鸣皋,袁振明,纯铜织构对晶界内耗峰的影响.物理学报,1975,24(1):51~625、颜鸣皋.金属疲劳裂纹扩展过程及其微观机制.第一届断裂力学与断裂物理会议论文集(武汉),1978:179-2236、颜鸣皋.疲劳裂纹初期扩展特征及其影响因素.航空学报,1983,4(2):13-297、颜鸣皋,刘才穆(译).金属的疲劳与断裂.上海:科学技术出版社,19838、颜鸣皋主编.航空材料学.上海:科学技术出版社,19859、颜鸣皋主编.航空金属材料疲劳裂纹扩展手册.北京:航空材料研究所科技资料,198510、颜鸣皋.结构材料疲劳裂纹扩展机制及其工程应用.航空学报,1985,6(3):208-22211、颜鸣皋,王金友,马济民.钛合金在航空工业中的应用.第6届全国钛合金会议论文集,198712、颜鸣皋主编.中国航空材料手册.北京:中国标准出版社,1988外文1、Yan Minggao. A study of textures and earing behavior of cold rolled (87-89%)and annealed copper strips, . ,1949,185:59-662、Yan Minggao, W. R. Hibbard Jr. The transverse bending of single crystals of aluminium .Trans. AIME. ,1949,185:710 -7203、Yan Minggao. A propose microbending mechanism of plastic deformation. Trans. AIME. , 1949,185:1003-10044、Yan Minggao, Wang Zhongquang. Some microscopic features and mechanisms of fatigue behavior in metals. China-USA Bilateral Metall. Conf. (Beijing), 1981:345-3845、Yan Minggao, Gu Mingda. Investigations on the crack growth retardation behavior and fatigue life prediction in structural materials, Proc. ICF Intern. Symp. Fract. Mech.(Beijing), 1983:769-7776、Yan Minggao,Yu Chunghua, Notes on the prediction of △K for fatigue crack propagation. RES Mechanica, 1984, 10:153-1597、Yan Minggao,Zhang Souhua,Zheng Zemin. Proceedings of the Fifth International Conference on Mechanical Behavior of Materials. Pergamon Press (Oxford) ,19878、Yan Minggao, Quyand Jie, Zhang Shouqing. Microscopic studies on FCP and fracture characteristic near crack tip region in engineering alloys. Proc. of Far East Fract. Group Workshop. (Tokyo), 1988:167-1769、Yan Minggao, Zhang Shijie,Ouyang Jie,Fatigue crack propagation behavior under spectrum loading. Proc. CMRS Intern. '90,Symp. J. (Beijing) ,1990 颜鸣皋作为中国首批博士生导师之一,培养了40余名博士和硕士生及10余名博士后,为国家培养了一批研究生导师。

切削加工和刀具技术的现状与发展(3) -------------------------------------------------------------------------------- 关键词:刀具,切削加工 阅读:103次 4 新型刀具的开发与传统刀具的改进当前刀具结构的变革正朝着可转位、多功能、专用复合刀具和模块式工具系统的方向发展,各种精密、高效、优质的可转位刀具已应用于车削、铣削、钻削等领域,成为刀具结构发展的主流。 上海大众汽车有限公司、长春一汽集团公司和东风汽车集团公司已在生产中广泛使用各种新型刀具和数控机床模块式工具系统,如各种机夹可转位刀具、陶瓷刀具、PCD和PCBN等超硬刀具、金刚石和CBN铰刀、硬质合金球头铣刀和筒式拉刀等,对提高工效、保证产品质量起到了重要作用。SecoTools(上海)公司在“PCBN刀具材料的新进展及其在铣削中的应用”论文中介绍了他们开发的SECOMAX 新品种———CBN300,它是在CBN30基础上采用粗颗粒(22�0�8m)粉末和新的烧结工艺研制出的新牌号,具有很高的抗冲击性能,它的应用使PCBN刀具从传统的车削淬硬钢(>45HRC)和冷硬铸铁等硬材料、以车代磨等加工领域跨入到铣削加工领域。该刀具已在上海通用汽车公司(SGM)新建的发动机柔性生产线上使用,取得了良好效果。该刀具铣削发动机缸体平面时,切削速度高达2000m/min,刀具寿命为普通PCBN刀具的4倍。Seco Tools公司还推出了结构新颖、具有冷却通道、可更换硬质合金头部的钻头,其头部有三种不同几何形状,P型硬质合金刀头适用于切削钢,K型硬质合金刀头适于切削铸铁,而刀刃锐利的M型刀头适于钻削高强度钢和耐腐蚀钢。本次会议对传统刀具和高效刀具的设计、制造及使用也进行了技术交流。如广东韶关学院设计的径向错位量较大(为每转进给量的2~3倍)的单组阶梯式可转位面铣刀、燕山大学研制的可加工硬度55HRC以上大内齿轮(模数m=12mm,齿数z=97)的负前角刮削硬质合金球形滚刀、西安交通大学设计的前角可控的等螺旋角锥形立铣刀、山西太原理工大学设计的齿向开槽的新型插齿刀等,在结构上都有一定特点与创新,用于生产中均取得了较好效果。电镀金刚石铰刀加工出的孔具有尺寸分散度小、几何形状精度高(可达2�0�8m)、表面粗糙度值小(5 切削机理的研究与刀具CAD为促进高速切削、精密和超精密切削技术的发展,本次会议上交流了许多有关切削机理及其实验研究方面的论文。南京航空航天大学对高温合金、钛合金、不锈钢等难加工材料的高速切削进行了系统试验研究,发现切削变形为集中剪切滑移,且滑移区很窄,形成锯齿状不连续切屑,其变形机理完全不同于连续性切屑。为此,作者根据最小能量原理,利用集中剪切滑移的临界条件,推导出集中剪切滑移条件下的切削方程式,为进一步发展高速切削工艺技术建立了理论基础。山东大学探讨了高速切削时工件材料与刀具材料的匹配、切削方式、刀具几何参数、切削参数、振动和切削液等因素对已加工表面粗糙度的影响,为高速切削加工时切削参数的选择和表面质量的控制提供了依据。哈尔滨理工大学、哈尔滨工业大学等对PCBN刀具干切削不同硬度的GCr15轴承钢的切削力、切削温度、已加工表面完整性等进行了切削试验研究,发现存在区分普通切削与硬态切削的临界硬度,并得出GCr15轴承钢的临界硬度为50HRC。在临界硬度附近进行切削时,刀具磨损严重,加工表面质量最差。上海水产大学建立了“工程材料切削加工性的人工神经网络综合评判模型”,各评价指标的权值是从足够多的训练样本中提出的,避免了人为确定权值和隶属函数的主观性,使评价结果更具客观性和可比性。大连理工大学建立了球头铣刀铣削的计算机预报模型,并进行了数值仿真研究,对改进铣刀设计、优化切削用量和监控切削参数均有现实意义。等学者在会上介绍的“微型硬质合金铣刀切削时刀具寿命的预报模型”,等人介绍的“斜角切削时允许后刀面磨损的切削预报模型”等均与实验结果相吻合,为精密切削和微量切削提供了理论依据。CAD/CAM技术的应用可保证刀具设计和制造的高效率和高质量,本次会议上也有不少这方面的论文。例如,焦作工学院在AutoCAD2000平台上开发了一种“成形车刀CAD”软件,对成形车刀的智能设计、参数化绘图具有重要意义。此外,还有许多关于刀具几何参数、切削用量和工艺过程优化、切削液、切削数据库(如北京第一机床厂在CIMS环境下建立的网络数据库)、振动切削等内容的论文也在会上进行了交流。5 差距与建议虽然近十年来我国工具工业有了长足进步,切削技术迅速提高,但与国外先进水平相比仍有巨大差距。据专家分析,我国切削加工及刀具技术的水平与工业发达国家相比大致要落后15~20年。近年来国内轿车工业引进了几条具有国际20世纪90年代水平的生产线,但所用工具的国内供给率只能达到20%的低水平。为改变这种状况,我国工具行业需要加速进口刀具国产化的步伐,必须更新经营理念,从主要向用户“卖刀具”转到为用户“提供成套切削技术,解决具体加工问题”的经营方向上来。要根据自身产品的专业优势,精通相应的切削工艺,不断创新开发新产品。用户行业则应增大刀具费用的投入,充分利用刀具在提高效率、降低成本、缩短Intranet/Extranet,实现最大程度的资源(如切削数据库)共享。建议有关部门将产、学、研各部门的科研力量组织起来,集中优势,一方面积极引进国外先进刀具制造技术,提高刀具产品水平,加快刀具产品(尤其是数控刀具产品)的国产化步伐;另一方面应结合生产实际,系统地推广使用各种先进刀具和先进切削技术。我们相信,通过正确的政策引导和企业的有序竞争,完全有可能使我国的切削加工与刀具技术赶上国外先进水平,并做到有所发展与创新。上一页

  • 索引序列
  • 航空铝合金成型工艺研究论文
  • 铝合金压铸工艺研究论文
  • 铝合金压铸工艺研究论文初稿
  • 铝合金模板新工艺论文
  • 航空航天钛合金研究实验论文
  • 返回顶部