首页 > 学术论文知识库 > 分析化学氯化氢论文

分析化学氯化氢论文

发布时间:

分析化学氯化氢论文

?以下方案可以测定混合物中氯化氢、氯化镁、氯化铁中各组分含量 ?1、取一份溶液,加入适量的pH=2的氯乙酸-醋酸铵缓冲溶液,加入磺基水杨酸作指示剂,加热到70度,用EDTA标准溶液滴定至溶液由酒红色变为无色即为终点,根据消耗的EDTA的量计算铁的含量(三氯化铁的含量,如果是氯化亚铁,则可以先加入适量的过氧化氢将其氧化). ?2、在上述测定铁的溶液中继续加入pH=10的氨-氯化氨缓冲溶液,加入铬黑T指示剂,继续用EDTA标准溶液滴定至溶液由酒红色变为纯蓝色即为终点,根据消耗的EDTA的量计算镁的含量(氯化镁的含量). ?3、另取一份溶液(适量体积),加入过量的EDTA标准溶液(络合铁离子并释放出2倍铁的物质的量的H+),加热溶液至70度,加入溴酚蓝指示剂,用NaOH标准溶液滴定至溶液由黄色变为蓝色即为终点.根据消耗的NaOH的物质的量扣除2倍Fe的物质的量,即可计算溶液的HCl的含量.

考虑到氯化铵的水解,不能测PH确定HCl浓度。可以先取一定量混合溶液,加入足量硝酸银溶液,过滤,烘干称量,得到生成的氯化银质量,从而求出氯离子浓度。再在滤液中加入足量氢氧化钠溶液,将生成的气体通入足量已知质量的稀硫酸中,反应完全吸收氨气后称量稀硫酸和硫酸铵混合溶液质量,求出生成的氨气质量,算出铵根离子浓度。氯离子浓度减去铵根离子浓度即为盐酸浓度。仪器什么的不必细说了吧。实验步骤:取样,加入甲基红作为指示剂,用标准NaOH溶液滴定到刚变为(橙)黄色(获得样品中HCl浓度数据)。再加入足量的甲醛,用酚酞做指示剂,用标准NaOH溶液滴定到刚变为红色(获得NH4+的浓度数据)。实验仪器:托盘天平、电子天平、锥形瓶、容量瓶、移液管、碱式滴定管

所谓“氯化氢易挥发”准确表述应该是“浓盐酸易挥发”。稀盐酸在通常条件下是不挥发的(其实也挥发,但挥发极少,鼻子凑近是能闻到刺鼻气味的)。我们一般把质量分数低于20%的盐酸称为稀盐酸,把质量分数超过20%的盐酸称为浓盐酸。市售浓盐酸一般含HCl为36-38%,打开瓶盖就“冒烟”,有刺鼻气味。在分析化学滴定实验中使用的一般是稀盐酸。

电催化析氢毕业论文

第一作者:孙华传,李林峰,陈効谦

通讯作者:王春栋*,熊宇杰*

单位:华中 科技 大学,中国科学技术大学

研究背景

文章简介

近日,来自华中 科技 大学王春栋副教授团队和中国科学技术大学熊宇杰教授团队合作,在国际知名期刊 Science Bulletin 上发表题为“Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide”的研究文章。该文章仔细研究了层状双氢氧化物上(LDH)的单原子(SAC)精确位置以及不同单原子含量对催化活性的影响, 并通过理论结合实验的方式系统阐述了单原子与载体LDH之间的相互协同作用。这项工作从单原子精确位置的角度为全电解多功能SAC的设计提供了重要见解。

电催化析氢和尿素氧化的反应机理图

本文要点

要点一 :本文采用乙二醇辅助水热法将单原子 Rh均匀分散到超薄 NiV-LDH纳米片上(Rh/NiV-LDH),并将其同时用于催化 HER 和 UOR。Rh/NiV-LDH具有较高的TOF值,并表现出显著的质量活性,同时具有较低的过电位和较快的HER和UOR反应动力学。

图1. Rh/NiV-LDH电极的制备流程示意图以及结构与微观形貌表征。

要点二: 通过 AC-STEM 和 HAADF-STEM 图像,观察到大量高度分散在NiV-LDH 载体上的 Rh 单原子。FT-EXAFS 拟合结果表明,Rh/NiV-LDH 催化剂中只有 Rh-O 键被探测到( Å),没有任何的金属 Rh-Rh 键( Å)或 Rh-O-Rh 键( Å),进一步证实了NiV-LDH 载体上的 Rh 原子与载体表面的氧成键并以单分散形式存在。DFT 理论计算表明,Rh 原子在NiV-LDH 表面即在的Ni、V 和O 位点顶部的形成能分别为 、 eV 和 eV ,再一次说明Rh 在NiV-LDH表面的单分散构型比在 NiV-LDH 的Ni 和V位上的掺杂构型更具有能量可行性。此外,Rh 原子在 NiV-LDH的 NiV中空位置且垂直面对氧原子构型的形成能最低,说明大部分 Rh 单原子分布在Ni-V中空位置(O 原子的顶部),少部分可能分布在Ni原子或V原子的顶部位置。

图2. Rh/NiV-LDH的光谱表征。

要点三 :测试表明,在碱性介质中,Rh/NiV-LDH阴极催化剂在100 mA cm-2电流密度下的HER过电位为64 mV,且能稳定工作超过200 h,电催化析氢法拉第效率接近100%。此外,Rh/NiV-LDH在100 mV过电位下具有较高HER质量活性( A mg 1)和周转频率(TOF: s 1)。

图3. 制备催化剂在碱性电解质中的电催化析氢(HER)性能。

要点四 :Rh/NiV-LDH 催化电极Rh/NiV-LDH表现出优异的UOR催化活性,仅需要 V即可实现10 mA cm 2。将 Rh/NiV-LDH 催化电极分别作为电解槽的阴极和阳极,并以碱性尿素介质(1 M KOH+ M Urea )为电解液,从而组装简易的 Rh/NiV-LDH (+)//Rh/NiV-LDH (-)双电极尿素电解槽。该电解槽驱动 10mA cm-2时仅需施加的电压, 且能稳定工作超过100 h。当自组装 Rh/NiVLDH(+)||Rh/NiV-LDH (-)电解槽的工作电流密度达到 100 mA cm-2 时,该装置只需要稳定工作 3 h 就可以将电解液中的尿素降解 93%左右,即使循环工作三次,其尿素降解率仍然能保持 90%左右,且能稳定产生 H2, 表明 Rh/NiV-LDH 在大规模节能制氢和净化富尿素废水方面具有巨大的潜力。

图4. Rh/NiV-LDH及其对比样在1 M KOH溶液中的电催化尿素氧化(UOR)和尿素全解性能测试。

要点五 :密度泛函理论(DFT)计算表明,单分散的 Rh 单原子改变了载体 NiV-LDH 的电子结构,优化了氢吸附中间体(H*)的吸附和解吸过程,从而降低了 HER 过程中 Volmer 步骤和Heyrovsky 步骤的反应势垒,进而提升 Rh/NiV-LDH 催化剂的 HER 催化活性。与此同时, 单原子 Rh 位点还优化了 Rh/NiV-LDH 催化剂对尿素分子的吸附和活化,促进了其关键中间体(如 CO*/NH*)的解吸,显著降低UOR反应决速步骤(RDS)的反应能垒,加速 UOR 反应动力学并提升 UOR 催化活性。

图5. 密度泛函理论计算。

总 结

综上所述,AC-STEM、XAS和DFT计算结果表明,通过一步水热合成法成功制备了锚定在NiV-LDH基体上的Rh SACs(位于Ni-V中空位点)。所制备的Rh/NiV-LDH在碱性溶液中对HER和UOR表现出良好的双功能催化活性。DFT计算表明,单分散的Rh单原子改变了载体NiV-LDH的电子结构,降低了HER的Volmer步骤和Heyrovsky步骤的反应势垒。同时,Rh位点也优化了尿素分子的吸附和/或活化,促进了关键中间体(如CO*/NH*)的解吸,这显著降低了UOR决速步骤(RDS)的反应能垒,加快了UOR反应动力学。将Rh/NiV-LDH催化剂分别作为阴极和阳极组装成整体尿素电解槽,其由 V太阳能电池板供电即可使得两个电极上产生大量H2和N2气泡。这表明该催化剂在大规模节能制氢和富尿素废水净化方面具有很大的潜力。本工作对未来具有精确位置的SACs的可控和大规模生产具有一定的启发作用。

文章链接

Huachuan Sun, Linfeng Li, Hsiao-Chien Chen, Delong Duan, Muhammad Humayun, Yang Qiu, Xia Zhang, Xiang Ao, Ying Wu, Yuanjie Pang, Kaifu Huo, Chundong Wang*, Yujie Xiong*.Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Sci. Bull. 2022 .

DOI:

通讯作者简介

王春栋副教授 ,华中 科技 大学光学与电子信息学院/武汉光电国家研究中心双聘副教授、华中卓越学者。2013年于香港城市大学获得博士学位,2013-2015年先后在香港城市大学、香港 科技 大学,荷语鲁汶大学任高级研究助理/副研究员,比利时弗拉芒政府科学基金会FWO学者,鲁汶大学F+研究员,2015年9月起任职华中 科技 大学。研究领域为非贵金属光/电催化剂设计及其在环境和能源中的应用。王春栋副教授是香港城市大学优秀博士论文奖( 2013 年全校 7 个)获得者,获评湖北省“楚天学者”计划楚天学子( 2015 年),澳门大学杰出访问学者(2019),华中卓越学者晨星岗(2020), 是美国材料学会(MRS)会员, 欧洲材料学会(EMRS)会员, 中国化学学会会员。担任 Frontier in Chemistry和Molecules杂志客座编辑, Advanced Powder Materials 杂志特聘编委,Exploration青年编委,Rare Metals青年编委。长期担任 Adv. Func. Mater.,等四十余个国际著名杂志审稿人/仲裁人,塞尔维亚国家自然科学基金和香港研究资助委员会(RGC)国际评审专家。在 J. Am. Chem. Soc.,Energy Environ. Sci., Angew. Chem. Int. Ed., ., Research 等杂志发表 SCI 论文 150 余篇,他引6000余次, H-因子 44,2021年入选全球前2%顶尖科学家榜单和全球前十万科学家榜单。先后主持国家重点研发计划(国际合作重点专项)、基金委面上项目、基金委青年项目、湖北省重点研发计划等项目十余项。

课题组网站:

熊宇杰, 中国科学技术大学讲席教授、博士生导师。1996年进入中国科学技术大学少年班系学习,2000年获化学物理学士学位,2004年获无机化学博士学位,师从谢毅院士。2004至2011年先后在美国华盛顿大学(西雅图)、伊利诺伊大学香槟分校、华盛顿大学圣路易斯分校工作。2011年辞去美国国家纳米技术基础设施组织的首席研究员职位,回到中国科学技术大学任教授,建立独立研究团队。2017年获国家杰出青年科学基金资助,入选英国皇家化学会会士(FRSC)。2018年获聘长江学者特聘教授,入选国家万人计划 科技 创新领军人才。2022年当选东盟工程与技术科学院外籍院士(FAAET(F))、新加坡国家化学会会士(FSNIC)。现任ACS Materials Letters副主编。主要从事基于催化过程的生态系统重构研究。迄今为止,在Science等国际刊物上发表260余篇论文,总引用32,000余次(H指数93),入选科睿唯安全球高被引科学家榜单和爱思唯尔中国高被引学者榜单。2012年获国家自然科学二等奖(第三完成人),2014-2016和2018年四次获中国科学院优秀导师奖,2015年获中美化学与化学生物学教授协会杰出教授奖,2019年获英国皇家化学会Chem Soc Rev开拓研究者讲座奖,2021年获安徽省自然科学一等奖(第一完成人)。

课题组网站:

第一作者简介

孙华传 ,华中 科技 大学光学与电子信息学院的2019级博士,研究方向为高活性金属电催化剂设计合成及其在电解水中的应用,目前以第一作者和共同第一作者的身份在 J. Am. Chem. Soc.、.、Appl. Cata. B-Environ、ACS Appl. Mater. Inter.、Chem. Eng. J.、J. Power Sources 等期刊发表SCI论文8篇,其中2篇入选ESI高被引论文。

Email :

李林峰 ,华中 科技 大学光学与电子信息学院的2020级硕士研究生,研究方向为单原子催化剂及其合成电催化中的应用,以及电催化中的计算材料科学。

Email :

陈効谦 :2011年毕业于长庚大学并获得化学与材料工程专业博士学位,目前担任长庚大学可靠性科学与技术中心的助理教授。目前的研究方向包括电化学能量中电催化剂的原位表征技术的发展转换。

Email :

喜欢就 关注我们吧,订阅更多最新消息

第一作者及通讯作者:李伟(陕西 科技 大学(西安))

共同通讯作者:王传义(陕西 科技 大学(西安))

通讯单位:陕西 科技 大学

论文DOI:

研究亮点

1. 通过简单可控的方法将单原子Pd成功修饰在了CdS NPs表面。

2. 单原子Pd与CdS NPs表面的S原子形成强配位作用,通过协同金属-半导体配位相互作用促进了光诱导载流子自体相向表面的迁移,抑制了CdS光腐蚀现象,提高了光诱导电子利用效率。

3. 单原子Pd修饰CdS NPs后降低了催化水分解产氢能垒,显著增强了其全分解水产氢活性。

研究背景

随着双碳目标的提出,国家对氢能源的发展做出了重要指导,有效推进氢能源的发展。传统产氢手段能耗高,且伴随有二次污染。由于太阳光能来源广泛、使用方便、绿色可持续性等优点,将太阳能转变为方便使用的高附加值化学能无疑是新能源开发的有效途径,具有潜在应用价值。日光诱导全分解水产氢是一种开发氢能源的潜在技术,然而较低的效率阻碍了该项技术的大规模应用推广。因此,开发高效稳定的全分解水产氢催化剂具有理论与实际研究意义。

硫化镉(CdS)是一种低功函且具有优异可见光响应的过渡金属硫化物,在光催化和电催化领域有着广泛的应用。被用于光催化材料时,长时间光诱导容易导致其结构发生严重光腐蚀,极大地影响其光催化性能。如何在提高CdS基光催化剂催化活性的同时,有效抑制其光腐蚀影响,增强其结构稳定性,是需要研究者不断 探索 和解决的关键科学问题。

拟解决的关键问题

本课题通过一步简单诱导还原策略,将单原子Pd修饰在CdNPs表面,实现了协同的金属-半导体配位相互作用,抑制了载流子复合,提高了催化剂量子产率。更为重要的是,高度缓解了CdS光腐蚀影响,赋予其以长时间光电流稳定性,一定程度上解决了光腐蚀导致其催化剂结构不稳定的科学问题。

成果简介

针对CdS光催化剂在光诱导下光腐蚀严重影响其催化性能的科学问题, 陕西 科技 大学(西安)李伟副教授及王传义教授 等人通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同的半导体-金属配位相互作用,其光响应性及界面电荷传导特性均显著增强,有效抑制了其光腐蚀,增强了催化剂结构稳定性。同时,CdS-Pd催化剂表面全分解水产氢过程能垒相较于纯CdS NPs明显降低,从而在模拟日光诱导下达到了纯CdS纳米催化剂110倍的全分解水产氢活性,且表现出良好的耐光性能。

要点1:CdS-Pd复合光催化剂合成

通过简单的一步诱导还原法将单原子Pd修饰在六方相CdSNPs表面,优化并制备出一种CdS-Pd纳米光催化剂。

图复合光催化剂的合成示意图及结构表征。

要点2:CdS-Pd复合光催化剂结构、组成及形貌表征

通过XRD、Raman、XPS、XAFS和ac-STEM等表征研究发现:贵金属Pd是以单原子状态均匀分布在CdS 纳米催化剂表面,且单原子Pd与CdS 纳米催化剂表面的S原子形成了S-Pd配位作用,这有利于促进光诱导载流子的传导。

图复合光催化剂的形貌、晶型及组成分析。

要点3:CdS-Pd复合催化剂模拟日光诱导产氢活性及稳定性

当反应体系pH = 10时,优化后的CdS-Pd纳米催化剂在模拟太阳光诱导下全分解水析氢速率为 μmol·g -1 ·h -1 ,是纯CdS的110倍。如果进一步加入牺牲剂,其半分解水析氢速率可达到 μmol·g -1 ·h -1 。在λ = 420 nm的光波诱导下,其全分解水和半分解水的表观量子产率分别为和。即使在室外日光辐照下,也可以清晰地观察到大量气泡的产生。以上研究表明单原子Pd修饰后的纳米催化剂模拟日光诱导产氢活性显著提高。另外,通过评价该改性催化剂进行模拟日光诱导催化产氢的持久性及再生性,证明Pd单原子修饰后的CdS纳米催化剂具有稳定的光诱导催化活性和良好的结构稳定性。

图复合光催化剂的催化产氢性能、持久性和重复使用性。

要点4:CdS-Pd复合光催化剂的协同作用增强光-电化学性能及机理分析

通过光-电化学各项表分析可知:Pd单原子修饰后的CdS纳米催化剂表现出良好的电子-空穴对分离特性,且由于协同的半导体(CdS)-金属(Pd)配位相互作用加快了载流子自体相向表面的迁移,有效抑制了CdS的光腐蚀,延长了光生载流子寿命,从而在长时间光诱导下呈现高密度且稳定的光电流信号。

图4. CdS-Pd复合光催化剂的光-电化学性能表征及机理分析。

要点5:CdS-Pd复合光催化剂的DFT计算及催化机制分析

通过DFT计算分析可知:CdS-Pd纳米催化剂表面全分解水产氢能垒相较于纯CdS NPs明显降低,且支撑了S-Pd配位键形成的可能性。最终证明氢气生成的主要活性位点为催化剂表面的S位点,而表面单原子Pd则促进了水分子的分解。综上所述,在模拟日光诱导下,CdS基体生成大量光诱导载流子,并快速迁移至表面。H 2 O分子首先在催化剂表面Pd位点处被分解为氢质子中间体和OH-离子,氢质子进一步在S位点处获得电子被还原成氢气,而OH - 离子则在CdS表面被光生空穴氧化为O 2 分子。由于该催化剂协同的金属-半导体作用机制,O 2 分子与部分光诱导电子作用被快速转化为超氧自由基(O 2 +e - O 2•- ),所以该催化剂更适合于在模拟日光诱导下催化水分解产氢应用。

图5. CdS-Pd复合光催化剂的DFT计算及全分解水机制

小结与展望

综上所述,针对纯CdS半导体光诱导过程中光腐蚀影响导致其结构稳定性较差的科学问题,本研究通过一步简单光诱导还原手段将单原子Pd修饰在六方相CdS NPs表面,制备出一种CdS-Pd纳米光催化剂。由于CdS主体催化剂与单原子Pd活性位点间协同配位作用,其光响应性及界面电荷传导特性均显著增强,光诱导电子-空穴对复合抑制效果明显。同时,单原子Pd修饰后的纳米催化剂明显降低了全分解水产氢过程的能垒,从而在模拟日光诱导下达到纯CdS纳米催化剂近110倍的全分解水产氢活性,并表现出优良的催化活性与结构稳定性。本研究对于通过简单有效的制备方法合成稳定且高效的全分解水产氢CdS基光催化剂具有理论与实际研究意义。

参考文献

W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, T. Ma, J. Li, C. Wang, Pd single-atom decorated CdS nanocatalyst for highly efficient overall watersplitting under simulated solar light. Appl. Catal. B-Environ . 2021, DOI: .

作者介绍

李伟 ,陕西 科技 大学 化学与化工学院,副教授。从事光催化剂结构设计及合成、光催化污水处理、太阳能光伏氢能源生产相关研究。目前已发表国际SCI论文30余篇,总被引频次1000余次。部分研究被《Appl. Catal. B-Environ.》、《J. Mater. Chem. A》、《Environ. 》、《ACS Sustainable .》、《Chem. Eng. J.》、《ChemCatChem》、《Electrochim. Acta》等期刊报导。

王传义 ,陕西 科技 大学特聘教授。德国洪堡学者、英国皇家化学会会士、国家外专局高端外国专家创新团队负责人、德国洪堡基金会联合研究小组中方负责人、陕西 科技 大学特聘教授、武汉大学兼职教授、博士生导师。应邀担任中国可再生能源学会光化学专业委员会委员、中国感光学会光催化专业委员会委员及中国环境科学学会特聘理事、国家 科技 奖励和国家重点研发计划项目会评专家及国家基金委等机构项目评审专家。从事光催化技术在环境与能源领域的应用研究。

声明

析氢催化剂毕业论文

近日,《催化学报》在线发表了中国石油大学(北京)戈磊教授团队在光催化解水领域的最新研究成果。该工作报道了结合动力学和热力学对PtPd修饰硫化镉锌纳米棒高效光催化制氢的机理研究。论文第一作者:张临河硕士,论文通讯作者:戈磊教授。02背景介绍双金属合金是目前最有效的共催化剂之一。与单金属纳米粒子相比,双金属纳米粒子由于其独特的微观结构和优良的催化性能而具有巨大的催化潜力。Pt具有较高的功函数和较低的质子还原能力,被认为是最有效的贵金属助催化剂。本课题组研究发现,在氢气生产过程中,PtPd合金作为助催化剂的光催化性能高于Pt。这一现象可以通过PtPd合金的热力学结果来理解,而反应动力学在光催化制氢中也起着重要作用。因此,利用热力学和动力学相结合的方法来研究改进析氢活性的PtPd共催化剂的性质和机理是很有必要的。

01 导读

二维材料由于其独特的电子结构和原子构型已经被广泛研究用于电催化领域,特别是催化析氢反应。之前的诸多研究成果已经表明二维材料的边缘处为催化反应提供了活性位点。然而,相比于二维材料基面而言,其边缘原子数毕竟是少量,所以调控激发其基面大量原子参与催化反应是提高其整体催化活性的重要研究内容。目前,报道的优化方法主要是通过在二维材料基面上构造原子空位(肖特基缺陷)或者掺杂异原子来提高其基面催化性能。这些方法或催化活性有待提高或需要消耗贵金属等等。所以如何简便地在二维材料基面上精准构造一类具备高效催化活性的原子缺陷结构,一直以来都是具有挑战性的科学难题。

02 成果掠影

近日, 苏州大学李彦光教授、天津理工大学罗俊教授、湖南大学刘松教授以及华东理工大学戴升教授(共同通讯) 联合在国际著名期刊 Nature Communications 上发表题为“Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution”的文章。 许杰、邵功磊以及唐璇 为本文共同第一作者。作者们首次在单层MoS2基面上制备出弗兰克尔新型缺陷结构,并借助球差校正电镜解析出不同缺陷的原子结构,最后通过微纳电化学装置巧妙测试出单层MoS2基面上不同缺陷结构的电催化析氢性能。结果表明一定浓度的弗兰克尔原子缺陷结构甚至比Pt单原子掺杂在MoS2基面上的析氢催化性能更加优异。本文为研究不同种类原子缺陷结构对催化活性的影响提供了新思路和研究对象。

03 核心创新点

1、首次在单层MoS2上制备出弗兰克尔原子缺陷结构,并通过球差校正电镜确认其原子构型。

2、通过微纳电化学装置测量出单层MoS2基面上不同原子缺陷结构的电催化析氢性能,结合理论计算分析出不同缺陷结构表面的电荷分布对其催化活性影响。

04 数据概览

图1:单层MoS2基面上不同原子缺陷结构对应的原子像。

(a-c)单层MoS2原子像及原子模型;(d-f)单层MoS2上弗兰克尔缺陷结构原子像及原子模型;(g-i)单层MoS2上Pt单原子掺杂原子像及原子模型。

图2:单层MoS2基面上不同原子缺陷结构电催化性能测试。

(a)微纳电化学装置示意图;(b)单层MoS2上暴露的基面区域,用于测试的窗口;(c-d)MoS2基面上不同原子缺陷结构对应的电催化性能指标。

05 成果启示

本文作者们在单层MoS2基面上通过简易手段首次构造出一类新型原子缺陷结构(弗兰克尔缺陷)用于高效催化析氢反应。结合理论计算等手段,表明不同缺陷结构会直接影响二维材料基面上电荷分布情况,进而直接决定其催化活性。另外,本文也为研究各类不同原子缺陷结构对催化剂性能的影响提供了很好的思路。

文献链接:Jie Xu, Gonglei Shao, Xuan Tang, et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Commun. 13, 2193 (2022).

.

第一作者:孙华传,李林峰,陈効谦

通讯作者:王春栋*,熊宇杰*

单位:华中 科技 大学,中国科学技术大学

研究背景

文章简介

近日,来自华中 科技 大学王春栋副教授团队和中国科学技术大学熊宇杰教授团队合作,在国际知名期刊 Science Bulletin 上发表题为“Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide”的研究文章。该文章仔细研究了层状双氢氧化物上(LDH)的单原子(SAC)精确位置以及不同单原子含量对催化活性的影响, 并通过理论结合实验的方式系统阐述了单原子与载体LDH之间的相互协同作用。这项工作从单原子精确位置的角度为全电解多功能SAC的设计提供了重要见解。

电催化析氢和尿素氧化的反应机理图

本文要点

要点一 :本文采用乙二醇辅助水热法将单原子 Rh均匀分散到超薄 NiV-LDH纳米片上(Rh/NiV-LDH),并将其同时用于催化 HER 和 UOR。Rh/NiV-LDH具有较高的TOF值,并表现出显著的质量活性,同时具有较低的过电位和较快的HER和UOR反应动力学。

图1. Rh/NiV-LDH电极的制备流程示意图以及结构与微观形貌表征。

要点二: 通过 AC-STEM 和 HAADF-STEM 图像,观察到大量高度分散在NiV-LDH 载体上的 Rh 单原子。FT-EXAFS 拟合结果表明,Rh/NiV-LDH 催化剂中只有 Rh-O 键被探测到( Å),没有任何的金属 Rh-Rh 键( Å)或 Rh-O-Rh 键( Å),进一步证实了NiV-LDH 载体上的 Rh 原子与载体表面的氧成键并以单分散形式存在。DFT 理论计算表明,Rh 原子在NiV-LDH 表面即在的Ni、V 和O 位点顶部的形成能分别为 、 eV 和 eV ,再一次说明Rh 在NiV-LDH表面的单分散构型比在 NiV-LDH 的Ni 和V位上的掺杂构型更具有能量可行性。此外,Rh 原子在 NiV-LDH的 NiV中空位置且垂直面对氧原子构型的形成能最低,说明大部分 Rh 单原子分布在Ni-V中空位置(O 原子的顶部),少部分可能分布在Ni原子或V原子的顶部位置。

图2. Rh/NiV-LDH的光谱表征。

要点三 :测试表明,在碱性介质中,Rh/NiV-LDH阴极催化剂在100 mA cm-2电流密度下的HER过电位为64 mV,且能稳定工作超过200 h,电催化析氢法拉第效率接近100%。此外,Rh/NiV-LDH在100 mV过电位下具有较高HER质量活性( A mg 1)和周转频率(TOF: s 1)。

图3. 制备催化剂在碱性电解质中的电催化析氢(HER)性能。

要点四 :Rh/NiV-LDH 催化电极Rh/NiV-LDH表现出优异的UOR催化活性,仅需要 V即可实现10 mA cm 2。将 Rh/NiV-LDH 催化电极分别作为电解槽的阴极和阳极,并以碱性尿素介质(1 M KOH+ M Urea )为电解液,从而组装简易的 Rh/NiV-LDH (+)//Rh/NiV-LDH (-)双电极尿素电解槽。该电解槽驱动 10mA cm-2时仅需施加的电压, 且能稳定工作超过100 h。当自组装 Rh/NiVLDH(+)||Rh/NiV-LDH (-)电解槽的工作电流密度达到 100 mA cm-2 时,该装置只需要稳定工作 3 h 就可以将电解液中的尿素降解 93%左右,即使循环工作三次,其尿素降解率仍然能保持 90%左右,且能稳定产生 H2, 表明 Rh/NiV-LDH 在大规模节能制氢和净化富尿素废水方面具有巨大的潜力。

图4. Rh/NiV-LDH及其对比样在1 M KOH溶液中的电催化尿素氧化(UOR)和尿素全解性能测试。

要点五 :密度泛函理论(DFT)计算表明,单分散的 Rh 单原子改变了载体 NiV-LDH 的电子结构,优化了氢吸附中间体(H*)的吸附和解吸过程,从而降低了 HER 过程中 Volmer 步骤和Heyrovsky 步骤的反应势垒,进而提升 Rh/NiV-LDH 催化剂的 HER 催化活性。与此同时, 单原子 Rh 位点还优化了 Rh/NiV-LDH 催化剂对尿素分子的吸附和活化,促进了其关键中间体(如 CO*/NH*)的解吸,显著降低UOR反应决速步骤(RDS)的反应能垒,加速 UOR 反应动力学并提升 UOR 催化活性。

图5. 密度泛函理论计算。

总 结

综上所述,AC-STEM、XAS和DFT计算结果表明,通过一步水热合成法成功制备了锚定在NiV-LDH基体上的Rh SACs(位于Ni-V中空位点)。所制备的Rh/NiV-LDH在碱性溶液中对HER和UOR表现出良好的双功能催化活性。DFT计算表明,单分散的Rh单原子改变了载体NiV-LDH的电子结构,降低了HER的Volmer步骤和Heyrovsky步骤的反应势垒。同时,Rh位点也优化了尿素分子的吸附和/或活化,促进了关键中间体(如CO*/NH*)的解吸,这显著降低了UOR决速步骤(RDS)的反应能垒,加快了UOR反应动力学。将Rh/NiV-LDH催化剂分别作为阴极和阳极组装成整体尿素电解槽,其由 V太阳能电池板供电即可使得两个电极上产生大量H2和N2气泡。这表明该催化剂在大规模节能制氢和富尿素废水净化方面具有很大的潜力。本工作对未来具有精确位置的SACs的可控和大规模生产具有一定的启发作用。

文章链接

Huachuan Sun, Linfeng Li, Hsiao-Chien Chen, Delong Duan, Muhammad Humayun, Yang Qiu, Xia Zhang, Xiang Ao, Ying Wu, Yuanjie Pang, Kaifu Huo, Chundong Wang*, Yujie Xiong*.Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Sci. Bull. 2022 .

DOI:

通讯作者简介

王春栋副教授 ,华中 科技 大学光学与电子信息学院/武汉光电国家研究中心双聘副教授、华中卓越学者。2013年于香港城市大学获得博士学位,2013-2015年先后在香港城市大学、香港 科技 大学,荷语鲁汶大学任高级研究助理/副研究员,比利时弗拉芒政府科学基金会FWO学者,鲁汶大学F+研究员,2015年9月起任职华中 科技 大学。研究领域为非贵金属光/电催化剂设计及其在环境和能源中的应用。王春栋副教授是香港城市大学优秀博士论文奖( 2013 年全校 7 个)获得者,获评湖北省“楚天学者”计划楚天学子( 2015 年),澳门大学杰出访问学者(2019),华中卓越学者晨星岗(2020), 是美国材料学会(MRS)会员, 欧洲材料学会(EMRS)会员, 中国化学学会会员。担任 Frontier in Chemistry和Molecules杂志客座编辑, Advanced Powder Materials 杂志特聘编委,Exploration青年编委,Rare Metals青年编委。长期担任 Adv. Func. Mater.,等四十余个国际著名杂志审稿人/仲裁人,塞尔维亚国家自然科学基金和香港研究资助委员会(RGC)国际评审专家。在 J. Am. Chem. Soc.,Energy Environ. Sci., Angew. Chem. Int. Ed., ., Research 等杂志发表 SCI 论文 150 余篇,他引6000余次, H-因子 44,2021年入选全球前2%顶尖科学家榜单和全球前十万科学家榜单。先后主持国家重点研发计划(国际合作重点专项)、基金委面上项目、基金委青年项目、湖北省重点研发计划等项目十余项。

课题组网站:

熊宇杰, 中国科学技术大学讲席教授、博士生导师。1996年进入中国科学技术大学少年班系学习,2000年获化学物理学士学位,2004年获无机化学博士学位,师从谢毅院士。2004至2011年先后在美国华盛顿大学(西雅图)、伊利诺伊大学香槟分校、华盛顿大学圣路易斯分校工作。2011年辞去美国国家纳米技术基础设施组织的首席研究员职位,回到中国科学技术大学任教授,建立独立研究团队。2017年获国家杰出青年科学基金资助,入选英国皇家化学会会士(FRSC)。2018年获聘长江学者特聘教授,入选国家万人计划 科技 创新领军人才。2022年当选东盟工程与技术科学院外籍院士(FAAET(F))、新加坡国家化学会会士(FSNIC)。现任ACS Materials Letters副主编。主要从事基于催化过程的生态系统重构研究。迄今为止,在Science等国际刊物上发表260余篇论文,总引用32,000余次(H指数93),入选科睿唯安全球高被引科学家榜单和爱思唯尔中国高被引学者榜单。2012年获国家自然科学二等奖(第三完成人),2014-2016和2018年四次获中国科学院优秀导师奖,2015年获中美化学与化学生物学教授协会杰出教授奖,2019年获英国皇家化学会Chem Soc Rev开拓研究者讲座奖,2021年获安徽省自然科学一等奖(第一完成人)。

课题组网站:

第一作者简介

孙华传 ,华中 科技 大学光学与电子信息学院的2019级博士,研究方向为高活性金属电催化剂设计合成及其在电解水中的应用,目前以第一作者和共同第一作者的身份在 J. Am. Chem. Soc.、.、Appl. Cata. B-Environ、ACS Appl. Mater. Inter.、Chem. Eng. J.、J. Power Sources 等期刊发表SCI论文8篇,其中2篇入选ESI高被引论文。

Email :

李林峰 ,华中 科技 大学光学与电子信息学院的2020级硕士研究生,研究方向为单原子催化剂及其合成电催化中的应用,以及电催化中的计算材料科学。

Email :

陈効谦 :2011年毕业于长庚大学并获得化学与材料工程专业博士学位,目前担任长庚大学可靠性科学与技术中心的助理教授。目前的研究方向包括电化学能量中电催化剂的原位表征技术的发展转换。

Email :

化学毕业论文氯

改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工类 毕业 论文,供大家参考。

化工类毕业论文 范文 一:化学工程学科集群分析

一、我国化学工程与技术专业学科集群现象

经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。

二、化学工程与技术专业学科集群的创新及竞争优势

本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。

三、化学工程与技术专业学科集群的协同创新模式

山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。

四、我国化学工程与技术专业集群的路径

从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。

五、结论

第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。

化工类毕业论文范文二:生物质化学人才培训思考

一、生物质化学工程人才的需求分析

能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。

二、生物质化学工程人才的知识结构

生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术 方法 、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。

三、生物质化学工程人才培养的探索与实践

(一)组织高水平学术会议,营造人才培养氛围

2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的 报告 ,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。

(二)理论与实验课程体系

根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。

(三)实习、实践和毕业环节

生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外 留学 经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践 渠道 ;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。

1. 年产10万吨苯乙烯工艺初步设计 简介:(论文字数:13923,页数:46) 2. 亚硫酸生产工艺设计(1万吨年) 简介:(论文字数:12614,页数:43) 3. 乙醛生产工艺设计(8万吨/年) 简介:(论文字数:15666,页数:49) 4. 膜法除硝中淡盐水的预处理 简介:(论文字数:13025,页数:38) 5. 硫铁矿制硫酸工艺初步设计 简介:(论文字数:15149,页数:62) 6. 年产十万吨PVC中HCl工序的工艺设计 简介:(论文字数:14873,页数:34) 7. 年产10万吨乙炔洁净工艺设计 简介:(论文字数:13187,页数:34) 8. 年产10万吨乙炔工艺设计 简介:(论文字数:13024,页数:33) 9. 20万吨聚氯乙烯生产工艺 简介:(论文字数:19390,页数:44) 10. 脉冲激光沉积法(PLD)制备非晶态BZN薄膜的研究 简介:(论文字数:17096,页数:40) 11. 恒顺达生物能源有限公司安全评价报告 简介:(论文字数:13199,页数:31) 12. 克酮酸的合成研究 简介:(论文字数:8603,页数:23 ) 13. 全膜法工艺在热电厂锅炉补给水系统中的应用及研究 简介:(论文字数:13367,页数:26) 14. 100Kt/a硝基氯苯装置TPS系统工程设计 简介:(论文字数:21679,页数:57) 15. 新井设计 简介:(论文字数:34465,页数:78) 16. 五龙矿 新井采区设计 简介:(论文字数:20446,页数:42) 17. 年产五万吨合成氨变换工段工艺初步设计 简介:(论文字数:10346,页数:37) 18. 高聚物/碳纳米管复合材料研究进展 简介:(论文字数:6289,页数:16 ) 19. 木粉含量对PVC/木粉复合材料性能的影响 简介:(论文字数:5040,页数:11 ) 20. 喜树发根培养及培养基中次生代谢产物的研究 简介:(论文字数:14476,页数:29) 21. 虾下脚料制备多功能叶面肥的研究 简介:(论文字数:12168,页数:25) 22. 缩合型有机硅电子灌封材料交联体系研究 简介:(论文字数:20114,页数:40) 23. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究 简介:(论文字数:19997,页数:35) 24. 酶法双甘酯的制备 简介:(论文字数:19829,页数:36) 25. 硅酸锆的提纯毕业论文 简介:(论文字数:12630,页数:27) 26. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究 简介:(论文字数:31673,页数:49) 27. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究 简介:(论文字数:20776 页数:43) 28. 铝合金阳极氧化及封闭处理 简介:(论文字数:25561,页数:51) 29. 贝氏体白口耐磨铸铁磨球的研究 简介:(正文字数:16247,页数:39) 30. 80KW等离子喷涂设备的调试与工艺试验 简介:(正文字数:18733,页数:37) 31. 2800NM3/h高温旋风除尘器开发设计 简介:(正文字数:14802,页数:58) 32. 玻纤增强材料注塑成型工艺特点的研究 简介:(论文字数:6984,页数:13 ) 33. 年处理30万吨铜选矿厂设计 简介:(论文字数:14063,页数:50) 34. 年处理60万吨铁选厂毕业设计 简介:(论文字数:13536,页数:54) 35. 广东省韶关市大宝山铜铁矿井下开采设计 简介:(论文字数:53605页数:140) 36. 日处理1750吨铅锌选矿厂设计 简介:(字数:37308,页数:89) 37. 6000t/a聚氯乙烯乙炔工段初步工艺设计 简介:(字数:26743,页数:61) 38. 年产50万吨焦炉鼓冷工段工艺设计 简介:(字数:33226,页数:49) 39. 年产25万吨合成氨铜洗工段工艺设计 简介:(字数:23904,页数:55) 40. PX装置异构化单元反应器进行自动控制系统设计 简介:(字数:17463,页数:53) 41. PX装置异构化单元脱庚烷塔自动控制系统设计 简介:(字数:22340,页数:54) 42. 金属纳米催化剂的制备及其对环己烷氧化性能的影响 简介:(字数:三万,页数:66 ) 43. 高温高压条件下浆态鼓泡床气液传质特性的研究 简介:(字数:25168.页数:60) 44. 新型纳米电子材料的特性、发展及应用 简介:(字数:8679.页数:10 ) 45. 发达国家安全生产监督管理体制的研究 简介:(字数:17272,页数:22) 46. 工伤保险与事故预防 简介:(字数:15867,页数:20) 47. 氯气生产与储存过程中危险性分析及其预防 简介:(字数:13643,页数:23) 48. 无公害农产品的发展与检测 简介:(字数:9767,页数:16 ) 49. 环氧乙烷工业设计 简介:(字数:20472,页数:67) 50. 年产21000吨乙醇水精馏装置工艺设计 简介:(字数:13464.页数:56) 51. 年产26000吨乙醇精馏装置设计 简介:(论文字数:10089,页数:55) 52. 高层大厦首层至屋面消防给水工程设计 简介:(论文字数:14582,页数:38) 53. 某市航空发动机组试车车间噪声控制设计 简介:(论文字数:11156,页数:36) 54. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究 简介:(论文字数:12064,页数:28) 55. 一株新的短程反硝化聚磷菌的鉴定及活性研究 简介:(论文字数:10316,页数:30) 56. 广州地区酸雨特征及其与气象条件的关系 简介:(论文字数:9031,页数:19 ) 57. 超声协同硝酸提取城市污泥重金属的研究 简介:(论文字数:10981,页数:27) 58. 脱氨剂和铁碳法处理稀土废水氨氮的研究 简介:(论文字数:8209.页数:21 ) 59. 稀土超磁致伸缩材料扬声器研制 简介:(论文字数:19332,页数:29) 60. 纳米氧化铋的发展 简介:(论文字数:18508,页数:39) 61. 海泡石TiO2光敏催化剂的制备及其研究 简介:(论文字数:15350,页数:35) 62. 超磁致伸缩复合材料的制备 简介:(论文字数:22379,页数:35) 63. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文 简介:(论文字数:35682,页数:58) 64. APCVD法在硅基板上制备硅化钛纳米线 简介:(论文字数:18638,页数:36) 65. 浅层地热能在热水系统中的利用初探及其工程设计 简介:(论文字数:34502,页数:58) 66. 输配管网的软件开发 简介:(论文字数:24729,页数:59) 67.乙二醇乙醚乙酸酯的合成及分析 (字数:17018,页数:35) 68.四(m-氯苯基)卟啉及其锰络合物的合成 (字数:15464,页数:36)

化工专业毕业论文开题报告范文

1.引言

中国有82%的人饮用浅井和江河水,其中水质污染严惩细菌超过卫生标准的占了75%,受到有机物污染的饮用水人口约亿。长期以来,人们一直认为自来水是安全卫生的。但是,因为水污染,如今的自来水已不能算是卫生的了。一项调查显示,在全世界自来水中,测出的化学污染物有2221种之多,其中有些确认为致癌物或促癌物。从自来水的饮用标准看,中国尚处于较低水平,自来水目前仅能采用沉淀、过滤、加氯消毒等方法,将江河水或地下水简单加工成可饮用水。自来水加氯可有效杀除病菌,同时也会产生较多的卤代烃化合物,这些含氯有机物的含量成倍增加,是引起人类患各种胃肠癌的最大根源。目前,城市污染的成分十分复杂,受污染的水域中除重金属外,还含有甚多农药、化肥、洗涤剂等有害残留物,即使是把自来水煮沸了,上述残留物仍驱之不去,而煮沸水中增加了有害物的浓度,降低了有益于人体健康的溶解氧的含量,而且也使亚硝酸盐与三氯甲烷等致癌物增加,因此,饮用开水的安全系数也是不高的。据最新资料透露,目前中国主要大城市只有23%的居民饮用水符合卫生标准,小城镇和农村饮用水合格率更低。水污染防治当务之急,应确保饮用水合格。为此应加大水污染监控力度,设立供水水源地保护区。母亲河黄河1972年第一次断流,1997年断流226天,近700公里河床干涸。海河300条支流,无河不干,无河不臭。华北地下水严重超采,形成面积7万多平方公里的世界上最大的地下水漏斗区,地面下沉,海水入侵。全国668个城市中,有400多个供水不足,100多个严重缺水。上世纪九十年代末以来,土地沙化速度上升到每年3400多平方公里。

更可怕的是,中国水资源总量还在下降。1997年总量为27855亿立方米,而2004年就降到24130亿立方米。从上世纪50年代以来,长江上游20多条河流平均萎缩了。世界自然基金会3月19日发表报告,将长度与水量均为世界第三的长江列入世界面临干涸的10条大河之一。水体污染影响工业生产、增大设备腐蚀、影响产品质量,甚至使生产不能进行下去。水的污染,又影响人民生活,破坏生态,直接危害人的健康,损害很大。目前,人们已意识到不能以破坏生态环境来发展经济,这样的代价太大了。中国已提出社会经济可持续发展和保护人民的身体健康的战略,对整治水域污染采取了一系列强有力的措施。

水污染处理有三种方法:物理法、化学法、生物降解法。

物理法:废水处理方法的选择取决于废水中污染物的性质、组成、状态及对水质的要求。一般废水的处理方法大致可分为物理法、化学法及生物法三大类。

利用物理作用处理、分离和回收废水中的污染物。例如用沉淀法除去水中相对密度大于1的悬浮颗粒的同时回收这些颗粒物;浮选法(或气浮法)可除去乳状油滴或相对密度近于1的悬浮物;过滤法可除去水中的悬浮颗粒;蒸发法用于浓缩废水中不挥发性的可溶性物质等[2]。

化学法:利用化学反应或物理化学作用回收可溶性废物或胶体物质,例如,中和法用于中和酸性或碱性废水;萃取法利用可溶性废物在两相中溶解度不同的“分配”,回收酚类、重金属等;氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌等[2]。

生物法:利用微生物的生化作用处理污水中的.有机物。例如,生物过滤法和活性污泥法用来处理生活污水或有机生产污水,使有机物转化降解成无机盐而得到净化[2]。

长期以来污水多采用活性污泥法处理,也是世界各国应用最广泛的一种生物处理流程,具有处理能力高,出水水质好的优点。

2.课题名称、专业年级、学生、指导老师

课题名称:三价盐氯化铝对活性污泥降解性能的影响

专业年级:××××级应用化工技术

成 员:×××

指导老师:×××

3.课题内容

①活性污泥的培养

实验室活性污泥培养是利用间歇培养的方法,利用曝气装置向活性污泥曝气,即闷曝,只是通入氧气,隔一段时间进行静置沉淀一小时,然后换水,要加入适量养料培养,如此反复,维持实验所需的活性污泥的浓度。

②三价盐氯化铝对活性污泥降解性能研究方法

水体质量的判断主要是依靠某些指标来表示,包括DO,COD,BOD等。其中COD是“化学需氧量(chemical oxygen demand)”的英文缩写,是反映水体中还原性污染物(包括有机的和无机的还原性物质)的指标。这里就采用COD指标来表示。COD的测定方法有很多种。参照大量文献最总总结出一种测定方法,即往试样中加入已知量的重铬酸钾溶液,在强酸介质中,以硫酸银作为催化剂,经高温消解后,用分光光度法测定COD值。当试样中COD值为100mg/L至1000mg/L,在60020纳米波长处测定重铬酸钾被还原产生的三价铬离子的吸光度,试样中COD值与三价铬离子的吸光度的增加值成正比例关系,将三价铬离子的吸光度换算成COD的值。当试样中COD值为15mg/L至250mg/L,在440±20纳米的波长处测定重铬酸钾未被还原的六价铬离子和被还原产生的三价铬离子两种铬离子的总吸光度;试样中COD值与六价铬离子的吸光度的减少值成正比,和三价铬离子的吸光度的增加值成正比,将总吸光度换算成COD值[3-8]。

配置不同浓度的三价盐氯化铝水样,在回流装置中加热,沸腾一小时后,放入锥形瓶中冷却,而后加入指示剂用而配置好的已知浓度的硫酸亚铁铵标准溶液进行滴定,记录数据。再重复上述操作,从而研究三价盐氯化铝对活性污泥降解性能的影响。

③验证

通过实验数据,作出不同浓度氯化铝水样的COD值随时间的变化曲线,从而分析三价盐氯化铝对活性污泥降解性能是否有影响。

4.本课题的目的、意义

随着社会的发展,造纸、化工行业都排放大量的工业废水。含重金属的废水污染环境,破坏生态平衡,影响动植物生长,严重危害人类健康。因此,国内外学者都在积极探索和研究一种高效的降解活性污泥的方法。

本文主要研究了废水中不同浓度的氯化铝对活性污泥降解性能的影响,通过测定污泥处理前后工业污水的COD值,研究不同浓度驯化下的活性污泥的生长及对有机物的降解情况,为进一步推广活性污泥在工业中的应用提供有力的数据支持[9]。

5.拟使用的主要试剂和仪器

①试剂:

无水氯化铝(分析纯)、六水合硫酸亚铁铵(分析纯)、重铬酸钾(优级纯)、浓硫酸(分析纯)、硫酸汞(分析纯)、硫酸银(分析纯)、葡萄糖(优级纯)(50g/L)、1,10-邻菲罗琳、蒸馏水等。

②仪器:

智能恒温电热套、鼓泡机、托盘天平、电子天平、圆底烧瓶(250mL)、空气冷凝管、小烧杯(50mL)、量筒(100mL)、量筒(10mL)、量筒(5mL)、锥形瓶(250mL)、离心机等。

6.预期目标

影响活性污泥活性的因素有很多,而本实验只研究不同浓度的氯化铝对活性污泥降解能力是否有影响,因此我们选氯化铝为研究对象,测定污泥处理前后污水的COD值,研究不同浓度氯化铝驯化下的活性污泥的生长及对有机物的降解情况,可以给对于活性污泥降解能力的研究提供一个客观的数据支持,另外在课题实验中还要最大可能的排除氯离子的影响,以达到一个客观准确的测量结果。

7.阶段性工作

第4~5周 文献查阅。

第6周 完成开题报告及文献综述,制定实验方案。

第7周 准备实验室,领取仪器和药品,配制所需试剂。

第8~14周 按实验方案完成实验,同时总结试验过程中的不足,以及实验过程中的现象和结论,记录并处理数据。

第15~16周 整理数据,制表画图,撰写毕业论文。

第17周 论文答辩

参考文献

[1] 崔衍立.城市污水处理常用方法比较研究[J].内江科技,2010.

[2] 殷实.浅谈活性污泥在废水处理中的应用[J].环境研究与监测,2010,(2) :23-24.

[3] 孙惠修.排水工程.第四版.北京:中国建筑工业出版社,1999:105-107.

[4] 苏振中.CODcr与BOD5的相关性研究[J].黑龙江环境通报,2010,34 (2):75-78.

[5] 顾凤妹.李秀霞.重铬酸钾法测定COD影响因素分析[J].小氮肥,2009,37 (3):18-20.

[6] 李国刚,王德龙.生化需氧量BOD测定方法综述[J].中国环境监测,2004,20 (2):54-57.

[7] 肖肖,陈英姿.BOD5测定的影响因素分析[J].化学工程与装备,2009,9:176-177.

[8] 王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学环测学院,2009:9-11.

[9] 徐航.COD重铬酸钾分析法相关问题的探讨[J].化学工程与装备,2010,6: 171-172.

分析化学期刊

《分析化学》期刊级别: CSCD核心期刊 北大核心期刊 统计源期刊

分析化学

《分析化学》(月刊)1972年创刊,是分析化学学科专业性学术期刊。《分析化学》主要报道我国分析化学创新性研究成果,反映国内外分析化学学科前沿和进展。 《分析化学》旨在为冶金、地质、化工、材料、农业、食品...

主管主办:中国科学院  中国化学会;中国科学院长春应用化学研究所

快捷分类:化学化学 工程科技I

出版发行:吉林  月刊  A4

期刊刊号:0253-3820, 22-1125/O6

创刊时间:1972  影响因子

审稿时间:1-3个月

期刊级别: CSCD核心期刊 北大核心期刊 统计源期刊

美国化学会出版的分析化学(《Analytical Chemistry 》),分析家(《analyst》),分析化学学报(《Analytica Chimica Acta》),分析方法(《Analytiacl Methods》),塔兰塔(《Talanta》),色谱A(《Journal of Chromatography A》)等等当然,分析化学也属于化学的一大分支,像JACS,Angewandte之类的顶级综合化学类的期刊也会出版分析化学方面的文章。希望能够帮到你

行业顶尖。分析化学杂志是美国化学会旗下的一个老牌杂志。这个杂志上面的文章基本上凝聚了全世界最顶尖级的科学家的科研成果。这个杂志也是世界上最顶尖级的行业老牌杂志之一。它的影响因子非常的高。上面的论文质量也非常的高。

  • 索引序列
  • 分析化学氯化氢论文
  • 电催化析氢毕业论文
  • 析氢催化剂毕业论文
  • 化学毕业论文氯
  • 分析化学期刊
  • 返回顶部