一、借鉴成果,博采众长——先粗保存,再归类保存,整理中顿生灵感对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情.一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴.就中学数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息,特别是教育学、心理学方面的知识和信息,信息的采集形式多种多样,大致可以分为三类:(一)书面形式,比如各种书籍、报纸、刊物等;(二)口头形式,比如各种会议、听课、交流、咨询等;(三)电子形式,比如网络。这些信息采集后的保存方式也各不相同,先粗保存。主要有四种方式:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容;(2)做摘记,写在本上;(3)复印或收藏;(4)电子信息存盘。电脑的使用可以把这些宝贵的文献资料,全部化为电子信息存盘,并整理归类。整理归类的过程,即便是文字输入的过程都能够使你顿生灵感,我记得一位台湾女诗人创作了一首诗《一生都在整理一张书桌》,我想,做学问人都应该“一生都在忙碌中整理一张书桌”。这样为论文写作,提供了强大的理论支持和众多的珍贵例子,从而萌生对某一题材的进一步研究和发掘,撰写成了论文。所以论文不是谁刻意写出来的,有一点瓜熟蒂落的感觉,无病呻吟成不了好文章。二、完备素材,厚积薄发——论文还自教研始,处处留心皆学问“论文还自教研始”、“论文在研不在写”等观点,有一定的道理。“厚积”是基础,没有来源于实践的经验教训、数据统计等素材的积累,想要写出比较有价值的论文,几乎是不可能的.这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习、自己提高的过程;(2)课后反思;(3)作业记录,从学生作业中不但能发现具有共性的问题,还提示我们教研的改革方向;(4)考试总结;(5)解题分析,并从中探索解题规律和命题趋势;(6)调查反馈,可以用谈心、问卷等多种形式进行,从中反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信,发现不足甚至是错误之处,理由不充分的就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起.。三、立足实践,提炼新意——“冷点”、“热点”初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的.正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展.再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手。论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时。四、从小到大,循序渐进——先文章、再论文,从小中见大好成文写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,初写者先尝试以下两个步骤:第一步:练习写学习辅导类的文章.这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究,通常有1000字左右;要求与教学同步。第二步,进行教学研究类论文的写作,先侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文.可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等。如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华,小中见大;论文篇幅不求长,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,应认真研读报刊风格。五、技巧和经验——复制、删除、添加当文思涌动,意欲写作时,先应确立文稿的题目,用小标题清晰地表达想写的几个方面。(1)为了借鉴别人的成果,有必要复制相关的文章段落,作为你的理论依据或论述的素材、旁例。但要讲究文德,切勿剽窃抄袭他人论文。这就要参考多遍文章,复制多款内容,不怕内容多,只怕内容不全,然后去粗取精,大刀阔斧地删除。留下的骨架再添加自己的思想,教学实践中的例证,自己平时积累的成果等,但文章一定要有更多自己的东西,这样才是真正自己的文章。(2)做有心人。经常阅读,选择有关书刊放在床头、沙发边或办公桌上,只要有空经常翻阅。一旦有想法,及时记录,并经常向这个方向思考和研究,再参考他人成果必能成就自己的文章。坚持不懈,持之以恒,“功夫不负有心人”。(3)抓住热点、冷点。初写数学论文可以从以上几点入手希望对您有帮助如有疑问请继续追问!!
上大一就开始写论文啊不过也挺不错的对你以后毕业会有帮助的我现在已经毕业啦不过告诉你论文可不是那么好写的你只想从网上找资料那是不行的老师一看就知道是从网上弄的雷同的很多我知道一个叫燕子期刊网的挺不错的你可以去找找主编叫雷燕啊不知道的话就到百度上查查燕子期刊网就可以啦嘻嘻,试试吧祝你成功
在找一下资料看看
小学数学论文写法如下:1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
你好!写数学论文并不可怕,相信,当你用心去写,你会觉得很开心!(1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文.生活中,你只要用数学的眼睛来悉心观察,有很多方面离不开我们所学的数学,做一个有心人,将数学与我们的生活相联系,就会有一篇篇很不错的文章!
像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。
一、借鉴成果,博采众长——先粗保存,再归类保存,整理中顿生灵感对他人的研究成果,进行吸收消化,为我所用,这是每一个科研工作者都在做、并且必须做的事情.一个人的精力、能力、水平等毕竟是有限的,要弥补这个“先天性缺陷”,就一定要向他人学习借鉴.就中学数学教师而言,我们所涉猎的范围自然应以初中数学的教育教学科研信息为主,但还应兼顾高中和小学的数学,以及计算机、物理、化学等相关学科的信息,特别是教育学、心理学方面的知识和信息,信息的采集形式多种多样,大致可以分为三类:(一)书面形式,比如各种书籍、报纸、刊物等;(二)口头形式,比如各种会议、听课、交流、咨询等;(三)电子形式,比如网络。这些信息采集后的保存方式也各不相同,先粗保存。主要有四种方式:(1)制卡片,简要注明作者、题目、出处、摘要、编号、日期等项内容;(2)做摘记,写在本上;(3)复印或收藏;(4)电子信息存盘。电脑的使用可以把这些宝贵的文献资料,全部化为电子信息存盘,并整理归类。整理归类的过程,即便是文字输入的过程都能够使你顿生灵感,我记得一位台湾女诗人创作了一首诗《一生都在整理一张书桌》,我想,做学问人都应该“一生都在忙碌中整理一张书桌”。这样为论文写作,提供了强大的理论支持和众多的珍贵例子,从而萌生对某一题材的进一步研究和发掘,撰写成了论文。所以论文不是谁刻意写出来的,有一点瓜熟蒂落的感觉,无病呻吟成不了好文章。二、完备素材,厚积薄发——论文还自教研始,处处留心皆学问“论文还自教研始”、“论文在研不在写”等观点,有一定的道理。“厚积”是基础,没有来源于实践的经验教训、数据统计等素材的积累,想要写出比较有价值的论文,几乎是不可能的.这些素材源于何处?如何去发现这些素材呢?答案是那句古话“处处留心皆学问”. 具体说来,素材的来源主要有以下几方面:(1)课堂教学,它是教研工作的主阵地,也是素材最重要的来源,这不但是一个教学实践的过程,还是一个发现问题的过程,是一个向学生学习、自己提高的过程;(2)课后反思;(3)作业记录,从学生作业中不但能发现具有共性的问题,还提示我们教研的改革方向;(4)考试总结;(5)解题分析,并从中探索解题规律和命题趋势;(6)调查反馈,可以用谈心、问卷等多种形式进行,从中反馈的信息是难得的写作素材;(7)成果质疑,学习他人但不要迷信,发现不足甚至是错误之处,理由不充分的就要敢于质疑;(8)探讨争论,在日常探讨问题的过程中,持有不同观点的人发生激烈争论是常有的事,从中往往加深了对问题的理解程度;(9)灵感顿悟,事实上很多自选课题的素材是平时工作、学习、生活甚至睡梦中突然想到的,这种灵感是对问题深入思考的结果,如果没有自觉教研的精神,灵感就无从谈起.。三、立足实践,提炼新意——“冷点”、“热点”初中数学教师都从事着一线教学工作,最清楚教学中的困惑和喜悦,最了解学生的想法和看法,最直接的进行着实践和改革,这些是专门从事教育科研工作的专家、学者和部门所难以具备的.正因如此,一线教师的论文多数源于实践,具有强烈的实用性和鲜明的针对性,对于我们的这些优势应该有充分的认识,并不断保持和发展.再比如,教学中的一些“冷点”问题虽不常见,但一旦出现便会使学生无从插手。论文的新意如何出?我认为有两点非常重要:一是在主题上,立意新颖,视角独特;二是在时间上,意识超前,创作及时。四、从小到大,循序渐进——先文章、再论文,从小中见大好成文写论文需要一个过程,循序渐进,不可能一蹴而就. 按照一般情况,初写者先尝试以下两个步骤:第一步:练习写学习辅导类的文章.这些虽然一般称不上“论文”,但是进行这样的写作,既可以当作练笔,又可以用于教学,还可以视为一次小小的课题研究,通常有1000字左右;要求与教学同步。第二步,进行教学研究类论文的写作,先侧重于解题方法研究等实践性强的,由浅入深,不要急于写理论性太强的论文.可以先探讨解题技巧,再挖掘思想方法,后深究素质能力,进而分析命题原则,预测趋势走向等。如果写有些理论性的文章,可以从教学实践中去寻找适应教育发展趋势的新课题,需要指出的是,一篇论文的范围不求广,但求分析透彻,凝练精华,小中见大;论文篇幅不求长,一般在3000字左右;此类论文与学习辅导类的文章相比,格式要规范得多,应认真研读报刊风格。五、技巧和经验——复制、删除、添加当文思涌动,意欲写作时,先应确立文稿的题目,用小标题清晰地表达想写的几个方面。(1)为了借鉴别人的成果,有必要复制相关的文章段落,作为你的理论依据或论述的素材、旁例。但要讲究文德,切勿剽窃抄袭他人论文。这就要参考多遍文章,复制多款内容,不怕内容多,只怕内容不全,然后去粗取精,大刀阔斧地删除。留下的骨架再添加自己的思想,教学实践中的例证,自己平时积累的成果等,但文章一定要有更多自己的东西,这样才是真正自己的文章。(2)做有心人。经常阅读,选择有关书刊放在床头、沙发边或办公桌上,只要有空经常翻阅。一旦有想法,及时记录,并经常向这个方向思考和研究,再参考他人成果必能成就自己的文章。坚持不懈,持之以恒,“功夫不负有心人”。(3)抓住热点、冷点。
“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。
大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
高数学习应该按照这些套路来。
课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。
至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。
当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。
数学中的无穷以潜无穷和实无穷两种形式出现。
在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。
数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
以上内容参考 百度百科-高等数学
作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。 高等数学有两个特点:1.等价代换。在极限类的计算里,常等价代换一些因子(这在量的计算中是不可理解的),但极限是阶的计算。2.如果原函数形式使计算很困难,可使用原函数的积分或微分形式,这是化简计算的思想。这三个函数之间的关系就是微分方程
大学数学论文好写啊,先小小的开下头,这里大概就有300+的字了,在浅谈数学的发展史大概就有1000+的字了,在谈论一下数学的解析的方法,大概就有1000+的字,在谈论一下怎么学习数学,大概就有1000+的字。最后谈论下自己对于数学这门课的理解和看法,差不多也就1000+的字了 现在来看的话也就300+1000+1000+1000+1000=4300的字数了。你在中间的地方插入一些在生活中,将来的工作中得数学应用,举1到2各例子,这样差不多也就一千五六百得字数了,这样就有6000+的数学论文了。
“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;如:探究大桥的热胀冷缩度②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;如: 一台饮水机创造的意想不到的实惠③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法如: 分式“家族”中的亲缘探究如: 纸飞机里的数学④对自己数学学习的某个章节、或某个内容的体会与反思如: “没有条件”的推理如: 小议“黄金分割”如: 奇妙的正五角星① 课题要小而集中,要有针对性;② 见解要真实、独特,有感而发,富有新意;③ 要用自己的语言表述自己要表达的内容(四) 评价数学小论文的标准什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与
初一?一般写写实数虚数有理数无理数之类的或者平面几何,像黄金分割,直角三角形之类的,度受百科很多的,我们以前都是网上到处借鉴来写起来的。好搞定的啦~像我们高一现在五篇论文一个寒假,数化物还有历史地理TAT,初一数学小case的啦~一般论文,现在高一的写也没提什么要求,顶多是拿去比赛用的论文才搞什么标题几号字,正文几号字之类的。初一数学,只要有观点,再拉堆题目论证,最后写点冠冕堂皇的话来作结论,就好了。方便的,我现在物理化学论文一晚上静下心就能写好。哎初一啊好轻松啊,真是怀念呐~~感伤。。。
初一数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!数学小论文:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
解析几何中“设而不求”的妙用摘要】解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。本文谈了如何整体结构意义上的变式和整体思想在解析几何中”设而不求”的妙用。【关键词】解析几何;设而不求;直线;二次曲线解析几何的综合问题,常常与直线和二次曲线的位置有关。如何避免求交点,从而简化计算,也就成了处理这类问题的难点和关键。下面从六个方面举例,介绍“设而不求”这一方法,其实质是整体结构意义上的变式和整体思想的应用。1.与中点弦及弦的中点有关的问题例1:过点A(2,1)的直线与双曲线x2-y2/2=1,交于P1、P2两点,求弦P1P2的中点的P的轨迹方程。解:设P1(x1,y1),P2(x2,y2),则X21-Y21/2=1,X22-Y22/2=1两式作差并整理,得(y1-y2)/(x1-x2)=2·(x1+x2)/(y1+y2)。又设弦P1P2的中点P(x0,y0),因为Kp1p2=KAP,则(y0-1)/(x0-2)=2x0/y0,因此,所求中点P的轨迹方程是2x2-4x-y2+y=0例2:过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在直线方程:解:设以Q为中点的弦AB端点坐标A(x1,y1),B(x2,y2),则有y21=8x1,y22=8x2,两式相减,得:(y1-y2)(y1+y2)=8(x1-x2),又∵x1+x2=8,y1+y2=2解K=y2-y1x2-x1=8y1+y2=4∴所求直线AB方程是:y-1=4(x-4),即4x-y-15=0。评注:问题虽然简单,但提供了一种有关中点及弦的中点问题求解的程序化方法:设弦的两个端点P1(x1,y1),P2(x2,y2),代入二次曲线方程中并作差,便可以得到一组关于y1-y2/x1-x2、x1+x2、y1+y2的关系式,利用它们的几何意义,即可以方便地得到问题之解。2.与对称性有关的问题例3:已知抛物线C:x-y2-2y=0上存在关于直线:L:y=x+m对称的相异两点,求m的取值范围解:设抛物线C上关于直线L对称的两点是A(x1,y1)、B(x2,y2)代入抛物线方程并作差,得y1-y2/x1-x·2(y1+y2)+2(y1-y2)/x1-x2=1∵y1-y2/x1-x2=-1,∴y1+y2=-3,又将A、B两点坐标分别入抛物线C和直线L的方程中并分别相加,得,x1+x2=y21+y22+2(y1+y2),y1+y2=x1+x2+2m,∴y21+y22=(y1+y2)-2m-2(y1+y2)=3-2m∴y21+y22>(y1+y2)2/2=9/2,即:∴3-2m>9/2,∴m<-3/4评注:通过“设点代点”,整体代换,利用基本不等式得到了一个关于m的不等式,从而寻找到了解决问题的突破口。3.曲线方程的探求问题例4:一条直线L被两条相交直线L1:4x+y+16=0和L2:3x-5y-6=0,截得的线段中点恰好是坐标原点,求直线L的方程:解:设L与L1,L2分别交于M(x0,y0)和N,∵M、N关于原点对称,∴N(-x0,-y0),从而有4x0+y0+6=0,-3x0+5y0-6=0,这两个方程相加,得x0+6y0=0,可见M(x0,y0)在直线x+6y=0上,并且这条直线经过原点,所以,所求直线L的方程为x+6y=0。评注:设而不求,并巧妙地利用对称性,灵活而又生动。4.定值和定点问题例5:过点M(-2,0)的直线L与椭圆C:x2+2y2=2交于P1、P2两点,线段P1P2的中点是P,设直线L的斜率为K(K≠0),OP的斜率为K1。(0为椭圆的中心
第一步,选题、选材。要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。第二步,拟纲、执笔。论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。第三步,修改、定稿。修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高
一、培养数学学习兴趣在小学数学教学中的重要性
数学是其他自然科学的基础和保证,因此,学好数学对于学生以后其他学科的学习具有非常重要的现实意义.小学数学主要是促进学生在幼年时期接受数学教育,进而为将来的数学学习奠定基石,因此,培养小学生对于数学的学习兴趣显得非常重要.处于7~12岁年龄段的小学生是各项认知技能都在快速发展的阶段和人群.在这一年龄阶段,其学习数学知识的能力会随着其兴趣而得到不同的发展.如果学生因为缺乏学习兴趣,产生厌学心理,就会对其今后的发展造成不可修复的伤害.教育和教学就是培养人和塑造人的一门科学,所以说,好的教育教学是会使得人的全面发展得到增强的.
二、在小学数学教学中培养学生学习兴趣的方法
1.必须要实行的原则
在小学数学教学中培养学生的数学兴趣是一个重要的教学问题,它必须与学生的知识结构一致和协调,符合学生的身心发展和全面发展,那么,我们就必须必须遵循和执行一定的原则:
(1)适应性原则
适应性原则要求在小学数学教育的日常活动中,学习兴趣是关键,那么,我们就需要以此为原则来不用该年龄阶段的知识去引导学生的努力方向.比如说,现在小学阶段,那些小学奥数比赛已经非常流行了.这些所谓的奥数竞赛,不符合小学生的学习阶段和知识结构,很多题目大大超出他们的知识范围.但这在校园里却是一种很普遍的风尚,这种错误的风尚打击了一大部分学生,使他们发出“数学难”的呼声.这样的学习榜样当然值得肯定,但不适宜在推广而后实施,也不利于培养学生学习数学的积极性和兴趣.
(2)发展性原则
发展性原则是为了培养学生学习数学的兴趣来结合社会的生活和学生的身心特点双重因素.那么,启发学生思考的问题要符合学生知识结构,既不能太简单也不能太难,主要是要联系理论知识与现实生活,促进学生的全面发展.此外,让学生在学习过程中既感到有挑战性,又感觉到好玩和有成效.这样,学生在数学课堂上的学习中不但能学到一定的知识,又有了继续学习的欲望和兴趣,为以后的学习和生活打下了良好的基础,是实现促进学生全面发展的教育目的的.
2.所采取的方法
以根本原则为基础,以具体措施为方法来有针对性地达到教学目标.例如:我们在小学数学的教学过程中可以采取趣味性的教学方式,激发学生的学习兴趣.从小学数学的教学学习环境来说分成两个部分,一是课堂教学,二是课外思考和课外作业.在课堂教学中,应该:
(1)每名学生都积极参与
老师在授课的过程中,要以所教知识与学生的现有认知水平为基础,设计师生共同参与的学习模式,让所有学生参与其中,提高其学习的主动性和效率.
(2)不同的成功体验
让每一名学生都有自己对成功的体验,老师通过教学情境的创设来区别对待,并根据学生不同学习程度和学习能力因材施教,这样所有程度的学生都能获得成功的喜悦.数学这一学科具有系统性和连续性,所以说,循序渐进、激励优生和表扬后进生都是可行之策,每一名学生都会体验到自己的成就感来获得喜悦之情,更能激发学生学习的积极性和主动性.
(3)积极表扬和鼓励
小学生具有年龄小和争强好胜的特点以及荣誉感,所以,在教学的活动中,教师要发现学生的闪光点和优点来加以表扬.特别是,在学生取得进步时,教师要及时给予表扬和鼓励,这样就会使得学生们不断保持学习兴趣.
(4)趣味性课堂活动
教师可以组织一些趣味活动.首先是重视直观的教学方法,例如在教授小学一年级“加减法”的时候,可以让同学们自制一些小工具,这样课堂上玩耍的过程中就学会了知识,同时也使学生学习变得直观化和简单化.其次,我们教师在日常的教学中,尽量将一些大家都熟悉的生活场景引入到课堂来,通过生动有趣的故事,在中间穿插一些数学知识,并通过模型、实物等教具,配合多媒体等教育设施,形象而又直观地引导学生去掌握新知识.在课堂外,应该:给学生创造自由的发展空间.因为小学数学学科本身以理解为主,只要在课堂上真正理解消化了,我们可以适当地减少家庭作业.毕竟在如此小的年纪搞题海战术实在不是一件痛快的事.为了保持学生在课堂中的热情和兴趣,尽量不要给学生的课外生活布下阴影.课外作业以质量取胜.适量的人性的家庭作业能够使学生对数学这一重要学科保持持久的正面的重视.所以我们在给小学生布置数学课外作业时,必须对题量和题型做细致的考察.归根到底,作业的意义就是为了发现问题并解决问题,而不是作为惩罚学生的硬性指标.
这个应该是对于一年级来讲,如果写300字的数学小论文是很难的。可以辅导他写写数学,有趣儿的故事。或者是学习这个有趣儿数学的感受。
数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。