首页 > 学术论文知识库 > 逆变器论文文献综述

逆变器论文文献综述

发布时间:

逆变器论文文献综述

基于MATLAB的速度传感器异步电机控制系统仿真研究第1章 文献综述及课题的提出本课题产生的背景和研究现状 本课题产生的背景 研究现状本课题研究的意义及主要内容3第2章 直接转矩控制的基本理论分析异步电动机数学模型分析三相静止坐标系下的电机数学模型两相静止坐标系下的电机数学模型逆变器的数学模型电压空间矢量空间矢量概念定子电压空间矢量直接转矩控制的基本原理 磁通控制原理 转矩控制原理本章小结11第3章 直接转矩控制系统的基本组成直接转矩控制系统的控制策略选择及结构 电压-电流(u-i)定子磁链观测 转矩观测 磁链自调节 转矩自调节 磁链空间位置的判定空间电压矢量选择本章小结17第4章 无速度传感器直接转矩控制系统的研究 模型参考自适应参数辨识理论基础基于转子磁通模型的转速辨识 本章小结22第5章 直接转矩控制系统的仿真研究仿真软件MATLAB/simulink简介控制系统仿真单元的组成三相交流异步电动机的仿真模型磁链、转矩观测器仿真模型磁链、转矩调节器仿真模型磁链位置判断仿真模型坐标变换器仿真模型电压开关矢量表仿真模型 逆变器仿真模型 基于MARS转速估计的仿真模型 基于MARS的无速度传感器直接转矩控制系统仿真模型仿真结果本章小结33结论与展望35

撰写文献综述的技巧与方法 抱歉,论文综述是要你在以后写论文时的一个整体提纲,别人帮你写了.你自己以后的论文怎么办?总不能再到百度上等着别人帮你写吧?所以,给你点建议是可以的,但是,东西要自己写,互连网,是让我们更方便,而不是让我们更懒惰. 下面是关于综述的一些知识,如果你真的那么懒惰,就不用看了,如果你还觉得自己可以写的话,就好好看看. 综 述 一、综述概述 1.什么是综述:综述,又称文献综述,英文名为review。它是利用已发表的文献资料为原始素材撰写的论文。 综述包括“综”与“述”两个方面。所谓综就是指作者必须对占有的大量素材进行归纳整理、综合分析,而使材料更加精炼、更加明确、更加层次分明、更有逻辑性。所谓述就是评述,是对所写专题的比较全面、深人、系统的论述。因而,综述是对某一专题、某一领域的历史背景、前人工作、争论焦点、研究现状与发展前景等方面,以作者自己的观点写成的严谨而系统的评论性、资料性科技论文。 综述反映出某一专题、某一领域在一定时期内的研究工作进展情况。可以把该专题、该领域及其分支学科的最新进展、新发现、新趋势、新水平、新原理和新技术比较全面地介绍给读者,使读者尤其从事该专题、该领域研究工作的读者获益匪浅。因此,综述是教学、科研以及生产的重要参考资料。 2.综述的类型:根据搜集的原始文献资料数量、提炼加工程度、组织写作形式以及学术水平的高低,综述可分为归纳性、普通性和评论性三类。 (1)归纳性综述:归纳性综述是作者将搜集到的文献资料进行整理归纳,并按一定顺序进行分类排列,使它们互相关联,前后连贯,而撰写的具有条理性、系统性和逻辑性的学术论文。它能在一定程度上反映出某一专题、某一领域的当前研究进展,但很少有作者自己的见解和观点。 (2)普通性综述:普通性综述系具有一定学术水平的作者,在搜集较多资料的基础上撰写的系统性和逻辑性都较强的学术论文,文中能表达出作者的观点或倾向性。因而论文对从事该专题、该领域工作的读者有一定的指导意义和参考价值。 (3)评论性综述:评述性综述系有较高学术水平、在该领域有较高造诣的作者。在搜集大量资料的基础上.对原始素材归纳整理、综合分析、撰写的反映当前该领域研究进展和发展前景的评论性学术论文。因论文的逻辑性强,有较多作者的见解和评论。故对读者有普遍的指导意义,并对读者的研究工作具有导向意义。 二、综述的书写格式 综述与一般科技论文不同。科技论文注重研究方法的科学性和结果的可信性,特别强调阳性结果。而综述要写出主题(某一专题、某一领域)的详细情报资料,不仅要指出发展背景和工作意义,而且还应有作者的评论性意见,指出研究成败的原因;不仅要指出目前研究的热点和争论焦点,而且还应指出有待于进一步探索和研究的处女领域:不仅要介绍主题的研究动态与最新进展,而且还应在评述的基础上,预测发展趋势和应用前景。因此,综述的书写格式比较多样化,除了题目、署名、摘要、关键词(这四部分与一般科技论文相同)以外,一般还包括前言、主体、总结和参考文献四部分,其中前三部分系综述的正文,后一部分是撰写综述的基础。 1。前言:与一般科技论文一样,前言又称引言,是将读者导人论文主题的部分,主要叙述综述的目的和作用,概述主题的有关概念和定义,简述所选择主题的历史背景、发展过程、现状、争论焦点、应用价值和实践意义,同时还可限定综述的范围.使读者对综述的主题有一个初步的印象。这部分约200~300字。 2.主体部分:综述主体部分的篇幅范围特别大,短者5000字左右,长者可达几万字,其叙述方式灵活多样,没有必须遵循的同定模式,常由作者根据综述的内容,自行设计创造。一般可根据主体部分的内容多寡分成几个大部分,每部分标上简短而醒目的小标题。部分的区分标准也多种多样,有的按年代,有的按问题,有的按不同论点,有的按发展阶段。然而,不管采用何种方式,都应该包括历史发展、现状评述和发展前景预测三方面的内容。 (1)历史发展:按时间顺序,简述该主题的来龙去脉,发展概况及各阶段的研究水平。 (2)现状评述:重点是论述当前国内外的研究现状,着重评述哪些问题已经解决,哪些问题还没有解决,提出可能的解决途径;目前存在的争论焦点,比较各种观点的异同并作出理论解释,亮明作者的观点;详细介绍有创造性和发展前途的理论和假说,并引出论据,指出可能的发展趋势。 (3)发展前景预测:通过纵横对比,肯定该主题的研究水平,指出存在的问题,提出可能的发展趋势,指明研究方向,提示研究的捷径。 3.总结部分:总结部分又称为结论、小结或结语。书写总结时,可以根据主体部分的论述,提出几条语言简明、含义确切的意见和建议;也可以对主体部分的主要内容作出扼要的概括,并提出作者自己的见解,表明作者赞成什么,反对什么;对于篇幅较小的综述,可以不单独列出总结,仅在主体各部分内容论述完后,用几句话对全文进行高度概括。 4.参考文献:参考文献是综述的原始素材.也是综述的基础,因此,拥有并列出足够的参考文献显得格外重要。它除了表示尊重被引证作者的劳动及表明引用的资料有其科学依据以外,更重要的是为读者深入探讨该主题提供查找有关文献的线索。 三、综述的写作步骤和注意事项 1.综述的写作步骤。 (1)选题:综述的选题应遵循以下几个原则: ①选择的专题或领域:应是近年来进展甚快、内容新颖、知识尚未普及而研究报告积累甚多的主题;或研究结论不一致有争论的主题或是新发现和新技术在我国有应用价值的主题。 ②选题与作者的关系:应选择与作者从事的专业密切相关的主题;或是与作者从事专业交叉的边缘学科的主题;或是作者即将进行探索与研究的主题;或是与作者从事专业关系不大,但乐于探索的主题;或是科学情报工作者作为研究成果的主题。 ③题目要具体、明确,范围不宜过大.切忌无的放矢,泛泛而谈。 ④选题必须有所创新,具有实用价值。 (2)搜集文献:题目确定后.需要查阅和积累有关文献资料.这是写好综述的基础。因而,要求搜集的文献越多、越全越好。常用的方法是通过文摘、索引期刊等检索工具书查阅文献。也可以采用微机联网检索等先进的查阅文献方法。 (3)阅读和整理文献:阅读文献是写好综述的重要步骤。因此,在阅读文献时,必须领会文献的主要论点和论据,做好“读书笔记”,并制作文献摘录卡片,用自己的语言写下阅读时所得到的启示、体会和想法,摘录文献精髓,为撰写综述积累最佳的原始素材。阅读文献、制作卡片的过程,实际上是消化和吸收文献精髓的过程。制作的卡片和笔记便于加工处理.可以按综述的主题要求进行整理、分类编排,使之系列化和条理化。最终对分类整理好的资料进行科学分析,结合作者的实践经验,写出体会,提出自己的观点。 (4)撰写成文:撰写综述之前,应先拟定写作大纲,然后写出初稿,待“创作热”冷却后进行修改。 2.撰写综述的注意事项。 (1)综述内容应是前人未曾写过的。如已有人发表过类似综述,一般不宜重复,更不能以他人综述之内容作为自己综述的素材。 (2)对于某些新知识领域、新技术,写作时可以追溯该主题的发展过程,适当增加一些基础知识内容,以便读者理解。对于人所共知或知之甚多的主题,应只写其新进展、新动向、新发展,不重复别人已综述过的前一阶段的研究状况。 (3)综述的素材来自前人的研究报告,必须忠实原文,不可断章取义,阉割或歪曲前人的观点。 (4)综述的撰写者必须对所写主题的基础知识、历史与发展过程、最新进展全面了解,或者作者本身也从事该主题的研究工作,是该主题的“专家”,否则容易出大错、闹笑话。 (5)撰写综述时,搜集的文献资料尽可能齐全,切忌随便收集一些文献就动手撰写,更忌讳阅读了几篇中文资料,便拼凑成一篇所谓的综述。 (6)综述的原始素材应体现出一个“新”字,亦即必须有最近最新发表的文献,一般不将教科书、专著列为参考文献。

[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998 [1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,(9):34-42 [1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,Finland: Tampere Universityof Technology, 1995, IEEE: 40. [1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEETrans 0n Power Electronics,1996 [3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener UsingSecondary Active Clamp,IEEE Trans 0n Power Electronics,l998 [3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE AppliedPower Electronics Conference and exposition,2000 [3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied PowerElectronics Conference and exposition,1998 [3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Usinga Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference andexposition,l998

逆变器论文英文文献

Inverter may refer toInverter (electrical), a device that converts direct current to alternating current Inverter (air conditioning), an air conditioner that can continuously regulate its output by altering the compressor speed in response to cooling demand Uninterruptible power supply, which often are based on an electrical inverter Inverter (logic gate), a logic gate also called a NOT gate Inverter (electrical)An inverter is an electrical device that converts direct current (DC) to alternating current (AC); the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power. Inverters are commonly used to supply AC power from DC sources such as solar panels or electrical inverter is a high-power electronic oscillator. It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were "inverted", to convert DC to inverter performs the opposite function of a power source utilizationAn inverter converts the DC electricity from sources such as batteries, solar panels, or fuel cells to AC electricity. The electricity can be at any required voltage; in particular it can operate AC equipment designed for mains operation, or rectified to produce DC at any desired tie inverters can feed energy back into the distribution network because they produce alternating current with the same wave shape and frequency as supplied by the distribution system. They can also switch off automatically in the event of a convert direct current from individual solar panels into alternating current for the electric power suppliesAn uninterruptible power supply (UPS) uses batteries and an inverter to supply AC power when main power is not available. When main power is restored, a rectifier is used to supply DC power to recharge the heatingInverters convert low frequency main AC power to a higher frequency for use in induction heating. To do this, AC power is first rectified to provide DC power. The inverter then changes the DC power to high frequency AC power.[edit] HVDC power transmissionWith HVDC power transmission, AC power is rectified and high voltage DC power is transmitted to another location. At the receiving location, an inverter in a static inverter plant converts the power back to AC.[edit] Variable-frequency drivesMain article: variable-frequency driveA variable-frequency drive controls the operating speed of an AC motor by controlling the frequency and voltage of the power supplied to the motor. An inverter provides the controlled power. In most cases, the variable-frequency drive includes a rectifier so that DC power for the inverter can be provided from main AC power. Since an inverter is the key component, variable-frequency drives are sometimes called inverter drives or just inverters.[edit] Electric vehicle drivesAdjustable speed motor control inverters are currently used to power the traction motors in some electric and diesel-electric rail vehicles as well as some battery electric vehicles and hybrid electric highway vehicles such as the Toyota Prius. Various improvements in inverter technology are being developed specifically for electric vehicle applications.[2] In vehicles with regenerative braking, the inverter also takes power from the motor (now acting as a generator) and stores it in the batteries.[edit] Air conditioningMain article: Inverter (air conditioning)An air conditioner bearing the inverter tag uses a variable-frequency drive to control the speed of the motor and thus the compressor.[edit] The general caseA transformer allows AC power to be converted to any desired voltage, but at the same frequency. Inverters, plus rectifiers for DC, can be designed to convert from any voltage, AC or DC, to any other voltage, also AC or DC, at any desired frequency. The output power can never exceed the input power, but efficiencies can be high, with a small proportion of the power dissipated as waste low power inverters have a warning not to use conventional fluorescent lighting. This is due to the power correction capacitor connected in parallel with the lamp. Removing the capacitor will fix the problem. What may not be known is that in dual lamp fittings the capacitor may be connected in series with the second lamp, thus removing the problem as well as the stroboscopic effect caused by the mains designsIn one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding. A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other. The alternation of the direction of current in the primary winding of the transformer produces alternating current (AC) in the secondary electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact. The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact. The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth. This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios. A similar mechanism has been used in door bells, buzzers and tattoo they became available with adequate power ratings, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs.[edit] Output waveformsThe switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply. Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves. The sine wave that has the same frequency as the original waveform is called the fundamental component. The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental quality of the inverter output waveform can be expressed by using the Fourier analysis data to calculate the total harmonic distortion (THD). The total harmonic distortion is the square root of the sum of the squares of the harmonic voltages divided by the fundamental voltage:The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load. Some loads need a nearly perfect sine wave voltage supply in order to work properly. Other loads may work quite well with a square wave voltage.[edit] Advanced designs H-bridge inverter circuit with transistor switches and antiparallel diodesThere are many different power circuit topologies and control strategies used in inverter designs. Different design approaches address various issues that may be more or less important depending on the way that the inverter is intended to be issue of waveform quality can be addressed in many ways. Capacitors and inductors can be used to filter the waveform. If the design includes a transformer, filtering can be applied to the primary or the secondary side of the transformer or to both sides. Low-pass filters are applied to allow the fundamental component of the waveform to pass to the output while limiting the passage of the harmonic components. If the inverter is designed to provide power at a fixed frequency, a resonant filter can be used. For an adjustable frequency inverter, the filter must be tuned to a frequency that is above the maximum fundamental most loads contain inductance, feedback rectifiers or antiparallel diodes are often connected across each semiconductor switch to provide a path for the peak inductive load current when the switch is turned off. The antiparallel diodes are somewhat similar to the freewheeling diodes used in AC/DC converter analysis reveals that a waveform, like a square wave, that is antisymmetrical about the 180 degree point contains only odd harmonics, the 3rd, 5th, 7th etc. Waveforms that have steps of certain widths and heights eliminate or “cancel” additional harmonics. For example, by inserting a zero-voltage step between the positive and negative sections of the square-wave, all of the harmonics that are divisible by three can be eliminated. That leaves only the 5th, 7th, 11th, 13th etc. The required width of the steps is one third of the period for each of the positive and negative steps and one sixth of the period for each of the zero-voltage the square wave as described above is an example of pulse-width modulation (PWM). Modulating, or regulating the width of a square-wave pulse is often used as a method of regulating or adjusting an inverter's output voltage. When voltage control is not required, a fixed pulse width can be selected to reduce or eliminate selected harmonics. Harmonic elimination techniques are generally applied to the lowest harmonics because filtering is more effective at high frequencies than at low frequencies. Multiple pulse-width or carrier based PWM control schemes produce waveforms that are composed of many narrow pulses. The frequency represented by the number of narrow pulses per second is called the switching frequency or carrier frequency. These control schemes are often used in variable-frequency motor control inverters because they allow a wide range of output voltage and frequency adjustment while also improving the quality of the inverters provide another approach to harmonic cancellation. Multilevel inverters provide an output waveform that exhibits multiple steps at several voltage levels. For example, it is possible to produce a more sinusoidal wave by having split-rail direct current inputs at two voltages, or positive and negative inputs with a central ground. By connecting the inverter output terminals in sequence between the positive rail and ground, the positive rail and the negative rail, the ground rail and the negative rail, then both to the ground rail, a stepped waveform is generated at the inverter output. This is an example of a three level inverter: the two voltages and ground.[3][edit] Three phase inverters 3-phase inverter with wye connected loadThree-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission. A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals. For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform. This creates a line-to-line output waveform that has six steps. The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above. When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are inverter switching circuit showing 6-step switching sequence and waveform of voltage between terminals A and CTo construct inverters with higher power ratings, two six-step three-phase inverters can be connected in parallel for a higher current rating or in series for a higher voltage rating. In either case, the output waveforms are phase shifted to obtain a 12-step waveform. If additional inverters are combined, an 18-step inverter is obtained with three inverters etc. Although inverters are usually combined for the purpose of achieving increased voltage or current ratings, the quality of the waveform is improved as well.

一种新颖的用于消除PWM逆变器输出共模电压的有源滤波器题目是这个意思,原文在哪里啊找到了貌似是这个,是个论文PWM逆变器在应用中会产生共模电压, 共模电压在IGBT的高速开关期间产生充放电电流。此电流通过电机内部的寄生电容产生流入地线的漏电流。漏电流过大将对电源产生电磁干扰,还会使电机轴承过早毁坏,从而影响系统运行的可靠性。文中提出了一种新颖的可以有效消除脉冲宽度调制(PWM)逆变器产生的共模电压的有源滤波器。这个有源滤波器由一个单相逆变器和一个五绕组共模变压器组成,可以产生与PWM逆变器输出的电压幅值相等,相位相反的共模电压,通过五绕组共模变压器叠加到逆变器输出中,从而有效消除感应电机端的共模电压。这种有源滤波器结构简单,控制容易。文中通过理论分析,仿真和实验结果证明了这种结构的有效性。关键词:PWM逆变器;输出有源滤波器; 共模电压; 五绕组变压器引言:高速电力半导体器件如绝缘栅双极晶体管(IGBT)的发展使电压源型脉宽调制逆变器的载波频率大大提高(如20 kHz),高开关频率以及零开关损耗方案可显著提高PWM变频器的性能。但在PWM变频器的应用中,出现了一些负面问题。 例如,传统的IGBT的控制策略使PWM逆变器输出产生了共模电压。共模电压使IGBT在高速开关期间,产生充放电电流。电流通过电机内部的寄生电容产生流入地线的漏电流,漏电流过大将引起电机保护电路的误动作;频率从100 kHz到几兆范围变化的漏电流经地线流回系统的三相电源中,产生电磁干扰(EMI) ,影响电网上的其他设备的正常运行;轴电压和轴承电流过大使电机轴承过早毁坏[1,2] 。
为抑制逆变器输出的共模电压,提高系统的可靠性,传统的方法是采用转轴接地,轴承绝缘,具有传导性的润滑剂等来降低轴电流,保护电机轴承,但是电机端共模电压仍然存在。电机负载运行时,共模电压仍会通过负载轴承产生具有破坏性的电流。为此开始采用由无源器件组成的滤波器[3,4],这类方法对消除过电压的影响非常有效,但载波频率发生变化时,对降低逆变器输出中的谐波成分的作用非常有限。因此,近年来开始尝试用有源器件来消除这些负面影响。Alexander Julian等提出了四相逆变器来消除共模电压[5],这种方法会产生严重的开关损耗和谐波失真。Annette Jouanne提出双桥逆变器(DBI)用于消除电机共模电压和由此产生的轴承漏电流[6],这种方法增加了一个三相逆变器及相应的驱动设备,所采用电机的定子必须有两套绕组,从而限制了这种方法的应用范围。日本学者Satoshi Ogasawara等人提出了一种有源共模噪声消除器(ACC)方案用于消除共模电压[7],效果非常理想,但是这种方法需要射极跟随器,限制了其在高电压中应用。 提出了有源共模电压补偿器(ACCom)用于降低PWM VSI驱动感应电机系统中的轴电流[8],这种结构的滤波器的变压器原边由具有6个开关器件组成的四电平半桥逆变器驱动,由于元件的数量很多并且驱动这些元件的电路非常复杂,因此串联电容的电压平衡问题没有解决,此文仅给出了仿真结果。
本文提出了一种新颖的逆变器输出有源滤波器来消除共模电压,从理论上分析了这种结构的滤波器的工作原理,最后通过仿真和实验证明了这种方案的有效性。
2 有源共模电压消除器
概述
共模电压的定义公式为

当电机的定子绕组接三相对称电源时,(Vao+Vbo+Vco)为零,电机端不存在共模电压;当电机的定子绕组接三相两电平逆变器时,由于逆变器在任意给定时刻都有三个开关动作,组成8种开关状态,使逆变器输出电压(Vao+Vbo+Vco)的总和通常不为零,为±Vdc/2(所有上三个开关或下三个开关导通)或±Vdc/6(两上一下或两下一上开关导通)(Vdc为逆变器直流母线电压)。电机端共模电压非常高,而且随着逆变器的调制频率的增加和电机零序阻抗的降低,共模电压可以产生非常大的共模电流,产生电磁干扰(EMI)等问题,破坏系统或电机,因此需要抑制。
三相逆变器输出产生的共模电压是一个四电平电压,如图1所示。电压参考点为直流母线电压中性点。< 有源滤波器结构 为消除三相逆变器输出产生的共模电压,本文采用一个单相逆变器和一个五绕组共模变压器,其原理结构如图2所示。三相和单相逆变器由控制单元(DSP)控制。这种软件控制方法可以省掉硬件电路如共模电压检测电路等,简化单相逆变器的控制电路。五绕组共模变压器结构如图3所示。采用两个环型铁心,每一个铁心上套一个原绕组,匝数N1=3/2N;三个副绕组同时绕在两个铁心上,匝数均为N。两个原绕组中1b端和2a端相连且接到直流母线上两个电容C的中性点0上,1a端接到单相逆变器中IGBT7和8的中点c上,2b端接到IGBT9和10的中点d上,三个副绕组的a端接到三相逆变器的输出端上,b端接到电机的三相出线端上。由于单相逆变器中IGBT9、10桥臂工作时实际上是处于三电平的工作状态,在其输出点d与0点之间串入一电阻R,使IGBT9、10关断时,其输出点d电位迅速回落到0点电位。



由于流入感应电机的共模电流非常小(理论上为零),单相逆变器中的IGBT和二极管的额定电流非常小,其额定电压与逆变器中的IGBT相同。共模变压器的两个原绕组的额定电流也非常小,其副绕组由于要通过驱动系统的额定电流,要求绕组导线直径较大。共模变压器的铁心要用高频铁磁材料制作,由于PWM脉冲的频率非常高,故所需铁心的截面积不大。 控制原理:为消除三相逆变器输出的共模电压,必须要求本文提出的有源滤波器能够产生四电平的输出电压。为此,根据本文所提结构,单相逆变器的四个IGBT的控制规律如表1所示。表中ON表示该IGBT处于导通状态,OFF表示该IGBT处于关断状态。输出表示经五绕组共模变压器叠加到三相逆变器输出端的电压。输出计算举例:假设IGBT7和IGBT9导通,其它关断(第二种情况),这时,单相逆变器的c点和d点均输出+1/2Vdc,加到五绕组变压器的原边上。根据同名端和绕组的匝数比及绕组原边的接线,三个副绕组上均感应电压:(+1/2Vdc)-2/3%26acute;(+1/2Vdc)= +1/6Vdc。由于通过共模变压器叠加到三相逆变器输出端的电压与三相逆变器输出的共模电压反向,从而达到消除共模电压的目的。由于三相逆变器的输出相电压波形与其相应相的上桥臂IGBT的控制信号波形相同,仅幅值不同,而共模电压是逆变器输出相电压对参考地的三相和的1/3,因此逆变器输出的共模电压可以通过IGBT的控制信号计算出来。而单相逆变器又是根据共模电压进行工作的,单相逆变器的控制信号也可以根据三相逆变器的三个上桥臂IGBT的控制信号得出。因此用一个控制单元(DSP)即可实现三相逆变器和单相逆变器的控制工作。
图4为逆变器采用正弦波PWM(SPWM)控制时根据IGBT的控制信号计算出的任一个PWM脉冲周期的共模电压波形及单相逆变器的控制信号波形。图4(a)为三相参考正弦波Va,Vb,Vc及载波Rec波形;参考正弦波与载波相比较,得出PWM脉冲,图4(b)~(d)为三相逆变器中上三个桥臂中IGBT的控制信号,下三个桥臂控制信号与之相反;图4(e)为计算出的共模电压波形,可见,共模电压为四电平电压;图4(f)~(i)为单相逆变器中4个IGBT(7~10)的控制信号,其控制规则满足表1的要求。当将这4个控制信号与共模电压相比较,同时考虑共模变压器变比的作用,可以看出,其输出规律与共模电压完全相同。因此,这种结构的滤波器可以做到完全消除三相逆变器输出的共模电压。3 仿真分析 采用仿真软件为Matlab ,三相电源电压为380 V,50 Hz;二极管整流,直流母线电压为537 V;PWM-IGBT逆变器,载波频率为2 kHz;3 kW感应电机。电容C的值为5 mF,为防止由于实际电容在充放电过程中可能出现的电压不相等而导致参考点电位出现波动的情况,在电容C上又分别并联了一个10 kW的均压电阻。在仿真时未出现电压不相等的情况。
图5为采用图2所示结构进行仿真一个PWM周期的结果,由图5(a)可知除幅值不同外,其波形形状与计算出的图4(e)相同;通过图5(a)和(c)比较可以看出,加入本文提出的逆变器输出有源滤波器,可以将三相逆变器输出的共模电压幅值几乎完全降为零,从而消除了共模电压对感应电机产生的不良影响。图5(c)中的两个毛刺脉冲产生的原因是共模电压从-1/6Vdc向-1/2Vdc变化或+1/6Vdc向+1/2Vdc变化时,相应的要求单相逆变器中的IGBT9或10关断(IGBT7或8仍然导通),而实际上d点输出电位不能迅速回到0点电位,使滤波器输出电压小于三相逆变器的输出共模电压,从而产生了毛刺脉冲。可以通过改变电阻R的阻值达到降低毛刺脉冲幅值的目的。4 改进方案图2所提方案虽然可以很大程度的消除电机端的共模电压,但是从图5(a)中的波形可以明显看出,一个PWM周期中逆变器输出的共模电压有6次变化,而图5(c)中消除了共模电压的4次变化,还有2次变化虽然在幅值上基本消除了逆变器输出的共模电压,但是对共模电压的dV/dt沿无明显影响。为此,对图2进行改进,改进的目的是当共模电压从-1/6Vdc向-1/2Vdc变化或从+1/6Vdc向+1/2Vdc变化时,使d点电位迅速回落到0点电位。图6为改进后的滤波器结构。与图2相比,在电阻R的两端反向并联了两个IGBT(11和12)。当IGBT9关断而IGBT7继续导通时(即需要滤波器输出+1/2Vdc时),IGBT11导通,使d点和0点电位差迅速降至IGBT的导通压降,而IGBT的导通压降为2~3 V,远远小于1/2Vdc,可以近似为0,使滤波器输出的电压迅速达到了三相逆变器输出的共模电压,从而起到消除共模电压的目的。



图7为IGBT7~IGBT12的控制信号波形。IGBT11和IGBT12的控制规律为当IGBT7或IGBT8导通期间,如果IGBT9或IGBT10关断(即需要滤波器输出+1/2Vdc或-1/2Vdc)时,IGBT11或IGBT12导通,其它时间关断。图8为采用改进后的滤波器时三相逆变器输出的共模电压(a),滤波器输出共模电压(b)和电机端共模电压波形(c)。比较图8(c)和图5(c),可以看出,加入IGBT11和IGBT12以后,毛刺脉冲的幅值减小了3/4。
5 实验分析
实验时采用自行研制的变频器。整流桥采用FUJI 6R130G-120;直流母线电容为HGC 450V 3300 mF,逆变器采用IPM 智能功率模块,载波频率为

2kHz, 驱动3 kW鼠笼电机。两个环型铁芯采用铁氧体材料,80mm×50mm×20mm,匝数比2:3:2,单相逆变器采用CM50DY-12H,由M57957L驱动。控制单元采用TMS320F240。 图9为所提滤波器结构(图2和图6)的实验结果。实验结果验证了本文所提结构的可用性,与理论分析和仿真结果相吻合,达到了设计目的。





6 结论
为了消除PWM逆变器输出产生的共模电压,本文提出了一个新颖的消除共模电压的方法,理论分析,仿真分析和实验结果均验证了这种方案能够有效消除三相逆变器输出到感应电机端的共模电压,使电机端的共模电压的峰值和有效值大幅降低,从而消除了逆变器输出电压中的负面影响,增强了感应电机驱动系统的可靠性。
本文的下一步工作是对五绕组变压器的尺寸进行优化设计,比较不同PWM(SPWM,SHE,SVPWM,DTC等)控制策略时滤波器对共模电压的抑制作用。

参考文献

[1] Murai Y, Kubota T, Kawase Y. Leakage current reduction for a high-frequency carrier inverter feeding an induction machine [J]. IEEE Trans. Ind. , 28(4):858-863.
[2] Zhong E, Chen S, Lipo T A. Improvement in EMI performance of inverter-fed motor drives [C] . Proc. IEEE APEC Conf. Rec., 1994.
[3] Rendusara, et al. New inverter output filter configuration reduces common mode and differential mode dV/dt at the motor terminals in PWM drive systems[J]. IEEE Power Electronics Specialists Conference,1997,13(6):1269-1275.
[4] Steinke K. Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter[J]. IEEE Trans. on Energy Conversion, 1999, 14 (3):649-654.
[5] Julian A L, Lipo T A. Elimination of common mode voltage in three phase sinusoidal power converters[C]. Conference record of IEEE-PESC, 1996.
[6] Jouanne A V, Zhang H. A dual-bridge inverter approach to eliminating common mode voltages and bearing and leakage currents[J]. IEEE Trans. on Power Electronics ,1999,14(1):43-48.
[7] Ogasawara S , Ayano H, Akagi H. An active circuit for cancellation of common-mode voltage generated by a PWM inverter[J]. IEEE Trans. on Power Electronics, 1998,13(5):835-841.
[8] Xiang Y Q. A novel active common-mode voltage compensator (ACCom) for bearing current reduction of PWM VSI-Fed induction motors[C]. Proceedings Apec’98.

用于分布式在线UPS中的并联逆变器的一种无线控制器已经发送。

Control of Parallel Inverters in Distributed AC Power Systems with Consideration of Line Impedance Effect在分布式交流电力系统中考虑连线阻抗影响时的并联逆变器控制 论文发到你的邮箱了

逆变器期刊征稿

上级主管单位: 省科技厅 ……

西安电力电子技术研究所 【研究内容】 研究范围:电力半导体器件和装置的研究。 推广技术与项目:4英寸超大功率快速晶闸管;5英寸大功率晶闸管。 学科分类: 电子、通信与自动控制技术 ; 动力与电气工程 【科研能力】 职工人数:740 (人)技术人员: 375 (人)机构类别: 省市系统 上级主管单位: 省科技厅 成立年代: 1966 主要研究人员: 内部机构名称: 第一研究室,第二研究室,第三研究室,第四研究室,国家工程研究中心,国家质量检测中心,行业标准室, 下属机构名称: 西安千岛实业有限责任公司,西安屹立电力电子有限责任公司,西安爱帕克电力电子有限公司,西安西普电力电子有限公司 出版刊物: 电力电子技术 季刊 生产产品: KS双向晶闸管 ; 超大功率晶闸管 ; 大功率晶闸管 ; 大功率GTO组件 ; 大功率整流管 ; 高压电子束轰击炉电源 ; 快恢复二极管 ; 快开通晶闸管 ; 脉冲电镀电源 ; KK快速晶闸管 ; 高压等离子风洞整流电源 科研成果: LGBT模块封装技术研究 ; 绝缘栅双极晶体管IGBT模块 ; 小光控晶闸管DV/DT测试台 ; MJ-Ⅱ/50型半自动磨角机技术工艺设备研究 ; GTR模块结构及封闭工艺 ; GTO应用共性基础技术研究 ; 晶闸管综合特性测试台 ; GTR模块测试技术和设备 ; 地铁动车斩波调压系统 ; KK2000A/1600V超大功率快速晶闸管 ; 12KV1500A高压晶闸管组件 ; 功率器件用中子嬗变掺杂直拉硅及其应用 ; Φ77MM系列大功率低损耗晶闸管 ; 直径100MM特大功率晶闸管 ; 城市轨道交通车用大功率GTO组件 ; KHS型大电流整流装置 ; 阳极短路型可关断晶闸管研究 ; 光控晶闸管能发源 ; Φ100MM3000A/5500V特大功率晶闸管 ; IGBT测试技术研究 ; KDH-Ⅱ型3000KW电力回收装置 ; 600A、1000~1800V大功率GTO晶闸管 ; Φ125MM三峡直流输电用超大功率晶闸管 ; 大容量高频率IGBT模块 ; IGBT器件封闭技术 ; GTO元件及组件开关时间测试台 ; GTR模块、GTO组件及应用模块测试技术和设备 ; 300MW汽轮发电机旋转励磁整流组件 ; 非对称晶闸管ASCR500A/2000V研究 ; 大功率GTO组件 ; 中板可逆轧机主传动晶闸管微机控制 ; 高压大电流快速晶闸管KK1000A/2000V的研究 ; 高频晶闸管的研制 ; KHS、ZHS电冶、电化学用整流电源 ; 高电压大电流高可靠性晶闸管研究 ; ±100KV舟山直流输电成套设备 ; 晶闸管稳态热阻及瞬态热阻抗测试方法研究和测试设备研制 拥有专利: 制造快速晶闸管的扩金新工艺 ; 桥臂组件结构的密封励磁功率柜 获奖情况: 部委级奖 ; 省级奖 ; 国家级奖 ; 部委级奖 ; 省级奖 ; 国家级奖 【研究成果】(共71项,以下显示其中10项) ¢77mm晶闸管元件 超高压大功率晶闸管的国产化 (中国机械工业科学技术奖三等奖) 4in超大功率快速晶闸管 (中国机械工业科学技术奖二等奖) 大功率电解整流电源 GTO GTR应用电路模块 GTO GTR应用共性基础技术 IGBT器件的制造和工艺技术 MCT计算机辅助设计制造技术和测试技术 绝缘栅双极晶体管IGBT模块 KHS、ZHS电冶、电化学用整流电源 更多…… 【申请专利】(共3项 ,以下显示其中10项) 桥臂组件结构的密封励磁功率柜 (申请号:) 钼片回收新方法 (申请号:) 制造快速晶闸管的扩金新工艺 (申请号:86102417) 更多…… 【发表期刊论文】(共41篇 ,以下显示其中10篇) 阀组件在电力系统中的应用前景 楼晓峰 (电力设备 2006(7) ) ZK1150/4500快恢复二极管的研制 郭永忠 (电力电子技术 2006(5) ) 60 t进口直流电弧炉电源的改造 王保荣 (工业加热 2006(1) ) Ф100快速晶闸管的研制 高山城 (电力电子技术 2005(5) ) X射线衍射分析热处理温度对透明导电膜结构与导电性能的影响 马颖 (液晶与显示 2005(4) ) 高压变频器散热系统的设计 王丹 (电力电子技术 2005(2) ) 有关交流拖动系统的IEC及国内标准动态 金东海 (电力电子技术 2005(2) ) 直流输电用超大功率晶闸管少子寿命在线控制 李建华 (电力电子技术 2005(1) ) 电弧炉与电网 张殿军 (工业加热 2004(5) ) 采用谐振极软开关逆变器的异步电机直接转矩控制仿真研究 黄晓东 (西安理工大学学报 2004(3) ) 更多…… 【发表学术会议论文】(共19篇 ,以下显示其中10篇) 国内外电力电子器件发展现状 (2004年全国电力网无功/电压技术研讨会 (2004-10-1)) 晶闸管智能模块 (中国电工技术学会电力电子学会第八届学术年会 (2002-11-1)) 热管结构的10kV晶闸管阀组件 (中国电工技术学会电力电子学会第八届学术年会 (2002-11-1)) PRC电路中负载变化对逆变器开关状态的影响 (中国电工技术学会电力电子学会第八届学术年会 (2002-11-1)) 三峡工程与高压直流输电 (中国电工技术学会电力电子学会第八届学术年会 (2002-11-1)) 电力电子集成技术的现状及发展方向 (中国电工技术学会电力电子学会第八届学术年会 (2002-11-1)) 质子辐照用于改善大功率快速晶闸管的特性 (中国电工技术学会电力电子学会第八届学术年会 (2002-11-1)) 4万t/a离子膜整流装置的运行总结 (第20届全国氯碱行业技术年会 (2002-9-1)) 基于空间电压矢量的永磁同步电机控制系统仿真 (第七届中国电力电子与传动控制学术会议 (2001-7-1)) 采用热管散热和φ100mm晶闸管的巨型励磁功率柜 (CSEE中国电机工程学会大电机专业委员会2001年度励磁学术讨论会 (2001-5)) 更多…… 更多…… 【起草标准】(共61项 ,以下显示其中10项) 半导体器件 分立器件第6部分:晶闸管第三篇 电流大于100A、环境和管壳额定的反向阻断三极晶闸管空白详细规范 (标准编号:GB/T 13151-2005) 半导体器件 分立器件 电流大于100A、环境和管壳额定的双向三极晶闸管空白详细规范 (标准编号:GB/T 13150-2005) 电力半导体器件用接插件 (标准编号:JB/T 5843-2005) 电力半导体器件用门极组合件 (标准编号:JB/T 5835-2005) 电力半导体器件用管芯定位环 (标准编号:JB/T 5842-2005) 电力半导体器件用管壳瓷件 (标准编号:JB/T 10501-2005) 低压直流电源设备的性能特性 (标准编号:GB/T 17478-2004) 半导体变流器 包括直接直流变流器的半导体自换相变流器 (标准编号:GB/T ) 电工术语 电力电子技术 (标准编号:GB/T ) 电力半导体器件用散热器 第1部分:铸造类系列 (标准编号:GB/T ) 更多…… 【媒体新闻】(共6篇 ,以下显示其中10项) 直流设备全面国产化之路能走多远 (2006-9-13) 大型清洁高效发电装备被列入重点发展对象 (2006-6-21) 曾培炎:振兴装备制造业关系现代化建设的全局 (2006-6-20) 国务院振兴装备制造业工作会议举行 (2006-6-20) 电力电子行业修改生产许可证实施细则 (2003-4-16) 西安电力电子技术研究所勇攀科技高峰 (2003-4-9) 更多…… 【联系信息】 机构名称: 西安电力电子技术研究所 曾 用 名: 机械工业部西安整流器研究所 负 责 人: 陆剑秋 职务: 所长 职称: 高级工程师,教授 地 址: 陕西省西安市朱雀大街94号 (710061) 电 话: (办),85271888,85271829(科) 传 真: 电子邮件: ; 网 址:

电网技术是EI,电力系统保护与控制不是EI

我的回答

三电平感应电机直接转矩控制电流脉动抑制方法—《电力电子技术》

一种ANPC五电平变流器SHE-PWM调制方法—《电力电子技术》

三电平ANPC变流器SHE-PWM调制策略中点电位平衡方法—《电力电子技术》

一种5L-ANPC逆变器电压空间矢量调制方法—《电力电子技术》

tl494逆变器毕业论文

tl494在逆变板上的功能就是信号震荡,也就是产生逆变信号的。TL494不能工作,一般不是元件坏了就是电路问题,具体看TL494的PDF文件。具体问题具体分析,只能说这样的大概了。

摘 要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。 关键词: 交流调速系统, 异步电动机, PWM技术.....目录摘 要 1前言 设计的目的和意义 变频器调速运行的节能原理 3第二章 变频器 变频器选型: 变频器控制原理图设计: 变频器控制柜设计 变频器接线规范 变频器的运行和相关参数的设置 常见故障分析 8第三章 交流调速系统概述 交流调速系统的特点 10第四章变频电动机的特点 电磁设计 结构设计 14第五章 变频电机主要特点和变频电机的构造原理 变频专用电动机具有如下特点: 变频电机的构造原理 15第六章 交流异步电动机 交流异步电动机变频调速基本原理 变频变压(VVVF)调速时电动机的机械特性 变压变频运行时机械特性分折 19第七章 PWM技术原理 正弦波脉宽调制(SPWM) 25 单极性SPWM法 ..................................................................................................................26结论 31致 谢 32参 考 文 献 33前言 设计的目的和意义 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义.变频器调速运行的节能原理 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/rain。而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。采用该控制方式的变频调速技术后,电机定子电流下降64% ,电源频率降低30% ,出胶压力降低57% 。由电机理论可知,异步电机的转速可表示为:n=60•f 8(1—8)/p第二章 变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 变频器控制原理图设计: 1) 首先确认变频器的安装环境; I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。 IV. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。 V. 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。 2) 变频器和电机的距离确定电缆和布线方法; I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 变频器控制柜设计 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。 2) 电磁干扰问题: I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。 II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。 3) 防护问题需要注意以下几点: I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。 II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。 III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。 变频器接线规范 信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 变频器的运行和相关参数的设置 变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。 控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 常见故障分析 1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。 2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。 3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。第三章 交流调速系统概述 交流调速系统的特点对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。纵观电力拖动的发展过程,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争。在过去很长一段时期,由于直流电动机的优良调速性能,在可逆、可调速与高精度、宽调速范围的电力拖动技术领域中,几乎都是采用直流调速系统。然而由于直流电动机其有机械式换向器这一致命的弱点,致使直流电动机制造成本高、价格昂贵、维护麻烦、使用环境受到限制,其自身结构也约束了单台电机的转速,功率上限,从而给直流传动的应用带来了一系列的限制。相对于直流电动机来说,交流电动机特别是鼠笼式异步电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。因此,近几十年以来,不少国家都在致力于交流调速系统的研究,用没有换向器的交流电动机实现调速来取代直流电动机,突破它的限制。随着电力电子器件,大规模集成电路和计算机控制技术的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。诸如交流电动机的串级调速、各种类型的变频调速,特别是矢量控制技术的应用,使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能。现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统,从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动,从单机传动到多机协调运转,已几乎都可采用交流调速传动。交流调速传动的客观发展趋势已表明,它完全可以和直流传动相媲美、相抗衡,并有取代的趋势。 交流调速常用的调速方案及其性能比较由电机学知,交流异步电动机的转速公式如下:n= 60ƒ1 (1-s) pn (1-1)式中 Pn——电动机定子绕阻的磁极对数; f1——电动机定子电压供电频率; s ——电动机的转差率。从式(1-1)中可以看出,调节交流异步电动机的转速有三大类方案。(1)改变电动机的磁极对数由异步电动机的同步转速no= 60ƒ1 pn可知,在供电电源频率f1不变的条件下,通过改接定子绕组的连接方式来改变异步电动机定子绕组的磁极对数Pn,即可改变异步电动机的同步转速n0,从而达到调速的目的。这种控制方式比较简单,只要求电动机定子绕组有多个抽头,然后通过触点的通断来改变电动机的磁极对数。采用这种控制方式,电动机转速的变化是有级的,不是连续的,一般最多只有三档,适用于自动化程度不高,且只须有级调速的场合。(2)变频调速 从式(1—1)中可以看出,当异步电动机的磁极对数Pn一定,转差率s—定时,改变定子绕组的供电频率f1可以达到调速目的,电动机转速n基本上与电源的频率f1成正比,因此,平滑地调节供电电源的频率,就能平滑,无级地调节异步电动机的转速。变频调速调速范围大,低速特性较硬,基频f=50Hz以下,属于恒转矩调速方式,在基频以上,属于恒功率调速方式,与直流电动机的降压和弱磁调速十分相似。且采用变频起动更能显著改善交流电动机的起动性能,大幅度降低电机的起动电流,增加起动转矩。所以变频调速是交流电动机的理想调速方案。(3)变转差率调速改变转差率调速的方法很多,常用的方案有:异步电动机定子调压调速,电磁转差离合器调速和绕线式异步电动机转子回路串电阻调速,串级调速等。定子调压调速系统就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,这种调压调速系统仅适用于一些属短时与重复短时作深调速运行的负载。为了能得到好的调速精度与能稳定运行,一般采用带转速负反馈的控制方式。所使用的电动机可以是绕线式异电动机或是有高转差率的鼠笼式异步电动机。电磁转差离台器调速系统,是由鼠笼式异步电动机、电磁转差离合器以及控制装置组合而成。鼠笼式电动机作为原动机以恒速带动电磁离合器的电枢转动,通过对电磁离合器励磁电流的控制实现对其磁极的速度调节。这种系统一般也采用转速闭环控制。绕线式异步电动机转子回路串电阻调速就是通过改变转子回路所串电阻来进行调速,这种调速方法简单,但调速是有级的,串入较大附加电阻后,电动机的机械特性很软,低速运行损耗大,稳定性差。绕线式异步电动机串级调速系统就是在电动机的转子回路中引入与转子电势同频率的反向电势Ef,只要改变这个附加的,同电动机转子电压同频率的反向电势Ef,就可以对绕线式异步电动机进行平滑调速。Ef越大,电动机转速越低。 上述这些调速的共同特点是调速过程中没有改变电动机的同步转速n0,所以低速时,转差率s较大。 在交流异步电动机中,从定子传入转子的电磁功率PM可以分成两部分:一部分P2=(1—s)PM是拖动负载的有效功率,另一部分是转差功率PS=sPM,与转差率s成正比,它的去向是调速系统效率高低的标志。就转差功率的去向而言,交流异步电动机调速系统可以分为三种:1)转差功率消耗型 这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,转差率s增大,转差功率PS=sPM增大,以发热形式消耗在转子电路里,使得系统效率也随之降低。定子调压调速、电磁转差离合器调速及绕线式异步电动机转子串电阻调速这三种方法属于这一类,这类调速系统存在着调速范围愈宽,转差功率PS愈大,系统效率愈低的问题,故不值得提倡。2)转差功率回馈型 这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线式异步电动机转子串级调速即属于这一类,它将转差功率通过整流和逆变作用,经变压器回馈到交流电网,但没有以发热形式消耗能量,即使在低速时,串级调速系统的效率也是很高的。3)转差功率不变型 这种调速系统中,转差功率仍旧消耗在转子里,但不论转速高低,转差功率基本不变。如变极对数调速,变频调速即属于这一类,由于在调速过程中改变同步转速n0,转差率s是一定的,故系统效率不会因调速而降低。在改变n0的两种调速方案中,又因变极对数调速为有极调速,且极数很有限,调速范围窄,所以,目前在交流调速方案中,变频调速是最理想,最有前途的交流调速方案。第四章变频电动机的特点电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:

是你的电路问题?试下这个,我用这图做了个低频的。将就用着,还可以!

提供一些电子信息工程专科毕业论文的题目,供参考。精密检波器的设计简易电子血压计的设计电子听诊器的设计简易数码相机的设计直流电机转动的单片机控制高频功率合成网络的研究多功能气体探测器车用无线遥控系统家用门窗报警器智能型全自动充电器医用病房多路呼叫系统多功能数字钟数字电压表的设计与仿真虹膜识别技术的认识及其在电子学科的发展探讨基于Orcad的电子线路特性分析及优化设计恒温热熔胶枪的设计步进电机的数字控制器设计虹膜图像的预处理(算法分析及探讨)四位密码电子锁的设计旋转LED屏的制作基于PC机的LCD实时显示控制系统设计(pc机部份)基于PC机的LCD实时显示控制系统设计(单片机部份)ICL7135的串行采集方式在单片机电压表中的应用用89C51和8254-2实现步进式PWM输出桌面行走智能小车双音频电话信息传输系统车库控制管理系统(基于PC机)车库控制系统车位识别(基于PC机)数控音频功率放大电路刚体转动实验平台的改进设计谐振频率测试仪高频宽带放大器的制作高频窄带放大器的设计宽带功率放大器的设计程控滤波器的设计高频电压测试棒的制作基于TMS320VC5402的DSP创新试验系统U-BOOT在ARM9(AT91RM9200)上的移植ARM9(AT91RM9200)启动过程的研究与启动代码的设计基于ARM9(AT91RM9200)的嵌入式Linux移植调试环境的研究与建立嵌入式Linux在ARM9(AT91RM9200)上的移植ARM9(AT91RM9200)简易JTAG仿真器设计基于单片机的电动机测速系统基于单片机的单元楼门铃及对讲系统基于单片机的自来水管的恒流控制基于单片机的电子脉搏测量仪基于单片机的自来水水塔控制系统洗衣机控制系统设计基于力敏传感器的压力检测湿敏传感器应用电路系统设计基于气敏传感器的大气环境测量系统设计基于光敏传感器的机器人控制电路设计基于温敏传感器的应用电路设计基于磁敏传感器的检测电路设计超声波传感器在倒车雷达系统中的应用温度传感器在现代汽车中的应用电子秤中的应变片传感器光电开关在自动检测的应用热释电传感器的应用浅谈各种接近开关基于单片机的自行车码表设计基于单片机的图形温度显示系统基于单片机的自动打铃器设计基于EDA技术的自动打铃器设计通用示波器字符(图案)显示电路设计基于EDA技术的时钟设计用matlab实现数字电子技术数据传输电路设计在matlab环境下实现同步计数器电路仿真锂电池充电器的设计与实现脉冲调宽(PWM)稳压电源作光源的设计与实现压电式传感器的应用矩形脉冲信号发生器的设计可编程交通控制系统设计多功能数字钟实用电子称多点温度检测系统可编程微波炉控制器系统设计智能型充电器显示的设计电子显示屏电源逆变器数字温度计简易数字电压表声光双控延迟照明灯可遥控电源开关无刷直流电机控制装置整流电路的设计PLC控制系统与智能化中央空调PLC在电梯变频调速中的应用PLC在输电线路自动重合闸的应用异步电机变频调速系统的设计电机故障诊断系统的设计数控稳压源4-20mA电流环设计单总线多点温度检测系统单片机控制的手机短信发送设备简易恒温浸焊槽设计单片机控制的手机短信发送设备基于MATLAB的IIR数字滤波器设计与仿真基于MATLAB的FIR数字滤波器设计与仿真平稳随机信号功率谱估计及在MATLAB中的实现智能红外遥控电风扇的设计单片机控制的消毒柜数字秒表的设计基于VGA显示的频谱分析仪设计基于FPGA红外收发器设计基于FPGA 的FSK调制器设计基于FPGA的多频电疗仪的设计基于FPGA幅度调制信号发生器设计基于FPGA全数字锁相环设计单片机之间的串口数据通信微机与单片机间的串口数据通信模型自适应系统控制器设计神经网络PID控制器设计带误差补偿环节的PID控制系统具有模糊系统控制的PID控制系统限电自动控制器单片机实现三位电子秒表开关稳压电源设计新型锂电池充电器自制温度检测报警器限流直流稳压电源设计微波测速计自由落体实验仪风力发电机转速控制风力发电电池组运行状态检测光伏电能的储存及合理应用控制装置车库门自动开闭小功率风力发电机研制利用车内电源(12V)给笔记本电脑供电电源(19V)基于PWM控制的七彩灯设计红外遥控电风扇基于串口通信的GPS定位系统数控电压源20mA电流环模块设计基于GSM的汽车防盗系统的设计

离网逆变器毕业论文

并网逆变器,就是必须连接到国家电网的一套光伏发电系统公共电网,就是太阳能发电、家庭电网、公共电网联系在一起了,这是必须依赖现有电网才能运行的发电系统。离网逆变器也称独立光伏发电系统是不依赖电网而独立运行的系统,主要有太阳能电池板、储能蓄电池、充放电控制器、逆变器等部件组成。对于无电网地区或经常停电地区的家庭来说,又具有很强的实用性。特别是单纯为了解决停电时的照明问题,可以采用直流节能灯,非常实用。并网和离网的区别如下:离网的发电系统,是不依赖国家电网,独立运行的发电系统,比并网系统多安装一个蓄电池,可以自己存储电量,安装成本高,无法享受国家发电补贴政策。在供电不方便,偏远无电网地区的孤岛、渔船、户外养殖基地等应用比较多,也可以作为经常停电地区的应急发电设备,比如太阳能路灯。并网可以享受国家发电补贴政策,从投资长远的角度来看,安装并网的发电系统,系统的设计使用寿命可达25年。

1.采用16位单片机或32位DSP微处理器进行控制。2.PWM控制模式,大大提高效率。3.采用数码或液晶显示各种运行参数,可设置相关参数。4.方波,修正波,正弦波输出。正弦波输出,波形失真率小于5%。5.稳压精度高,额定负载下,输出精度一般小于正负3%。6.具有缓启动功能,避免对蓄电池和负载的大电流冲击。7.高频变压器隔离,体积小,重量轻。8.配备标准的R232/485通信接口,便于远程通信控制。9.可在海拔5500米以上环境使用,适应环境温度范围为-20~50摄氏度。10.具有输入反接保护,输入欠压保护,输入过压保护,输出过压保护,输出过载保护,输出短路保护,过热保护等多种保护功能。

首先,从字面意思上理解,离网逆变器就是不用并入电网的,并网逆变器才需要并入电网;其次,并网、离网逆变器均可以使用蓄电池储能,视成本而定;再次,并网、离网逆变器均为电压源(电压不变);再再次,并网逆变器需要监控电网电压、相位,需要有孤岛、低压穿越、过/欠压、过/欠频等功能,离网不需要;再再再次,并网逆变器并非能量不可调控,如果将输出功率限制在100KW,那么最大输出功率能达到500KW的逆变器也只能输出100KW。

你去原创论文网看看,可能能帮助你。里面有免费论文的,很实用的。我都是在里面拷贝的毕业论文,改改就可以了。

  • 索引序列
  • 逆变器论文文献综述
  • 逆变器论文英文文献
  • 逆变器期刊征稿
  • tl494逆变器毕业论文
  • 离网逆变器毕业论文
  • 返回顶部