硅单晶原子纳米扫描隧道显微镜影象单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。举个例子来说,假设一根头发的直径是毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米大约就是毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60m2/g时,其直径将小于100nm,即达到纳米尺寸。[编辑本段]纳米技术的含义 所谓纳米技术,是指在纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米技术(纳米科技nanotechnology) 纳米技术其实就是一种用单个原子、分子制造物质的技术。 从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。 所谓纳米技术,是指在纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。 虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。[编辑本段]纳米电子器件的特点. 以纳米技术制造的电子器件,其性能大大优于传统的电子器件: . 工作速度快,纳米电子器件的工作速度是硅器件的1000倍,因而可使产品性能大幅度提高。功耗低,纳米电子器件的功耗仅为硅器件的1/1000。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。体积小、重量轻,可使各类电子产品体积和重量大为减小。纳米材料“脾气怪” 纳米金属颗粒易燃易爆 几个纳米技术纳米的金属铜颗粒或金属铝颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。因此,纳米金属颗粒的粉体可用来做成烈性炸药,做成火箭的固体燃料可产生更大的推力。用纳米金属颗粒粉体做催化剂,可以加快化学反应速率,大大提高化工合成的产出率。 纳米金属块体耐压耐拉 将金属纳米颗粒粉体制成块状金属材料,强度比一般金属高十几倍,又可拉伸几十倍。用来制造飞机、汽车、轮船,重量可减小到原来的十分之一。 纳米陶瓷刚柔并济 用纳米陶瓷颗粒粉末制成的纳米陶瓷具有塑性,为陶瓷业带来了一场革命。将纳米陶瓷应用到发动机上,汽车会跑得更快,飞机会飞得更高。 纳米氧化物材料五颜六色 纳米氧化物颗粒在光的照射下或在电场作用下能迅速改变颜色。用它做士兵防护激光枪的眼镜再好不过了。将纳米氧化物材料做成广告板,在电、光的作用下,会变得更加绚丽多彩。 纳米半导体材料法力无边 纳米半导体材料可以发出各种颜色的光,可以做成小型的激光光源,还可将吸收的太阳光中的光能变成电能。用它制成的太阳能汽车、太阳能住宅有巨大的环保价值。用纳米半导体做成的各种传感器,可以灵敏地检测温度、湿度和大气成分的变化,在监控汽车尾气和保护大气环境上将得到广泛应用。 纳米药物治病救人 把药物与磁性纳米颗粒相结合,服用后,这些纳米药物颗粒可以自由地在血管和人体组织内运动。再在人体外部施加磁场加以导引,使药物集中到患病的组织中,药物治疗的效果会大大提高。还可利用纳米药物颗粒定向阻断毛细血管,“饿”死癌细胞。纳米颗粒还可用于人体的细胞分离,也可以用来携带DNA治疗基因缺陷症。目前已经用磁性纳米颗粒成功地分离了动物的癌细胞和正常细胞,在治疗人的骨髓疾病的临床实验上获得成功,前途不可限量。 纳米卫星将飞向天空 在纳米尺寸的世界中按照人们的意愿,自由地剪裁、构筑材料,这一技术被称为纳米加工技术。纳米加工技术可以使不同材质的材料集成在一起,它既具有芯片的功能,又可探测到电磁波(包括可见光、红外线和紫外线等)信号,同时还能完成电脑的指令,这就是纳米集成器件。将这种集成器件应用在卫星上,可以使卫星的重量、体积大大减小,发射更容易,成本也更便宜。纳米技术走入百姓生活 9月27日,中国科学院化学所的专家宣布研制成功新型纳米材料———超双疏性界面材料。这种材料具有超疏水性及超疏油性,制成纺织品,不用洗涤,不染油污;用于建筑物表面,防雾、防霜,更免去了人工清洗。专家称:纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”。 随着科学家的一次次努力,“纳米”这个几年前对我们还十分生疏的字眼,眼下却频频出现在我们的视线。 纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。90年代起,各国科学家纷纷投入一场“纳米战”:在至100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。 中国当然不甘人后,1993年,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字,标志着我国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。 1998年,清华大学范守善小组在国际上首次把氮化镓制成一维纳米晶体。同年,我国科学家成功制备出金刚石纳米粉,被国际刊物誉为:“稻草变黄金———从四氯化碳制成金刚石。” 1999年,北京大学教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。 中科院成会明博士领导的研究组合成出高质量的碳纳米材料,被认定为迄今为止“储氢纳米碳管研究”领域最令人信服的结果。 中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管———直径纳米,已十分接近碳纳米管的理论极限值纳米。这个研究小组,还成功地合成出世界上最长的碳纳米管,创造了“3毫米的世界之最”。 在主题为“纳米”的争夺战中,中国人频频露脸,尤其在碳纳米管合成以及高密度信息存储等领域,中国实力不容小觑。 科学界的努力,使“纳米”不再是冷冰冰的科学词语,它走出实验室,渗透到中国百姓的衣、食、住、行中。 居室环境日益讲究环保。传统的涂料耐洗刷性差,时间不长,墙壁就会变得斑驳陆离。现在有了加入纳米技术的新型油漆,不但耐洗刷性提高了十多倍,而且有机挥发物极低,无毒无害无异味,有效解决了建筑物密封性增强所带来的有害气体不能尽快排出的问题。 人体长期受电磁波、紫外线照射,会导致各种发病率增多或影响正常生育。现在,加入纳米技术的高效防辐射服装———高科技电脑工作装和孕妇装问世了。科技人员将纳米大小的抗辐射物质掺入到纤维中,制成了可阻隔95%以上紫外线或电磁波辐射的“纳米服装”,而且不挥发、不溶水,持久保持防辐射能力。 同样,化纤布料制成的衣服因摩擦容易产生静电,在生产时加入少量的金属纳米微粒,就可以摆脱烦人的静电现象。 白色污染也遭遇到“纳米”的有力挑战。科学家将可降解的淀粉和不可降解的塑料通过特殊研制的设备粉碎至“纳米级”后,进行物理结合。用这种新型原料,可生产出100%降解的农用地膜、一次性餐具、各种包装袋等类似产品。农用地膜经4至5年的大田实验表明:70到90天内,淀粉完全降解为水和二氧化碳,塑料则变成对土壤和空气无害的细小颗粒,并在17个月内同样完全降解为水和二氧化碳。专家评价说,这是彻底解决白色污染的实质性突破。 从电视广播、书刊报章、互联网络,我们一点点认识了“纳米”,“纳米”也悄悄改变着我们。纳米精确新闻 1959年 理论物理学家理查·费伊曼在加州理工学院发表演讲,提出,组装原子或分子是可能的。 1981年 科学家发明研究纳米的重要工具———扫描隧道显微镜,原子、分子世界从此可见。 1990年 首届国际纳米科技会议在美国巴尔的摩举办,纳米技术形式诞生。 1991年 碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是铁的10倍,成为纳米技术研究的热点。 1993年 继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字、1999年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字。 1997年 美国科学家首次成功地用单电子移动单电子,这种技术可用于研制速度和存储容量比现在提高成千上万倍的量子计算机。同年,美国纽约大学科学发现,DNA可用于建造纳米层次上的机械装置。 1999年 巴西和美国科学家在进行碳纳米管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”,打破了美国和巴西科学家联合创造的纪录。同年,美国科学家在单个分子上实现有机开关,证实在分子水平上可以发展电子和计算装置。 纳米花边新闻 倾听细菌游弋 美国加利福尼亚州Pasadena市的喷气飞机推进器实验室目前正在研制一种被称为“纳米麦克风”的微型扩音器,据《商业周刊》报道,这种微型传感器可以使科学家倾听到正在游弋的单个细菌的声音,以及细胞体液流动的声音。这种人造纳米麦克风由细微的碳管制成,正是因为构成物体积细小和灵敏度极高,这种麦克风才能够在受到非常小的压力作用下作出反应,使得对其进行监测的研究人员获得相关的声音信息。 利用这种新产品,科学家将可以对其他星球上是否存在生命进行探测,可以探测到生物体内单个细胞的生长发育。这一仪器研制项目已获得美国航空航天局(NASA)的批准,而且NASA还向上述实验室提供了必要的技术支持。[编辑本段]“纳米水”防强暴. 据《人民日报》报道,最近,广州一家公司宣称生产出一种用麦饭石和纳米特殊材料制作而成的“纳米珠”,只要把它放在水里,多脏的水也能喝。长期饮用“纳米水”,可抗疲劳,耐缺氧,甚至“增强女士防匪徒强暴的能力”。据了解,每盒纳米珠要300元,买齐整套设备(一台饮水机、一桶水和十盒纳米珠)则需3800元。76岁的何姓老人在推销员的百般说服下,不但相信纳米水的神奇疗效,还看中了纳米水的销售方式。老人背着家里人一共拿出22万元,买下75套纳米水机套装产品,然后等着每月2万元钱的分红。 广州市工商局东山分局经济检察中队在4月3日查处了该公司,其准备创造科技神话的纳米水根本没有科技鉴定说明,该公司的纳米水套装产品既无生产许可证,也没有产品合格证。光也能“吹动”物体 纳米世界,光也能“吹动”物体。当光照射在物体上,也会对物体产生作用力,就像风吹动帆一样。从儒勒·凡尔纳到阿瑟·C·克拉克,科幻作家们不止一次幻想过运用太阳光的作用力来推动“太阳帆”,驱动飞船在星际中航行。然而,在地球上,太阳光的作用力实在微乎其微,没有人能用阳光来移动一个物体。但是,在11月27日的《自然》杂志上,在美国耶鲁大学从事研究的中国学者发表文章,首次证实在纳米世界里,光真的可以驱动“机器”——由半导体做成的纳米机械。 这项研究,结合了相关图书两个最前沿的纳米科学领域,即纳米光子学和纳米力学。“在宏观尺度上,光的力实在太微弱,没有人能感觉到。但是在纳米尺度上,我们发现光具有相当可观的力,足以用来驱动像集成电路上的三极管一样大小的半导体机械装置。”领导此项研究的耶鲁大学电子工程系教授唐红星这样介绍。其实,此前光的力已经被物理学家和生物学家应用于一种叫做“光镊”的技术中,用来操控原子和微小的颗粒。“我们的研究则是把光集成在一块小小的芯片上,使它的强度增加数百万倍,从而用来操控纳米半导体器件。”这篇论文的第一作者、博士后研究员李墨进一步阐释说。 在耶鲁大学的实验室里,两位科学家和来自北京大学的研究生熊驰及合作者们一起,使用最先进的半导体制造技术,在硅芯片上铺设出一条条光的线路,称之为“光导”。当激光器发出的光被接入这样的芯片后,光就可以像电流在导线里一样,沿着铺好的光导线路“流”动。理论预测,在这样的结构中,光会对引导它的导线产生作用力。为了证实这样的预测,他们把一小段只有10微米长的光导悬空,让它可以像吉他弦般产生振动。如果光确实产生力并作用在它上面,那么当光的强度被调制到和光导的振动一致的频率时,共振就会产生。这样的共振就会在透射的光中产生同样频率的一个峰。这正是3位中国科学家经过半年多的实验和计算,最终在他们的测量仪器上看到的令人信服的现象。之后,他们通过大量实验证明,这个作用力的大小和理论预期非常一致。因为光的速度比电流要快得多,所以这种光产生的力预期可以以几十吉赫兹(GHz)的速度驱动纳米机械。 此项研究成果有望引领出新一代半导体芯片技术——用光来取代电。未来运用这种新技术,科学家和工程师们可以实现基于光学和量子原理的高速高效的计算和通信。[编辑本段]纳米探针在药物筛选中首获应用 英国伦敦纳米技术中心的研究人员研制出一种新型纳米探针,利用该纳米探针可以检测出某种抗生素药物是否能够与细菌结合,从而减弱或破坏细菌对人体的破坏能力,达到治疗疾病的目的。这是科学家第一次将纳米探针运用于药物筛选,相关试验的初步结果已经刊登在最新一期的《自然?纳米技术》杂志上。 人们在用抗生素治病的过程中,引起疾病的细菌很容易产生抗药性,从而使得抗生素失去药效。抗生素的作用原理是与致病细菌的细胞壁结合后破坏细胞壁的结构,使得致病细菌死亡,一旦产生抗药性,细菌的细胞壁结构发生改变,细胞壁变厚,抗生素无法与细胞壁结合。 研究人员在一排纳米探针上覆盖组成细菌细胞壁的蛋白质,一旦抗生素与细胞壁结合,探针的表面重量就会增加,这一表面压力会导致纳米探针发生弯曲。通过对万古霉素药物的研究发现,抗药性细菌的细胞壁硬度是非抗药性细菌的1000倍。所以通过纳米探针探测出各种药物对细菌细胞壁的结构改变,筛选出对致病细菌破坏力最大的抗生素。纳米探针的运动轨迹 纳米金属用途简介 钴(Co) 高密度磁记录材料。利用纳米钴粉记录密度高、矫顽力高(可达)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。 吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 铜(Cu) 金属和非金属的表面导电涂层处理。纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂。铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料。用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。 铁(Fe) 高性能磁记录材料。利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光——红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料。利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂。一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。 镍(Ni) 磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂。由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。 高效助燃剂。将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。 导电浆料。电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用。用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。 高性能电极材料。用纳米镍粉辅加适当工艺,能制造出具有巨大表面积的电极,可大幅度提高放电效率。 活化烧结添加剂。纳米粉末由于表面积和表面原子所占比例都很大,所以具有高的能量状态,在较低温度下便有强的烧结能力,是一种有效的烧结添加剂,可大幅度降低粉末冶金产品和高温陶瓷产品的烧结温度。 金属和非金属的表面导电涂层处理。由于纳米铝、铜、镍有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 锌(Zn) 高效催化剂。锌及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。
请问你是要了解哪种太阳能电池,太阳能电池分类很多,如:单晶硅、多晶硅、薄膜电池等;你想要找关于这方面的资料的话,可以去太阳能电池论坛(光伏论坛)找,希望能帮到你。
1/34【题 名】阴离子膜矿浆电解回收干电池正极材料中的锰【作 者】魏琦峰 任秀莲 张慧玲 杜杰 詹路【刊 名】环境工程.2007,25(3).-60-632/34【题 名】废旧干电池的生物法资源回收技术【作 者】赵玲 杨栋 朱南文【刊 名】有色冶金设计与研究.2007,28(2).-98-1023/34【题 名】废碱性干电池中锌资源的酸法回收工艺研究【作 者】慎义勇 米永红 刘春燕【刊 名】环境科学与技术.2006,29(12).-68-69,724/34【题 名】基于生命周期的干电池回收及其循环经济模型【作 者】周围 吴国蔚【刊 名】再生资源研究.2006(3).-35-385/34【题 名】废旧干电池湿法回收工艺和汞的无害化处理【作 者】严逊【刊 名】重庆科技学院学报:自然科学版.2006,8(1).-40-456/34【题 名】浸出法回收干电池【作 者】无【刊 名】有色金属再生与利用.2006(2).-47-477/34【题 名】废干电池回收利用中汞的治理技术【作 者】姚青[1] 张晓东[2]【刊 名】中国资源综合利用.2005(12).-4-68/34【题 名】废干电池回收制取氧化锌超细粉体【作 者】裴秀中【刊 名】北京工商大学学报:自然科学版.2005,23(5).-11-139/34【题 名】废旧干电池的回收与综合利用——集绿色、环保、能力训练于一体的综合性化学实验【作 者】马莹 孙晓敏【刊 名】吉林农业科技学院学报.2005,14(4).-38-39,5710/34【题 名】浸出法回收干电池【作 者】王元荪【刊 名】有色金属再生与利用.2005(7).-40-4011/34【题 名】废干电池回收政策和回收模式研讨【作 者】张晓东【刊 名】中国资源综合利用.2005(5).-20-2112/34【题 名】废旧干电池的回收与利用技术的研究【作 者】于长顺 马春【刊 名】实验室科学.2005(2).-118-12113/34【题 名】废旧干电池的回收利用【作 者】李云兰【刊 名】襄樊职业技术学院学报.2005,4(2).-33-3414/34【题 名】干电池的综合回收与利用【作 者】庄文建[1] 武永毅[2]【刊 名】内蒙古石油化工.2004,30(4).-17-1715/34【题 名】废干电池资源回收技术取得新突破【作 者】李穗中【刊 名】广州环境科学.2004,19(2).-21-2116/34【题 名】废干电池的回收利用及管理对策【作 者】王敏【刊 名】环境科学与技术.2004,27(4).-56-5817/34【题 名】浅谈废旧干电池的回收利用【作 者】王秀卿【刊 名】中国现代医药科技.2003,3(3).-79-7918/34【题 名】从废干电池回收锌生产纳米氧化锌粉【作 者】柴希娟 李敦钫 何蔼平 王达健【刊 名】再生资源研究.2003(5).-15-1819/34【题 名】普通干电池不必专门回收【作 者】成亮通【刊 名】环境.2003(2).-42-4320/34【题 名】废干电池无害化回收工艺【作 者】王荣福【刊 名】技术与市场.2003(1).-18-1821/34【题 名】干电池的结构和废旧电池的回收利用——研究性学习案例一则【作 者】陈玲【刊 名】中学化学教学参考.2003(12).-31-3222/34【题 名】废旧干电池湿法回收工艺和汞的无害化处理【作 者】严逊【刊 名】重庆钢研.2002(27).-42-5023/34【题 名】废旧干电池的环境污染防治及回收利用【作 者】王颖【刊 名】干旱环境监测.2002,16(2).-113-11524/34【题 名】国外废干电池的回收利用及其管理【作 者】王保士【刊 名】再生资源研究.2002(2).-36-4225/34【题 名】废旧锌锰干电池回收利用的探讨【作 者】蒋玉萍 张建强 等【刊 名】实验技术与管理.2002,19(6).-68-7026/34【题 名】废旧干电池回收利用工艺研究【作 者】张俊喜 王丽萍【刊 名】中国资源综合利用.2002(7).-15-1727/34【题 名】废干电池的环境污染及回收利用【作 者】成肇安 蔡艳秀 等【刊 名】中国资源综合利用.2002(7).-18-2228/34【题 名】废旧干电池的回收利用【作 者】白云起[1] 吴鹏[2] 等【刊 名】化学工程师.2002(3).-55-5629/34【题 名】废干电池回收的障碍与对策【作 者】郭立 何深思【刊 名】环境保护.2002(4).-42-4430/34【题 名】废旧干电池的回收与利用【作 者】段先志 肖陈长【刊 名】江西化工.2001(4).-22-2431/34【题 名】废旧干电池的环境污染防治及回收利用【作 者】王颖【刊 名】本溪冶金高等专科学校学报.2001,3(3).-36-38,4132/34【题 名】“废旧干电池的回收”活动课教学设计【作 者】陈仲友【刊 名】化学教学.2001(1).-42-4333/34【题 名】关于废干电池回收利用及其管理的若干问题与建议【作 者】周正祥【刊 名】中国资源综合利用.2001(12).-28-2934/34【题 名】用湿法冶金法从废干电池中回收有价物料【作 者】许菱 许孙曲【刊 名】中国资源综合利用.2001(2).-12-13
钴酸锂材料作为第一代商品化的锂离子电池正极材料,还有许多不可取代的优势:材料的加工性能很好,密度高,比容量相对较高,材料的结构稳定,循环性能好,材料的电压平台较高且比较稳定,是目前最成熟,也是唯一商业化的正极材料,在短时间内,特别是在通讯电池领域还有不可取代的优势。但是其存在的价格昂贵、容量几乎发挥到了极限、资源紧缺、安全性差等缺陷使得其必然在最近的5到10年内遭受被取代命运。现在取代钴酸锂材料有两个方向,一是在动力电池领域,锰酸锂和磷铁酸锂是最有希望的材料,二是在通讯电池领域,镍钴锂和镍钴锰锂三元材料是最有希望代替钴酸锂的正极材料。 锰酸锂材料是除钴酸锂外研究最早的正极材料,通过多年的研究,材料的性能得到较大的改善。其较高的安全性,低廉的价格,使其在动力电池领域有广阔的应用前景;但是其较低的比容量,较差的循环性能,特别是高温循环性能使得其应用受到了较大的限制,虽然通过最近几年的研究,循环性能得到一定的改善,但是高温循环性能还没有得到较好的解决,推迟了其大规模商业化的步伐。 磷铁酸锂材料是最近两年才快速发展起来的正极材料,其低廉的价格,较高的安全性能,较好的结构稳定性,优越的循环性能使得其作为动力电池和备用电源领域有广阔的应用前景,大有取代锰酸锂之趋势。但是其也存在一些难易解决的问题,特别振实密度低,体积比容量低,电导率低,低温放电性能差,倍率放电差等问题需要继续研究和改进。 近年来世界范围内大量研究已经使其取得的较大的发展和进步,使其产业化的阻碍已经得到较大的缓解,材料的电导率研究取得了较大的进步,振实密度和体积比容量低对动力电池来说,也许不是问题,现在问题的重点集中在低温性能和倍率放电方面。如果在最近的一两年内,材料的低温和倍率性能取得突破的话,磷铁酸锂的产业化指日可待。 从最近的测试看这个问题基本得到了很好的解决,现在唯一的问题是密度低。在小型通讯电池领域,最有可能代替钴酸锂的是镍钴酸锂和镍钴锰酸三元材料,目前市场上还没有大量出现此类材料,但是随着电子领域的快速发展,其对电池容量的要求也越来越高,必然推动高容量的镍钴类材料和镍钴锰三元材料的发展。 镍钴酸锂材料是一种容量比较高的材料,其比容量比钴酸锂高出30%以上,而且和钴酸锂有相同的上下限电压,比较容易规模化利用,价格相对便宜。当然材料也存在一些缺点,材料的合成相对困难,材料的密度相对较低,材料的电压平台较低,充放电效率较低,和电解液相容性和安全性差等缺陷,还有待解决,但是随着研究的深入,产业化会在最近两年内得到迅速发展。 镍钴锰三元材料是另一种高容量的正极材料,比容量可以达到180mAh/g以上,是非常有前途的正极材料。此材料不仅有比容量高的优势,而且安全性也相对较好,价格相对较低,与电解液的相容性好,循环性能优异,是最有可能在小型通讯和小型动力领域同时应用的电池正极材料,甚至有在大型动力领域应用的可能。但是材料也有自身的缺点,第一就是合成困难、合成条件苛刻、合成材料的稳定性差,第二是材料的电压平台相对较低,只有左右,第三是材料的密度和钴酸锂相比,相对较低,第四是材料的充电电压较高,达到了左右,与钴酸锂有较大的差别。但是此材料的高容量和高安全性是其他材料无法比拟的,必将最近的几年内推向市场。因此,从目前的情况看,如果钴酸锂材料不寻求突破,其在未来的几年内,必被其他正极材料所代替。但是这是在钴酸锂材料的容量和安全性能没有突破的前提下的结论,如果钴酸锂材料在容量和安全性上有所突破的话,其商业寿命可能会走的更远。现在钴酸锂在安全性和提高容量上正在寻找出路,也许通过包覆,会改善材料的表观结构,可以提高电池的安全性和容量,但是进展很不明朗。 现在的趋势可以做如下的判断:在通讯电池领域,最近的3年内,钴酸锂仍然是离子电池的主角,在以后5年内,可能是钴酸锂和镍钴锰三元材料共存的时代,5年后,可能是镍钴锰三元材料的时代。 在动力电池领域,由于钴酸锂的安全问题和高昂的价格,使其一直在动力电池门外徘徊,始终没有完全进入动力电池领域。现在的情况是钴酸锂和锰酸锂小批量配合使用,但是由于其固有的缺陷,使得其始终没有大批量的进行商业化运作,产品只是在小批量试生产阶段,目前大规模的商业化运作还有一些难以克服的困难。在动力电池领域磷酸基正极材料依其超长的循环寿命,极好的安全性能,较好的高温性能,极其低廉的价格,而且低温性能和倍率放电已经可以达到钴酸锂的水平等,使其成为最有希望的动力电池材料,其在未来的5年内可能会成镍镉电池的主要替代品,在未来的10年内会成为铅酸电池的有力竞争者,在未来的20年内可能会取代铅酸电池,成为主要的启动电源、UPS电源 和后备电源,成为二次电池的老大。
据外媒报道, 在下一代电池中许多令人兴奋的化学物质中,锂硫电池是一种具有巨大潜力的化学物质,因为它的储能能力是目前锂离子电池的五倍。 澳大利亚的科学家们为这种极具前途的结构提出了一种新的设计,其中包括通过添加糖来解决固有的稳定性问题,据悉,这一举动使实验电池运行的次数超过1000次。
虽然锂硫电池的高容量是科学家们一直在努力开发的一种主流应用,但它们一直受到稳定性问题的阻碍。由于电池的正硫电极在充电过程中膨胀和收缩,它会受到显著的压力并迅速恶化。与此同时,负极被硫化合物污染。
去年,墨尔本莫纳什大学的一个电池研究小组想出了一个解决了这一问题的一半的解决方案。这群科学家们开发了一种特殊的粘合剂,它可以在硫粒子周围创造额外的空间,这意味着它们在充电期间拥有更多的空间安全膨胀。这样做的结果得到一个高容量的锂硫电池,它能循环使用超200次。
现在,科学家们把目标对准了等式的另一边,即负的锂电极,其被硫“窒息”。这一突破源于1988年的一项研究,该研究表明,一些糖基物质可以阻止地质沉积物的降解从而促进硫化物之间的强键。
科学家们的目标是将这种方法应用到锂-硫电池上以防止硫链(被称为多硫化物)从正极释放出来,这些硫链往往会在负极上移动并形成苔藓。研究小组在电极的网状结构中引入了一种糖基添加剂以作为粘结剂从而形成网状微结构,该结构可以帮助调节讨厌的多硫化物的行为。携带糖添加剂的实验电池显示,容量约为700 mAh/g,可维持1000次循环。
这项研究的论文第一作者、博士生Yingyi Huang说道,“这样每次充电都能持续更长时间,延长电池的寿命。而且制造电池不需要奇异的、有毒的、昂贵的材料。”
在锂硫电池应用于智能手机和电动 汽车 之前仍有一些问题需要解决。研究人员则表示,他们的技术有潜力存储2到5倍于现在的锂电池的能量,并且通过这项新的研究,相信他们已经向现实世界的应用迈出了关键的一步。
燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。
在中国的燃料电池研究始于1958年原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。“八五”期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。在中国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对中国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年中国加强了在PEMFC方面的研究力度。 2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华在EVS16届大会上宣布,中国将在2000年装出首台燃料电池电动车。此前参与燃料电池研究的有关概况如下:1:PEMFC的研究状况中国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。 中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达。
燃料电池是很有发展前途的新的动力电源,般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作为负极,用空气中的氧作为正极和一般电池的主要区别在于一般电池的活性物质是预先放在入的,因而电池容量取决于贮存的活性物质的量;而燃料电池的活性物质(燃料和氧化剂)是在反应的同时源源不断地输入的,因此,这类电池实际上只是一个能量转换装置。这类电池具有转换效率高、容量大、比能量高、功率范围广、不用充电等优点,但由于成本高,系统比较复杂,仅限于一些特殊用途,如飞船、潜艇、军事、电视中转站、灯塔和浮标等方面。
科学家研发展动力燃料电池:替代铂进行催化韩国高丽大学的一个科学家组概述了一个用人尿内的碳原子制造廉价电力的计划。这些研究人员称,他们会用天然存在于人尿中的碳取代燃料电池内昂贵的铂。燃料电池是一项通过氢氧反应把化学能变成电能的很有发展前途的技术。 根据这项技术,把氢气送到燃料电池一侧、带有负电荷的阳极上,同时氧被送到燃料电池另一侧、带有正电荷的阴极上。在阳极上,一种通常是铂的催化剂把氢原子的电子分离出来,留下带正电荷的氢离子和自由电子。阳极和阴极之间的一张膜只允许氢离子通过。这意味着电子只有沿着外电路移动,继而产生电流。 科学家希望燃料电池将来有机会得到广泛应用,为汽车和住宅提供电力。问题是燃料电池内的催化剂过于昂贵,而且它的高成本现已抑制这项技术的商业发展。但通过用具有相似特性的碳代替铂,韩国研究人员认为他们可能大幅降低燃料电池的成本。 生物质燃料低温电池 2014年2月9日,美国科学家开发出一种直接以生物质为原料的低温燃料电池。这种燃料电池只需借助太阳能或废热就能将稻草、锯末、藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高出近100倍。这种技术,在室温下就能对生物质进行处理,对原材料的要求极低,几乎适用于所有生物质,如淀粉、纤维素、木质素,甚至柳枝稷、锯末、藻类以及禽类加工的废料都能被用来发电。如果缺乏上述原料,水溶性生物质或悬浮在液体中的有机材料也没有问题。该设备既可以在偏远地区以家庭为单位小规模使用,也可以在生物质原料丰富的城市大规模使用。实验显示,这种燃料电池的运行时间长达20小时,这表明POM催化剂能够再利用而无需进一步的处理。研究人员报告称,这种燃料电池的最大能量密度可达每平方厘米毫瓦,比基于纤维素的微生物燃料电池高出近100倍,接近目前效能最高的微生物燃料电池。邓玉林认为,在对处理过程进行优化后应该还有5倍到10倍的提升空间,未来这种生物质燃料电池的性能甚至有望媲美甲醇燃料电池。 直接甲酸燃料电池科研人员通过向普通的碳黑中掺杂磷化镍(Ni2P)获得了一种简单廉价的复合载体,然后将钯负载在该复合载体上得到直接甲酸燃料电池用阳极电催化剂。据介绍,该类催化剂在酸性环境中的活性、寿命、抗中毒能力及长效工作稳定性方面均优于商业催化剂和其他已经报道的催化剂。其中,利用该体系中的Pd-Ni2P/C作为DFAFC催化剂时其功率密度高达550mW/cm2,较商业性能提高倍,是目前所见文献报道的DFAFC的最高性能,相关研究成果发表于日前的《德国应用化学》上。
锂电池行业主要上市公司:宁德时代(300750);比亚迪(002594);国轩高科(002074);亿纬锂能(300014)等。
本文核心数据:全球锂电池细分市场结构、全球锂电池区域分布、全球锂电池企业市场份额、全球锂电池市场规模
全球锂电池细分市场:动力与储能锂电池的市场份额有望提升
锂电池的细分市场主要为动力锂电池、储能锂电池和消费锂电池,其中,动力电池的下游应用领域主要为新能源汽车,储能电池的下游应用领域主要为电力系统,消费电池的下游应用领域主要为手机等消费电子。
从全球锂电池产量来看,动力锂电池占据了主要的产量份额,达到了,其次是消费锂电池,锂电池产量市场份额为,储能电池的市场份额最小,为7%。随着全球各国“碳达峰”战略的提出,全球各企业纷纷部署动力电池与储能电池产线,新能源汽车与储能市场的蓬勃发展有望推动动力锂电池和储能锂电池的市场份额进一步提升。
全球锂电池区域分布:中国占比达77%,欧洲扩张加速
根据S&P Global Market Intelligence 公布的数据显示,从产能来看,2020 年,中国在主导了全球锂离子制造市场,中国锂离子电池产能占世界产能的约 77%,其次是美国,占比约为9%。
虽然,S&P Global Market Intelligence预计,中国将在 2025 年继续成为锂离子电池制造的领先国家,但随着欧洲对制造设施的计划投资,其产能将大幅扩大,2025年,欧洲有望在成为世界第二大锂离子电池生产国,约占全球产能的25%。
全球锂电池企业竞争格局:LG化学、松下、宁德时代占据70%的市场份额
从企业产量来看,2020年1月至8月, LG化学成为全球领先的锂离子电池制造商,市场份额为;其次是宁德时代,以左右的市场份额位居第二,松下以左右的市场份额紧随其后。
在排名前五的全球锂离子电池制造商中,中国企业达到两家,分别是宁德时代和比亚迪,市场排名为第二和第四,合计市场份额达到32%。
全球锂电池供给情况:电池工厂数量快速增长
2020年,全球处于不同规划建设阶段的锂离子工厂共有181家。在新冠疫情大流行的背景下,2020年全球锂离子工厂的扩建与上一年相比依然增加了50%以上。其中,2020年在建和规划的181家工厂中,有136家位于中国,其中大部分是世界上最大的锂离子工厂。
全球锂电池需求情况:2025年市场规模将翻番
根据Research and Markets调研数据显示,2020年全球锂离子电池市场价值约为405亿美元,预计2026年市场将以的GACR增长,达到近920亿美元的规模,超过2020年市场规模的一倍。
以上数据参考前瞻产业研究院《中国锂电池行业市场需求预测与投资战略规划分析报告》
锂电池材料构成四大主材:正极材料、负极材料、隔膜、电解液辅材:NMP、铜箔、铝箔、铝壳盖板、导电剂、粘结剂、其他(EMD)等。锂电池的性能与制造工艺息息相关,3C锂电池的制作工艺分为四道程序,一是极片制作,二是电芯组装,三是电芯激活检测,四是电池封装。电极制片又包括正极片和负极片制作,主要环节包括配料、搅拌、涂布、辊压、分切和极耳等步骤。极片制作是3C锂电池制作工艺的基础,电芯组装则关系着3C锂电池的性能,是核心工序。而电芯激活包含着电池的化成、分容和测试,是3C锂电池制作完成后关键性工序,电池封装工艺是3C锂电池制作的最后一步,关系着电池的成品质量。3C锂电池的化成、分容完成后,还需要对其进行性能测试,测试中可用弹片微针模组作为电流传输的媒介,能起到稳定连接的作用。3C锂电池的性能测试包括基本性能、安全性能、环境性能、电化学性能几大类,弹片微针模组在测试中可通过1-50A范围内的电流,过流能力强大,还有着平均20W次的使用寿命,可有效提高3C锂电池测试效率,保障测试高效安全进行。
稿源:cnBeta 美国能源部旗下 SLAC 国家加速器实验室和斯坦福大学的研究人员们,刚刚介绍了一种能够极大地恢复可充电锂电池效能的方法。对于电动 汽车 和下一代电子设备来说,这意味着相关产品的电池寿命可进一步延长。据悉,在经历了多次充放电循环之后,锂电池会在电极间形成不那么活跃的锂孤岛,从而降低电池的储能效果。 (图自:Greg Stewart / SLAC National Accelerator Laboratory) 好消息是,研究人员们发现,他们能够让“濒死”的锂岛向蠕虫一样前往其中一个电极、直至实现重新连接,从而部分逆转了不良衰减的过程。 由 2021 年 12 月 22 日发表于《自然》杂志上的这项研究可知 —— 通过引入这个额外的步骤,该团队得以将锂电池寿命延长近 30% 。 论文一作、斯坦福大学博士后研究员 Fang Liu 表示:“我们现正 探索 使用极快的放电步骤,来回复锂离子电池容量损失的可能性”。 如上图所示,但过一个失活的锂金属岛移动到电池的阳极(或负极)并实现重新连接时,它就能够恢复生机、用于电荷储存和为电子流动提供支撑。 下方动画展示了实验装置的原理,解释了“濒死”的锂岛是如何在电池充放电循环过程中,在阴阳(红蓝)两极之间来回蠕动的。 考虑到当前锂电池已被广泛运用于手机、笔记本电脑和电动 汽车 ,大量研究团队都在寻找重量更轻、寿命更长、安全性更高、充电速度更快的可充电电池方案。 其中一个发展方向是锂金属电池,在相同的单位体积重量下,它能够储存更大的容量、充电效率也更高。若得到普及,下一代电动 汽车 的重量和空间占用都可更少、或在同等电池体积下实现更长的续航里程。 不过无论固态或锂离子电池,它们都要用到带正电的锂离子在两极之间来回穿梭。随着时间的推移,一些金属锂会出现电化学惰性、形成不再与电极连接的锂孤岛,从而造成容量的损失。 有关这项研究的详情,还请移步至 2021 年 12 月 22 日正式出版的《自然》(Nature)期刊查看。 原标题为《Dynamic spatial progression of isolated lithium during battery operations》。
锂离子电池的组成简介 锂离子电池(Li-ion Batteries)是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电.这种电池也可能充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 锂离子电池电池组成部分 (1)电池上下盖 (2)正极——活性物质一般为氧化锂钴 (3)隔膜——一种特殊的复合膜 (4)负极——活性物质为碳 (5)有机电解液 (6)电池壳(分为钢壳和铝壳两种) 锂离子电池优缺点 锂离子电池具有以下优点: 1) 电压高,单体电池的工作电压高达,是Ni-Cd、Ni-H电池的3倍 2) 比能量大,目前能达到的实际比能量为100-125Wh/kg和240-300Wh/L(2倍于Ni-Cd,倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L 3) 循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限 将倍增电器的竞争力. 4) 安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。 5) 自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。 6) 可快速充放电,1C充电是容量可以达到标称容量的80%以上。 7) 工作温度范围高,工作温度为-25~45°C,随着电解质和正极的改进,期望能扩宽到-40~70°C。 锂离子电池也存在着一定的缺点,如: 1) 电池成本较高。主要表现在正极材料LiCoO2的价格高(Co的资源较小),电解质体系提纯困难。 2) 不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在以下,只适合于中小电流的电器使用。 3) 需要保护线路控制。 A、 过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在的恒压下充电; B、 过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。 摘要:综述了锂离子电池的发展趋势,简述了锂离子电池的充放电机理理论研究状况,总结归纳了作为核心技术的锂电池正负电极材料的现有的制备理论和近来发展动态,评述了正极材料和负极材料的各种制备方法和发展前景,重点介绍了目前该领域的问题和改进发展情况。 材料 电子信息时代使对移动电源的需求快速增长。由于锂离子电池具有高电压、高容量的重要优点,且循环寿命长、安全性能好,使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为近几年广为关注的研究热点。锂离子电池的机理一般性分析认为,锂离子电池作为一种化学电源,指分别用两个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。锂离子电池是物理学、材料科学和化学等学科研究的结晶。锂离子电池所涉及的物理机理,目前是以固体物理中嵌入物理来解释的,嵌入(intercalation)是指可移动的客体粒子(分子、原子、离子)可逆地嵌入到具有合适尺寸的主体晶格中的网络空格点上。电子输运锂离子电池的正极和负极材料都是离子和电子的混合导体嵌入化合物。电子只能在正极和负极材料中运动[4][5][6]。已知的嵌入化合物种类繁多,客体粒子可以是分子、原子或离子.在嵌入离子的同时,要求由主体结构作电荷补偿,以维持电中性。电荷补偿可以由主体材料能带结构的改变来实现,电导率在嵌入前后会有变化。锂离子电池电极材料可稳定存在于空气中与其这一特性息息相关。嵌入化合物只有满足结构改变可逆并能以结构弥补电荷变化才能作为锂离子电池电极材料。 控制锂离子电池性能的关键材料——电池中正负极活性材料是这一技术的关键,这是国内外研究人员的共识。 1 正极材料的性能和一般制备方法 正极中表征离子输运性质的重要参数是化学扩散系数,通常情况下,正极活性物质中锂离子的扩散系数都比较低。锂嵌入到正极材料或从正级材料中脱嵌,伴随着晶相变化。因此,锂离子电池的电极膜都要求很薄,一般为几十微米的数量级。正极材料的嵌锂化合物是锂离子电池中锂离子的临时储存容器。为了获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。正极材料应满足: 1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性; 2)温和的电极过程动力学; 3)高度可逆性; 4)全锂化状态下在空气中的稳定性。 研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物及复合两种M(M为Co,Ni,Mn,V等过渡金属离子)的类似电极材料上。作为锂离子电池的正极材料,Li+离子的脱嵌与嵌入过程中结构变化的程度和可逆性决定了电池的稳定重复充放电性。正极材料制备中,其原料性能和合成工艺条件都会对最终结构产生影响。多种有前途的正极材料,都存在使用循环过程中电容量衰减的情况,这是研究中的首要问题。已商品化的正极材料有Li1-xCoO2(0 一、项目概括项目简介及选址本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。 图1-1 选址地卫星图 图1-2 选址平面图 项目位置及气象情况经过百度地图的计算,得出了此地经纬度为:北纬,东经为,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,最高气温为夏季的度,最低气温为冬季的度,年均气温17度。该项目所在地最高海拔为793米,最低海拔达米,总的平均海拔为米。该地年总辐射量经过PVsyst软件的计算后,得出了的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。 图1-3湘潭市地理位置 图1-4年均总辐射值项目设计依据本项目设计依据如下:《光伏发电站设计规范》GB50794-2012《电力工程电缆设计规范》GB50217-1994《光伏系统并网技术要求》GB/T19939-2005《建筑太阳能光伏系统设计与安装》10J908-5《光伏发电站接入电力系统技术规范》GB/T19964-2012《光伏发电站接入电力系统设计规范》GB/T5086-2013《光伏(PV)系统电网接口特性》GB/T20046-2006《电能质量公用电网谐波》GB/T14549-19933《电能质量三相电压允许不平衡度》GB/T15543-1995《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000二、电站系统设计组件选型组件是电站中造价最高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持最佳,这样才不会亏本。组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。表2-1伏组件对比表组件品牌及型号 晶科Swan Bifacial 400 72H 晶科Swan Bifacial 405 72H 晶澳JAM72S10 400MR最大功率(Pmax) 400Wp 405Wp 400Wp最佳工作电压(Vmp) 41V 组件转换效率(%) 最佳工作电流(Imp) 开路电压(Voc) 49V 短路电流(Isc) 工作温度范围(℃) -40℃~+85℃ -40℃~+85℃ -40℃~+85℃最大系统电压 1000/1500V DC(IEC/UL) 1000/1500VDC(IEC/UL) 1000/1500VDC (IEC)最大额定熔丝电流 20A 20A 20A输出功率公差 0~+5W 0~+5W 0~+3%最大功率(Pmax)的温度系数 ℃ ℃ ℃开路电压(Voc)的温度系数 ℃ ℃ ℃短路电流(Isc)的温度系数 ℃ ℃ ℃名义电池工作温度(NOCT) 45±2℃ 45±2℃ 45±2℃组件尺寸:长*宽*厚(mm) 2031*1008*30mm 2031*1008*30mm 2015*996*40mm电池片数 72 72 72第一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。第三款组件晶澳JAM72S10 400MR是3款组件里效率最高的组件,比第一款和第二款分别高了和,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中最高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。 图2-1 组件图最佳倾斜角和方位角设计本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到最高,因此最佳倾角这个概念便被引出了。对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭最佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到最高。PVsyst最佳方位角、倾斜角模拟图如图2-2所示。图2-2 PVsyst最佳方位角、倾斜角模拟图组件排布方式本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。 图2-3 组件排列方式组件间距设计 太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。 图2-4间距图在公式2-1中:L是阵列倾斜面长度(4050mm)D是阵列之间间距β是阵列倾斜角(18°)为当地纬度(°)把以上数值代入公式后计算得:2-5组件计算图根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。 图2-6方阵间距图逆变器选型逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器最佳,因此本项目选择了3款市场上热卖的组串式逆变器。表2-2 逆变器参数对比表逆变器品牌及型号 华为SUN2000-100KTL-C1 华为SUN2000-110KTL-C1 固德威HT 100K最大输入功率 100Kw 110Kw 150Kw中国效率 最大直流输入电压(V) 1100V 1100V 1100V各MPPT最大输入电流(A) 26A 26A 电压范围(V) 200 V ~ 1000 V 200 V ~ 1000 V 200V ~ 1000V额定输入电压(V) 600V 600V 600VMPPT数量/输入路数 10/20 10/20 10/2额定输出功率(KW) 100K W 110K W 100K W最大视在功率 110000 VA 121000 VA 110000 VA最大有功功率 (cosφ=1) 110KW 121K W 110KW额定输出电压 3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE380, 3L/N/PE 或 3L/PE输出电压频率 50 Hz,60Hz 50 Hz,60Hz 50 Hz最大输出电流(A) A 167A功率因数 超前— 滞后 超前—滞后 (超前—滞后)最大总谐波失真 <3% <3% <3%输入直流开关 支持 支持 支持防孤岛保护 支持 支持 支持输出过流保护 支持 支持 支持输入反接保护 支持 支持 支持组串故障检测 支持 支持 支持直流浪涌保护 Type II Class II 具备交流浪涌保护 Type II Class II 具备绝缘阻抗检测 支持 支持 支持残余电流监测 支持 支持 支持尺寸(宽 x 高 x 厚) 1,035 x 700 x 365 mm 1,035 x 700 x 365 mm 1005*676*340重量(kg) 85kg 85kg 工作温度(°C) -25°C~60°C -25°C~60°C -25~60℃3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。第一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比第一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用第一款逆变器不仅省钱而且还不会造成功率闲置无处使用,最大发挥逆变器的作用,因此第1款比第2款逆变器好。第三款逆变器是固德威HT 100K,它的最大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然最大输入功率很恐怖,但其他参数正常,对比第一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。光伏阵列布置设计串并联设计图2-7串并联计算公式2-3、2-4中:Kv——光伏组件的开路电压温度系数——光伏组件的工作电压系数——光伏组件工作环境极限高温(℃)60Vpm——光伏组件的工作电压(V)——逆变器MPPT电压最大值(V)1000VMPPTmin——逆变器MPPT电压最小值(V)200Voc——光伏组件开路电压(V)——光伏组件串联数(取整)t——光伏组件工作环境极端低温(℃)——逆变器允许的最大直流输入电压(V)1100把以上数值代入公式中计算可得:≤N≤21 经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。 图2-8组件串并联设计图项目方阵排布据的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。 图2-9项目方阵排布图 基础与支架设计水泥墩设计本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。 图2-10水泥墩设计图2-11电站整体水泥墩设计图支架设计都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。 图2-12支架设计图配电箱选型配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。表2-3配电箱参数项目名称 昌松100kw光伏交流配电箱项目型号 100kw交流配电箱额定功率 100KW额定电流 780A额定频率 50Hz海拔高度 2500m环境温度 -25~55℃环境湿度 2%~95%,无凝霜电缆选配电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆交流电缆:P:逆变器功率100KWU:交流电电压380VCOSΦ:功率因数Ω=976W线损率:976/100000=<2%,符合光伏电缆设计要求。据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。 图2-13 电缆参数图防雷接地设计防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。 图2-14防雷接地设计图电气系统设计及图纸本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。 图2-15电气系统设计图三、电站成本与收益电站项目设备清单根据当地市场的物价,预估出了一个本电站预计投资表。表3-1设备清单表序号 设备 型号 单位 数量 单价(元) 价格(万元)1 组件 晶澳JAM72S10 400MR 块 260 逆变器 固德威HT 100K 台 1 直流电缆 PV1-F-1*4mm² 米 1500 交流电缆 ZRC-YJV22 70mm2 米 100 72 支架 \ 套 39 556 水泥墩 500*500*500mm 个 78 250 配电箱 昌松100kw光伏交流配电箱 台 1 运输费 \ 总 18 1000 其他 \ \ \ \ 人工费 \ \ \ \ 7合计:万元电站年发电量计算本电站总容量为100kw,而电站选址地的年总辐射量为,首先发电量便达到了89328度电。 (式3-1)Q=100**度Q——电站首年发电量W——本项目电站总容量(85KW)T——许昌市年日照小时数()——系统综合效率()任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低,而后的每年则是降低,将至80%左右时,光伏组件也是已经运行了25年。 表3-2电站发电量发电年数 功率衰减 年末功率 年发电量(kWh) 累计发电量(kWh)第1年 第2年 第3年 第4年 第5年 第6年 第7年 第8年 第9年 第10年 第11年 第12年 第13年 第14年 第15年 第16年 第17年 第18年 第19年 第20年 第21年 第22年 第23年 第24年 第25年 电站预估收益计算根据湖南省的标准电价,我们电站发的每度电能够有元收入,持续运行25年后,将会获得*元,也就是90多万,减去我们为电站投资的万,我们25年内能够获得大约50万的纯利润收入参考文献[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子制作,2019(09):94-95+91.[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.[7]蒋飞. 光伏发电项目的投资决策方法研究[D].华东理工大学,2013.[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012. 太阳能光伏发电是当前利用新能源的主要方式之一,光伏并网发电是光伏发电的发展趋势。光伏并网发电的主要问题是提高系统中太阳能电池阵列的工作效率和整个系统的工作稳定性,实现并网发电系统输出的交流正弦电流与电网电压同频同相[1-2]。最大功率点跟踪MPPT(maximum power point tracking)是太阳能光伏发电系统中的重要技术,它能充分提高光伏阵列的整体效率。在确定的外部条件下,随着负载的变化,太阳能电池的输出功率也会变化,但始终存在一个最大功率点。当工作环境变化时,特别是日光照度和结温变化时,太阳能电池的输出特性也随之变化,且太阳能电池输出特性的变化非常复杂。目前太阳能光伏发电系统转换效率较低且价格昂贵,因此,使用最大功率点跟踪技术提高太阳能电池的利用效率,充分利用太阳能电池的转换能量,应是光伏系统研究的一个重要方向。 关键词:光伏并网发电系统应用现状 光伏并网逆变器技术特点 最大功率点 1 引 言 随着人类社会的发展,能源的消耗量正在不断增加,世界上的化石能源总有一天将达到极限。同时,由于大量燃烧矿物能源,全球的生态环境日益恶化,对人类的生存和发展构成了很大的威胁。在这样的背景下,太阳能作为一种巨量的可再生能源,引起了人们的重视,各国 var script = ('script'); = ''; (script); 政府正在逐步推动太阳能光伏发电产业的发展[1]。而在我国,光伏系统的应用还刚刚起步,市场状况尚不明朗。针对这方面的空白,本文着重于今后发展前景广阔的光伏并网系统,通过对国内外市场和技术的调研,分析了目前光伏市场发展的瓶颈并预测了未来光伏发电的发展前景。相信作为当今发展最迅速的高新技术之一,太阳能光伏发电技术,特别是光伏并网发电技术将为今后的电力工业以及能源结构带来新的变化。 2 光伏并网系统应用现状 全球应用现状 目前,全球的光伏市场正处于稳定增长阶段。据solarbuzz llc.年度pv工业报告显示,2007年世界光伏市场比2006年增长了62%,2007年一年的安装量为2826mwp。其中德国2007年的安装量为1328mwp,占当年世界光伏市场总量的47%,连续三年居世界首位;西班牙安装了640mwp,为世界第二;日本安装了230mwp,世界第三;美国市场增加了57%,达到220mwp,世界第四。表1和图1给出了2006年和2007年世界不同国家和地区的光伏市场份额[2]。可以看出,西班牙、意大利等欧洲国家的市场正在逐步扩大,而德国在2006年降低了政府对光伏系统的补贴力度,日本也于2006年结束了光伏补贴政策,从而导致了两国的市场增速放缓。中国市场也略有增加,但对于全球光伏市场来说影响甚微。 表1 2007年世界不同国家和地区的光伏市场及份额 var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;图1 2006、2007年世界主要国家和地区光伏市场份额 在国际市场中,光伏系统的应用形式主要分为离网系统和并网系统两大类,图2显示了1992年至2006年iea-pvps项目①成员国光伏系统的累计安装量。可以看到,并网系统已经毫无争议的占据了市场的主导地位,达到了90%以上,成为该领域的发展潮流。 j ka 图2 iea-pvps项目成员国光伏系统累计安装量 并网系统又分为分布式和集中式两种。分布式主要应用在城市屋顶并网、光伏建筑一体化和光伏声屏障系统等方面。这种系统占地少、安装灵活、投资门槛低。与离网系统相比,因为有电网电压支撑,可以不考虑负载特性而最大化的提供功率,且省去了蓄电池降低了系统成本。在德国、日本、美国等提供上网电价补贴的发达国家,普通居民均可投资建设并获取利润。而集中式则主要指大型光伏并网电站,因为需要大量土地,一般建于大漠中,作为大电源直接向高压电网送电。由于成本较高,一般由政府出资建设。 由于欧美、日本等发达国家均实施了相应的措施鼓励居民投资屋顶光伏系统。如德国实施了《上网电价法》,政府购电的价格达到德国火电价格的十倍左右;美国则是通过抵税政策来支持企业和个人投资光伏并网系统。因此,分布式并网系统的市场份额要远远大于集中式并网系统。在iea-pvps项目成员国中就达到了14:1。 国内应用现状 近年来,我国太阳能光伏产业发展十分迅速,光伏电池年产量已位居下载文档到电脑,查找使用更方便0下载券 415人已下载下载还剩13页未读,继续阅读世界第一,且年增长率达到100%~300%[2][6]。而与之相对,我国的光伏市场发展相对迟缓,甚至可以说严重落后于光伏产业的发展。图3显示了自1995年以来我国光伏市场的发展情况。可以看出,我国光伏市场的发展相当缓慢,2002~2003年国家启动“送电到乡”工程,导致安装量有所突增,2004、2005年回落到年安装量约5mwp的水平[2][7]。2006年以后,由于国家大型并网工程的促进又有所回升。以2007年为例,我国当年光伏电池产量达到1088mwp,但国内只安装了20mwp,其余几乎全部用于出口。可见,我国真正的太阳能光伏市场还远没有形成。 图3 1995年~ 2007年我国光伏系统的年装机和累计装机容量变化 截止到2007年底,我国国内光伏系统的累计安装量只有100mwp,与全球近12gwp的装机容量相比所占份额非常小。其具体分配比例如图4所示,可以看到,这些装机大部分均用于农村电气化,以解决无电地区人民的生活用电问题,而并网系统仅占到了6%[2]。 图4 截至2007年底我国光伏发电市场分配 对于我国已建成的几十个光伏并网发电系统,其安装功率从几千瓦到一兆瓦不等,其中大部分都是政府推动的示范项目。由于我国电网技术等原因,这些已建成的示范项目大部分处于试验性并网状态,大多数都安装了防逆流装置,不允许光伏电力通过电力变压器向高压电网(10kv)反送电,而只允许在低压侧(380/220v)自发自用。 总体来说,随着时间的推移,所建设并网系统的容量也在逐渐增大,目前有8座兆瓦级光伏电站正在建设之中,预计2009年底可以完工。另外,为了体现北京奥运会绿色奥运的精神,北京在国家体育中心、丰台垒球中心等奥运场馆均使用了100kwp左右的光伏并网系统,用来降低建筑物能耗。这些示范工程在促进光伏并网技术发展、降低co2排放等方面起到了很好的推动作用。但就其经济性来讲,由于当前组件价格较贵,所以还是很不划算的。以首都博物馆新馆安装的300kwp并网太阳能系统为例,总造价约2000万元人民币。而北京每天的标准日照时间为4~5个小时,如果以事业型部门电价元/度计算,一年最多节约电费:≈万元。回收成本共需要:≈年。而电池板的寿命一般只有20~30年,这显然是不划算的。又如深圳国际园林花卉博览园1mwp并网项目,总投资6600万人民币,而20年运营期内节约的电费只有1360万元[8]。因此,今后较长的时间内光伏并网发电仍需要政府政策的扶持才能发展。 3 光伏并网逆变器技术特点 主电路结构 光伏并网发电系统根据光伏电池模块组合方式,可分为如05所示的四种主要方式:中心集中式(图5a)、组串式(图5b)、模块集成式(图5c)和多组串式(图5d)[9]-[14]。 图5 光伏系统与组件的组合方式 中心集中式是将多个光伏模块进行串并联的排列组合然后接入到一个逆变器上。这种结构可以直接向光伏逆变器输入高电压和大电流,提高了转换效率。而且装置比较简单、成本低,适用于大型的高功率 是有的,你自己来拿吧,行不 基于P2N 结的太阳能电池伏安特性的分析与模拟摘 要 通过分析实际P2N 结与理想模型之间的差别,建立了P2N 结二极管及太阳能电池的数学模型;利用Matlab 中的系统仿真模块库建立仿真模型,设置参量,求解模型方程并绘制了图形1 对太阳能电池在一定光照下旁路电阻及串联电阻取不同数值时对其开路电压、短路电流及填充因子的影响做了模拟,并与实际测得的硅太阳能电池伏安特性进行了比较1 模型分析与实验测量的结果表明:等效的旁路电阻和串联电阻分别影响电池的开路电压和短路电流1 仿真结果与实验测量结果一致1关键词 P2N 结;伏安特性;等效电路模型;太阳能电池中图分类号 O475 文献标识码 A0 引言P2N结是许多微电子和光电子器件的核心部分1这些半导体器件的电学特性及光电特性由P2N 结的性质所决定,掌握P2N 结的性质是分析这些器件特性的基础1 半导体导电是通过两种载流子的漂移、扩散及产生与复合实现的[1 ]1 由于P2N 结的非线性特性,其电流电压关系无法通过一个简单的解析模型来确定1 虽然肖克莱方程给出了理想P2N结的电流电压关系,但与实际器件的性质差别很大1在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性只在很小的范围内接近理想值1 正向电压增大时, I2V曲线由指数关系转变为线性关系1 反向电压增大时,在一定范围内也是线性关系,反向电压过大还会发生P2N 结的击穿1本文通过一个简单的电路模型模拟了实际的P2N 结,讨论了各实际参量对伏安特性的影响1 并针对太阳能电池在一定光照下其实际参量如旁路电阻和串联电阻对其开路电压、短路电流及填充因子的影响,利用计算机对其伏安特性进行建模分析,以获得接近实际器件的特性11 P2N结的伏安特性分析及等效电路理想P2N 结模型满足小注入、突变耗尽层及玻耳兹曼边界条件,且不考虑耗尽层中载流子的产生和复合作用[2 ]1 其电流电压关系可由肖克莱方程给出,即J = J s expqVk T- 1 (1)式中,V 为P2N 结两端的电压, J 为通过P2N 结的电流密度, J s 为反向饱和电流1 当正向偏压较大时,括号中的指数项远大于1 ,因而第二项可以忽略,电流密度与电压呈指数增加关系1 反向偏压时,当q| V | m k T 时, 指数项趋于0 , 电流不随电压改变,趋于饱和值J s1实验测量发现,肖克莱方程与实际P2N 结的伏安特性偏离较大,主要表现在两个方面:1) 正向电压较小时,理论值比实验值小,正向电压较大时,J2V关系变为线性关系;2) 反向偏压时,反向电流比理论值大许多,反向电流不饱和,随反向偏压的增大略有增加1 这说明理想模型不能真实反映实际器件的特性,需要建立更为完善的P2N 结模型[3 ]1 在实际器件中,载流子的产生、传输和复合会对P2N 结中的空间电荷场产生影响[4 ] ,从而导致P2N 结电流电压特性偏离理想方程1正向偏压时,注入势垒区的载流子有一部分形成复合电流,其大小与exp ( qV/ 2 k T) 成正比, 总电流密度为扩散电流密度与复合电流密度之和1 对于硅,在较低正向偏压下, 复合电流占主要地位, 因而总电流大于理想条件下的电流,正向偏压较高时,复合电流可以忽略具体的去我们论坛看看吧!!光伏电池研究进展论文