线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
告诉你拟就会写吗。不如我给你写得了
线性代数教学中线性相关性的一种解释和理解[摘要]线性相关性的内容是线性代数课程中的重点和难点,特别是被表示向量组的线性相关性与被表示向量组中向量的个数以及表示向量组中向量的个数之间的关系的有关结论,对学生来说是很难理解的,在教学中,我们把线性相关解释为“多余”,线性无关解释为“没有多余”,在教学上可收到较好的效果。[关键词]线性相关线性无关多余没有多余线性相关性在线性代数课程中是一个重要内容,对学生来说是非常困难的内容,许多学生学完线性代数后还没有弄懂,有的学生学到这一内容时觉得很难学,就丧失信心。认为整个线性代数都很难学,甚至放弃学习。线性相关性是线性代数课程中教学的难点,它与后面线性方程组的解的理论有密切的联系,对于这一难点的处理是非常重要的。根据不同层次的学生采用不同的教学要求。使得学生正确的理解线性相关性的定义,定理。大多数经济类的本科线性代数课程的教材在叙述向量组的极大无关组和向量组的秩的理论时,由于这一章节的理论性比较强,一般都是从定理到定理,从证明到证明,例子较少。在教学中,在讲完线性相关的定义和有关定理后,在介绍向量的极大无关组之前,用”多余”来解释线性相关性,可使后面的问题简单化,直观化。我们以龚德恩等主编的《经济数学基础》的第二分册线性代数的教材为例进行说明。首先来看线性组合的概念。对于向量组α1,α2,…,αs和向量β,如果存在s个数k1,k2,…,ks使得β=k1α1+k2α2+…+ksαs则称向量β是向量组α1,α2,…,αs的线性组合。换句话说向量β相对于向量组α1,α2,…,αs是“多余”的向量。关于线性相关概念,对于向量组α1,α2,…,αs,如果存在不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0称向量组α1,α2,…,αs线性相关。因k1,k2,…,ks不全为零,不妨假设α1≠0则α1=-k2k1α2-…-ksk1αs。因此向量组α1,α2,…,αs线性相关,看成是向量组α1,α2,…,αs中至少有一个“多余”的向量。关于线性无关概念,对于向量组α1,α2,…,αs,如果仅当k1,k2,…,ks都等于零时,才能使得k1α1+k2α2+…+ksαs=0成立。称向量组α1,α2,…,αs线性无关。由于α1,α2,…,αs线性无关等价于其中任何一个向量不能由其余向量线性表示,因此向量组α1,α2,…,αs线性无关看成是α1,α2,…,αs中“没有多余”的向量。一些结论也可作相应的理解和解释。如:“如果一个向量组中的部分组线性相关,则整个向量组也线性相关”,解释为如果一个向量组中的部分组有多余的向量,则整个向量组也有多余的向量。“如果一个向量组线性无关,则它的任意一个部分组也线性无关”,解释为如果一个向量组中没有多余的向量,则该向量组去掉一些向量后也没有多余的向量。下面两个定理是学生们在学习向量组的线性相关性的过程中感到最难理解和掌握的。定理1设向量组(Ⅰ)α1,α2,…,αs可由向量组(Ⅱ)β1,β2,…,βt线性表示,且s>t,则α1,α2,…,αs线性相关。在课堂教学中我们是作如下解释的,向量组(Ⅰ)α1,α2,…,αs称为“被表示向量组”,向量组(Ⅱ)β1,β2,…,βt称为“表示向量组”。条件s>t,看成是有”多余”的向量。即“被表示向量组(Ⅰ)α1,α2,…,αs相对于表示向量组(Ⅱ)β1,β2,…,βt有多余的向量,则α1,α2,…,αs线性相关,这样解释便于学生理解和记忆。推论1如果一个向量组α1,α2,…,αs线性无关,并且可由向量组β1,β2,…,βt线性表示。则s≤t。推论1可解释为:如果“被表示向量组α1,α2,…,αs线性无关,则被表示的向量组α1,α2,…,αs相对于表示向量组β1,β2,…,βt没有多余的向量,即s≤t。推论2两个等价的线性无关向量组所含的向量的个数相同。两个向量组都线性无关,且彼此可相互线性表示,两个向量组彼此相对于另一个向量组都没有多余的向量,得两个向量组所含的向量的个数相同。下面再举一些例子进行说明。例1设向量组α1,α2,…,αs线性无关,且可由向量组β1,β2,…,βt线性表示,则必有()。
二者完全不同矩阵就是一组数字的有序排列是一个按照长方阵列排列的复数或实数集合行列式则是一组数字在一起通过规定的计算方法之后得到的一个数字
行列式是作用在一个方阵上的函数,它得到的是一个数值。比如我们用A表示一个方阵,那么行列式就是Det(A),这里Det是一个运算规则(函数)
告诉你拟就会写吗。不如我给你写得了
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。
这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。
线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 . Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre ) 一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。 矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。
代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
前瞻性队列研究(prospective cohort study) 研究对象的确定与分组是根据研究开始时的实际情况,如是否暴露来确定,研究的结局需随访观察一段时间才能得到,这种设计叫前瞻队列研究。优点:可信度高、偏倚少。缺点:费时、费人力、物力、财力。2.历史性队列研究(historical cohort study)研究工作是现在开始的,而研究对象是过去某个时间进入队列的。其特点是追溯到过去某时期,决定人群对某因素的暴露史,然后追查至现在的发病或死亡情况。由于研究结局在研究开始时已经发生,然后追溯到过去某时期,其性质是回顾性的,故这种设计又叫回顾性队列研究(retrospective cohort study)。优点:省时、省人力物力。缺点:历史档案不一定符合设计要求,故适用范围较窄。3. 双向性队列研究(ambispective cohort study) 根据历史档案确定暴露与否,根据将来的情况确定结局,故这种设计又叫混合性队列研究。该方法不但具有历史性队列研究的优点,还弥补了其不足。
一篇高质量的教科研论文,必须具有下列特征: 1、立论客观,具有独创性: 文章的基本观点必须来自具体材料的分析和研究中,所提出的问题在本专业学科领域内有一定的理论意义或实际意义,并通过独立研究,提出了自己一定的认知和看法。 2、论据翔实,富有确证性: 论文能够做到旁征博引,多方佐证,所用论据自己持何看法,有主证和旁证。论文中所用的材料应做到言必有据,准确可靠,精确无误。 3、论证严密,富有逻辑性: 作者提出问题、分析问题和解决问题,要符合客观事物的发展规律,全篇论文形成一个有机的整体,使判断与推理言之有序,天衣无缝。 4、体式明确,标注规范: 论文必须以论点的形成构成全文的结构格局,以多方论证的内容组成文章丰满的整体,以较深的理论分析辉映全篇。此外,论文的整体结构和标注要求规范得体。 5、语言准确、表达简明: 论文最基本的要求是读者能看懂。因此,要求文章想的清,说的明,想的深,说的透,做到深入浅出,言简意赅。
我个人认为是因为在能奔跑的时候一定要加强运动,这样子才可能使自己的身体素质提高免疫力也能够提高,我个人认为经常锻炼身体的人是不会导致猝死的。
多跑步有益健康,它不会导致猝死,适当的运动,不要剧烈的运动,